Two Additional Problems on the System Function

Problem 1

Consider the system function $H(z)=\frac{1+2 z^{-1}}{\left(1+\frac{7}{2} z^{-1}-2 z^{-2}\right)\left(1-2 z^{-1}\right)}$. Find the possible corresponding impulse responses $h[n]$.

Soltion: The poles are $p_{1}=2, p_{2}=-4, p_{3}=\frac{1}{2}$. After the partial fraction expansion, the system function is

$$
H(z)=\frac{\frac{8}{27}}{1+4 z^{-1}}+\frac{-\frac{5}{27}}{1-\frac{1}{2} z^{-1}}+\frac{\frac{8}{9}}{1-2 z^{-1}} .
$$

There is a causal system with ROC $|z|>4$ and impulse response

$$
h[n]=\frac{8}{27}(-4)^{n} u[n]+\frac{-5}{27}\left(\frac{1}{2}\right)^{n} u[n]+\frac{8}{9} 2^{n} u[n] .
$$

There is an anticausal system with ROC $|z|<\frac{1}{2}$ and impulse response

$$
h[n]=\frac{-8}{27}(-4)^{n} u[-n-1]+\frac{5}{27}\left(\frac{1}{2}\right)^{n} u[-n-1]+\frac{-8}{9} 2^{n} u[-n-1] .
$$

There is a two-sided system with ROC $2<|z|<4$ and impulse response

$$
h[n]=\frac{-8}{27}(-4)^{n} u[-n-1]+\frac{-5}{27}\left(\frac{1}{2}\right)^{n} u[n]+\frac{8}{9} 2^{n} u[n] .
$$

There is a two-sided and BIBO-stable system with ROC $\frac{1}{2}<|z|<2$ and impulse response

$$
h[n]=\frac{-8}{27}(-4)^{n} u[-n-1]+\frac{-5}{27}\left(\frac{1}{2}\right)^{n} u[n]+\frac{-8}{9} 2^{n} u[-n-1] .
$$

Problem 2

Consider the system function $H(z)=\frac{1+z^{-1}}{1-2 z^{-1}+2 z^{-2}}$. Find the impulse response of a causal system that corresponds to this system function.

Solution: The poles are $p_{1}=1+j$ and $p_{2}=1-j$. After the partial fraction expansion, the system function is

$$
H(z)=\frac{\frac{1}{2}-j}{1-(1+j) z^{-1}}+\frac{\frac{1}{2}+j}{1-(1-j) z^{-1}} .
$$

The impulse response is

$$
h[n]=\left(\frac{1}{2}-j\right)(1+j)^{n} u[n]+\left(\frac{1}{2}+j\right)(1-j)^{n} u[n] .
$$

