
Signal Processing for Communications
Winter Semester 2007 - 2008

Instructor: Prof. Suhas Diggavi
LICOS, EPFL

based on lecture notes by Suhas Diggavi (LICOS), Paolo Prandoni and Martin Vetterli
(LCAV), EPFL

Contents

0 Mathematical Prerequisites 9

0.1 Complex Numbers . 9

0.1.1 Operations on Complex Numbers . 9

0.1.2 The Complex Number Field . 10

0.1.3 The Complex Plane . 10

0.1.4 Absolute Value, Conjugation and Distance 12

0.2 Summations . 13

0.3 Integration . 14

0.4 Linear Algebra . 14

0.4.1 Matrices . 14

0.4.2 Vectors . 15

0.4.3 Determinants . 16

0.4.4 Eigenvalues and Eigenvectors . 16

0.5 Problems . 17

1 What Is Signal Processing ? 19

1.1 Introduction . 19

1.2 Elementary Concepts . 20

1.3 Examples of Signals . 21

1.3.1 Speech . 22

1.3.2 Music . 23

1.3.3 Other One-Dimensional Signals . 23

1.3.4 Images . 26

1.3.5 Other Types of Images . 27

1.3.6 Higher-Dimensional Signals . 27

1.4 Systems . 30

1.4.1 Speech Recognition . 30

1.4.2 Denoising . 31

3

4 CONTENTS

1.4.3 Inverse Problems . 32
1.4.4 Decision Systems . 33

1.4.5 Compression Systems . 33

1.4.6 A Communication Systems Example 34

1.5 World Models . 34
1.6 Analog and Digital Worlds . 36

1.6.1 The Analog World (Continuous Time, Continuous Amplitude) 36

1.6.2 Discrete-Time, Analog Worlds (Discrete Time, Continuous Amplitude) . 37

1.6.3 Digital Worlds (Discrete Time, Discrete Amplitude) 37

1.6.4 Analog versus Digital . 38
1.7 Overview of the Course . 40

1.A Historical Notes . 43

1.B Literature . 45

2 Discrete-Time Signals 47

2.1 Continuous and Discrete-time Signals . 47

2.2 Informal description of sampling theorem . 48
2.3 Discrete-time sequences . 51

2.3.1 Basic Signals . 52

2.3.2 Digital Frequency . 54

2.3.3 Elementary Operators . 55

2.3.4 The Reproducing Formula . 56
2.3.5 Energy and power . 57

2.4 Classes of Discrete-Time Signals . 57

2.4.1 Finite-Length Signals . 58

2.4.2 Infinite, Aperiodic Signals . 59
2.4.3 Periodic Signals and Periodic Extensions 59

2.4.4 Finite-Support Signals . 61

2.5 Summary . 61

3 Representation of Discrete-Time Sequences (DFS, DFT) 65

3.1 Preliminaries . 66

3.1.1 Terminology . 66

3.1.2 Complex Oscillations? Negative Frequencies? 67
3.1.3 Complex Exponentials . 69

3.2 Representation of Periodic Sequences: The Discrete-Time Fourier Series (DFS) 69

3.2.1 Interpretation of the Fourier series . 74

3.3 The Discrete Fourier Transform (DFT) . 77
3.4 Properties of the DFS . 80

CONTENTS 5

3.5 Properties of the DFT . 81

3.6 Summary . 82

3.7 Problems . 83

4 Signals and Hilbert Space 87

4.1 A Quick Review of Euclidean Geometry . 88

4.2 From Vector Spaces to Hilbert Spaces . 92

4.2.1 The Recipe for Hilbert Space . 92

4.2.2 Examples of Hilbert Spaces . 96

4.2.3 Inner Products and Distances . 97

4.3 Subspaces, Bases, and Projections . 98

4.3.1 Definitions . 99

4.3.2 Properties of Orthonormal Bases . 100

4.3.3 Examples of Bases . 105

4.4 Signal Spaces Revisited . 106

4.4.1 Finite-Length Signals . 106

4.4.2 Periodic Signals . 107

4.4.3 Inifinite Sequences . 107

4.5 Summary . 109

4.6 Problems . 109

5 The DTFT (Discrete-Time Fourier Transform) 111

5.1 The DTFT as the Limit of a DFS . 113

5.2 The DTFT as a Formal Change of Basis . 115

5.3 Relationships Between Transforms . 119

5.4 Properties of the DTFT . 121

5.5 Summary . 125

5.6 Problems . 126

6 Fourier Analysis - Practice 129

6.1 The Transforms in Practice . 129

6.1.1 Plotting Spectral Data . 130

6.1.2 Computing the Transform: the FFT 131

6.1.3 Cosmetics: Zero Padding . 131

6.2 Spectral Analysis . 133

6.3 Time-Frequency Analysis . 135

6.3.1 The Spectrogram . 135

6.3.2 The Uncertainty Principle . 137

6.4 Digital Frequency vs. Real Frequency . 137

6 CONTENTS

6.5 Problems . 140

7 Linear Systems 141

7.1 Definition and Properties . 141

7.1.1 Properties of the convolution . 143

7.1.2 The meaning of the convolution . 144

7.1.3 Convolution of frequency spectrum . 144

7.2 Circular convolution . 145

7.3 Stability . 145

7.3.1 Causality . 147

7.4 Introduction to Filtering . 151

7.4.1 FIR filtering . 151

7.4.2 IIR filtering . 152

7.5 Filtering in the Frequency Domain . 155

7.5.1 Preliminaries . 155

7.5.2 The Convolution and Modulation theorems 156

7.6 The Frequency Response . 157

7.6.1 Magnitude . 158

7.6.2 Phase . 158

7.7 Examples of Filters . 160

7.7.1 Ideal Filters . 160

7.7.2 Examples Revisited . 164

7.8 Filtering and Signal Classes . 166

7.8.1 Filtering of Finite-Length Signals . 166

7.8.2 Filtering of Periodic Sequences . 167

7.9 Summary . 169

7.10 Problems . 170

8 The Z-Transform 177

8.1 Region of convergence for the Z-transform . 179

8.2 The inverse Z-transform . 181

8.3 Partial fraction expansion . 181

8.4 Z-transform properties . 189

8.5 Analysis and characterization of LTI systems using Z-transform 192

8.5.1 Causality . 192

8.5.2 Stability . 192

8.5.3 LTI systems and linear constant-coefficient difference equations 193

8.6 Problems . 194

CONTENTS 7

9 Filters and Filter Design 199
9.1 Realizable Filters: General Properties . 199

9.1.1 Difference Equations & Initial Conditions 200
9.1.2 Transfer Functions . 202
9.1.3 Stability Analysis . 203

9.2 Filter Design - Introduction . 203
9.2.1 FIR versus IIR . 204
9.2.2 Filter Specifications & Tradeoffs . 205

9.3 FIR Filter Design . 207
9.3.1 FIR Filter Design by Windowing . 207
9.3.2 Minimax FIR Filter Design . 214

9.4 IIR Filter Design . 233
9.4.1 All-Time Classics . 233
9.4.2 IIR Design by Bilinear Transformation 235

9.5 Filter Structures . 241
9.5.1 FIR Filter Structures . 241
9.5.2 IIR filters structures . 242

9.5.3 Some Remarks on Numerical Stability 245
9.6 Problems . 246

10 Interpolation and Sampling 249
10.1 Preliminaries and Notation . 250
10.2 Continuous-Time signals . 251

10.3 Bandlimited Signals . 252
10.4 The Sampling Theorem . 255

10.4.1 Frequency-domain representation of sampling 255
10.5 The Space of Bandlimited Signals. 258

10.5.1 Sampling as a Basis Expansion. 259

10.5.2 Examples for the sampling theorem . 260
10.6 Interpolation . 264

10.6.1 Local Interpolation . 265
10.6.2 Polynomial Interpolation . 267
10.6.3 Sinc Interpolation . 269

10.7 Aliasing . 271

10.7.1 Non-Bandlimited Signals . 272
10.7.2 Aliasing: Intuition . 272
10.7.3 Aliasing: Proof . 275
10.7.4 Examples . 277

10.8 Problems . 285

8 CONTENTS

10.A The Sinc Product Expansion Formula . 288

11 Multirate Signal Processing 293
11.1 Downsampling: Sampling rate reduction by an integer factor 295
11.2 Filtering and Down-sampling . 306
11.3 Upsampling: increasing the sampling rate by an integer factor 306
11.4 Changing sampling rate by a rational non-integer factor 313
11.5 Interchange of filtering and down-sampling/up-sampling 317
11.6 Sub-band decompositions . 327

11.6.1 Perceptual models . 327
11.7 Sub-band or filterbank decomposition of signals 329
11.8 Problems . 343

12 Quantization and AD/DA Conversions 349
12.1 Introduction . 349
12.2 Quantization in analog-to-digital conversion 352

12.2.1 Scalar Quantization . 353
12.2.2 Sampling and Quantization . 355

12.3 Oversampled analog-to-digital conversion . 358
12.4 Problems . 361

13 Additional Material 363
13.1 Example of Frequency Domain Manipulations: Denoising 364
13.2 Small Project . 366

Chapter 0

Mathematical Prerequisites

0.1 Complex Numbers

A complex number is a number of the form a + bi, where a and b are real numbers, and
i is the imaginary unit, with the property i2 = −1. The real number a is called the real
part of the complex number, and the real number b is the imaginary part of the complex
number. When the imaginary part b is 0, the complex number is just the real number a.

For example, 3 + 2i is a complex number, with real part 3 and imaginary part 2. If
z = a+bi, the real part (a) is denoted Re(z), and the imaginary part (b) is denoted Im(z).

Complex numbers can be added, subtracted, multiplied, and divided like real numbers,
but they have additional elegant properties. For example, real numbers alone do not
provide a solution for every polynomial algebraic equation with real coefficients, while
complex numbers do (the fundamental theorem of algebra).

In some fields (in particular, electrical engineering and electronics, where i is a symbol
for current), complex numbers are written as a + bj.

0.1.1 Operations on Complex Numbers

The set of all complex numbers is usually denoted as C. The additions, subtractions, and
multiplications of complex numbers follow the associative, commutative, and distributive
laws of algebra. Combining the latter properties with the equation i2 = −1, it is easy to
see that:

(a + bi) + (c + di) = (a + c) + (b + d)i (0.1)

(a + bi)− (c + di) = (a− c) + (b− d)i (0.2)

(a + bi)(c + di) = ac + bci + adi + bdi2 = (ac− bd) + (bc + ad)i (0.3)

9

10 Chapter 0.

0.1.2 The Complex Number Field

Formally, the complex numbers can be defined as ordered pairs of real numbers (a, b)
together with the operations:

(a, b) + (c, d) = (a + c, b + d) (0.4)

(a, b) · (c, d) = (ac− bd, bc + ad) (0.5)

So defined, the complex numbers form a field, the complex number field, denoted by C.

Since a complex number a + bi is uniquely specified by an ordered pair (a, b) of real
numbers, the complex numbers are in one-to-one correspondence with points on a plane,
called the complex plane.

We identify the real number a with the complex number (a, 0), and in this way the
field of real numbers R becomes a subfield of C. The imaginary unit i is the complex
number (0, 1).

In C, we have:

• additive identity (”zero”): (0, 0)

• multiplicative identity (”one”): (1, 0)

• additive inverse of (a, b) : (−a,−b)

• multiplicative inverse (reciprocal) of non-zero (a, b):
(

a
a2+b2

, −b
a2+b2

)

0.1.3 The Complex Plane

A complex number z = a + bi can be viewed as a point or a position vector on a two-
dimensional Cartesian coordinate system called the complex plane. The Cartesian coor-
dinates of the complex number are the real part a and the imaginary part b, while the
polar coordinates are r = |z|, called the absolute value or modulus, and φ = arg(z), called
the complex argument of z (mod-arg form). Together with Euler’s formula we have (see
figure 0.1)

z = a + bi = r(cos ϕ + i sin ϕ) = reiϕ (0.6)

0.1. Complex Numbers 11

Figure 0.1: Complex plane representation

It is easy to see that:

r = |z| =
√

a2 + b2 (0.7)

tan ϕ =
b

a
(0.8)

cos ϕ =
eiϕ + e−iϕ

2
(0.9)

sinϕ =
eiϕ − e−iϕ

2i
(0.10)

By simple trigonometric identities, we see that

r1e
iϕ1 · r2e

iϕ2 = r1r2e
i(ϕ1+ϕ2) (0.11)

and that

r1e
iϕ1

r2eiϕ2
=

r1

r2
ei(ϕ1−ϕ2). (0.12)

12 Chapter 0.

This gives you an easy way to calculate the powers and the roots of complex numbers.
Pay attention to the fact that reiϕ = rei(ϕ+2kπ), k ∈ Z, so (reiϕ)1/N = r1/Nei(ϕ+2kπ)/N ,
k = 0, 1, ..., N − 1.

Now the addition of two complex numbers is just the vector addition of two vectors,
and the multiplication with a fixed complex number can be seen as a simultaneous rotation
and stretching.

Multiplication with i corresponds to a counterclockwise rotation by 90 degrees (π/2 ra-
dians). The geometric content of the equation i2 = −1 is that a sequence of two 90 degree
rotations results in a 180 degree (π radians) rotation. Even the fact (−1) · (−1) = +1
from arithmetic can be understood geometrically as the combination of two 180 degree
rotations.

0.1.4 Absolute Value, Conjugation and Distance

One can check readily that the absolute value has three important properties:

|z| = 0, if and only if z = 0 (0.13)

|z + w| ≤ |z|+ |w|, (triangle inequality) (0.14)

|zw| = |z| · |w| (0.15)

for all complex numbers z and w. It then follows, for example, that |1| = 1 and |z/w| =
|z|/|w| . By defining the distance function d(z,w) = |z−w| we turn the complex numbers
into a metric space and we can therefore talk about limits and continuity. The addi-
tion, subtraction, multiplication and division of complex numbers are then continuous
operations. Unless anything else is said, this is always the metric used on the complex
numbers.

The complex conjugate of the complex number z = a+ib is defined to be a−ib, written
as z̄ or z∗. z̄ is the ”reflection” of z by the real axis. The following can be checked:

z + w = z̄ + w̄ (0.16)

zw = z̄w̄ (0.17)

(z/w) = z̄/w̄ (0.18)

¯̄z = z (0.19)

z̄ = z if and only if z is real (0.20)

|z| = |z̄| (0.21)

|z|2 = zz̄ (0.22)

z−1 = z̄|z|−2 if z is non-zero. (0.23)

0.2. Summations 13

The latter formula is the method of choice to compute the inverse of a complex number if
it is given in rectangular coordinates.

That conjugation commutes with all the algebraic operations (and many functions,
e.g., sin z̄ = sin z) is rooted in the ambiguity in the choice of i (−1 has two square roots).

0.2 Summations

Let f be a function whose domain includes the integers from n through m. We define

m∑

i=n

f(i) = f(n) + f(n + 1) + ... + f(m) (0.24)

We call i the index of summation, n is the lower limit of summation, and m is the upper
limit of summation. One can show that:

n∑

k=1

c = c + c + ... + c = cn (0.25)

n∑

k=1

k = 1 + 2 + ... + n =
n(n + 1)

2
(0.26)

n∑

k=1

k2 = 1 + 4 + ... + n2 =
n(n + 1)(2n + 1)

6
(0.27)

(0.28)

Another well-known result is the following:

Sn =
n∑

k=0

rk = 1 + r + r2 + ... + rn =

{
1−rn+1

1−r if r 6= 1

n + 1 else
(0.29)

Note that when r < 1:

lim
n→+∞

Sn =
1

1− r
(0.30)

Additionally, be very cautious when taking squares of summations:

[
m∑

i=n

f(i)

]2

=

[
m∑

l=n

f(l)

][
m∑

k=n

f(k)

]

=

m∑

l=n

m∑

k=n

f(l)f(k) (0.31)

Finally, let SN =
∑N

n=1 an and S = limN→+∞ SN . If the sequence of partial sums is
divergent (i.e., either the limit does not exist or is infinite) then we call the series divergent.

14 Chapter 0.

If |S| = c <∞, we call the series convergent and we call S the sum or value of the series.
The Cauchy convergence criterion states that a series

∑∞
n=1 an converges if and only if the

sequence of partial sums is a Cauchy sequence. This means that for every ε > 0, there is
a positive integer N such that for all n ≥ m ≥ N we have:

∣
∣
∣
∣
∣

n∑

k=m

ak

∣
∣
∣
∣
∣
< ε (0.32)

which is equivalent to

lim
n→∞

m→∞

n+m∑

k=n

ak = 0 (0.33)

0.3 Integration

Besides being comfortable with the basic properties of integrals and methods for integra-
tion (e.g. substitution, integration by parts) it is important to know the definition and
basic properties of the convolution integral.

The convolution between two functions f and g, both with domain R, is itself a func-
tion, let’s call it h, and is defined by

h(x) := f(x) ∗ g(x) =

∫

R

f(y)g(x− y)dy.

The following properties are easy to show:

• f(x) ∗ g(x) = g(x) ∗ f(x).

• f(x) ∗ (g(x) ∗ h(x)) = (f(x) ∗ g(x)) ∗ h(x).

• f(x) ∗ (α · g(x) + β · h(x)) = α · f(x) ∗ g(x) + β · f(x) ∗ h(x).

0.4 Linear Algebra

0.4.1 Matrices

Let A be a matrix with n rows and m colums of complex entries. That is, we have

A :=

A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m
...

...
. . .

...
An,1 An,2 . . . An,m

,

0.4. Linear Algebra 15

Ai,j ∈ C.

One of the basic operations on A is taking the transpose, denoted by AT and defined
as
(
AT
)

i,j
= Aj,i, i = 1, . . . , n, j = 1, . . . ,m. More explicitely we have

AT =

A1,1 A2,1 . . . An,1

A1,2 A2,2 . . . An,2
...

...
. . .

...
A1,m A2,m . . . Am,n

.

The conjugate transpose of A, denoted by A∗, is defined as (A∗)i,j = A∗
j,i. Besides taking

the transpose of A we take the complex conjugate of each element. Note that A∗ is also
known as the Hermitian of A.

Based on the above operations we define symmetric and Hermitian matrices. A real
matrix A is symmetric if AT = A, a (complex) matrix is Hermitian if A∗ = A.

The matrix A can be right multiplied with a m by p matrix, say B, resulting in a n by
p matrix. Remember that matrix multiplication is defined by (AB)i,j =

∑m
k=1 Ai,kBk,j.

Note that matrix multiplication is not commutative, i.e. AB 6= BA (assuming
n = m).

0.4.2 Vectors

Let c and d be length n resp. m vectors, i.e., c = [c1, c2, . . . , cn] and d = [d1, d2, . . . , dm].
We will usually assume that vectors are column vectors. This allows us to right multiply
our matrix A with vector d. The result Ad is a length n vector. Similarly bT A gives a
length m row vector.

The inner product between two n length vectors a and b is defined by

〈a, b〉 :=

n∑

i=1

aibi = aT b.

Note that matrix multiplication is nothing more than taking inner products between rows
and columns of the two matrices. The most common way to define the norm of a vector
is through the inner product. This gives that the norm of x, ‖x‖2, is defined as

‖x‖2 = 〈x, x〉1/2 .

A very useful relation is the Cauchy-Schwartz inequality, which states that

| 〈x, y〉 | ≤ ‖x‖2‖y‖2.

16 Chapter 0.

0.4.3 Determinants

One of the most used properties of a matrix is its determinant. The determinant of a 2
by 2 matrix

A =

[
a b
c d

]

is given by
det(A) = ad− bc.

In general for a square n by n matrix A we have, for any row i = 1, . . . , n

det(A) =

n∑

j=1

Ai,j(−1)i+j det
(

A\(i,j)
)

,

where A\(i,j) is the matrix resulting after removing row i and column j from matrix A.
We can also expand along any column j = 1, . . . ,m, which gives us

det(A) =

n∑

i=1

Ai,j(−1)i+j det
(

A\(i,j)
)

.

An important result to keep in mind is that

a matrix is invertible if and only if its determinant is not equal to zero.

Finally, we note the following basic relations:

• det(AB) = det(A) det(B).

• det
(
A−1

)
= det (A)−1.

• det(A∗) = det(A)∗.

0.4.4 Eigenvalues and Eigenvectors

The eigenvalues of a matrix A are the solutions for λ in the equation

det(A− λI) = 0,

which is called the characteristic equation. Given that λ̃ is an eigenvalue of A, we call the
vector x for which

Ax = λ̃x

the eigenvector corresponding to λ̃.
One can verify that the eigenvalues of A and A∗ are the same. On the other hand, the

eigenvectors of A and A∗ are different.

0.5. Problems 17

0.5 Problems

Problem 0.1 1. Let s[n] := 1
2n + j 1

3n . Compute
∑∞

n=1 s[n].

2. Same question with s[n] := (j
3)n.

3. Characterize the set of complex numbers satisfying z∗ = z−1.

4. Find 3 complex numbers {z0, z1, z2} which satisfy z3
i = 1, i = 1, 2, 3.

5. What is the following infinite product
∏∞

n=1 ejπ/2n

?

Problem 0.2 (Geometric Series) Consider the sequence x[n] = a · rn for some real r.
Let S[n] =

∑n
k=0 x[k].

(a) The goal is to find a closed form expression for S[n].

• Compare the two sequences S[n] and S[n + 1].

• Multiply each term in S[n] by r and obtain S̃[n] = rS[n]. Compare S̃[n] with
S[n + 1].

• We have obtained a system of two equations in the unknowns S[n] and S[n+1].
Solve this system and express S[n] in terms of a, r and n.

(b) Let |r| < 1. Find S[n] when n goes to infinity, i.e., S =
∑∞

k=0 x[k].

(c) Find an expression for the summation
∑m

k=n+1 x[k].

(d) Apply the obtained formula and compute
∑∞

k=0 t[k], where t[k] = 1
3k + (1

2j)
k.

(e) How can we use this formula to compute Π∞
n=1e

jπ/2n

?

Problem 0.3 (Complex Numbers) (a) Find all the roots of x3 + 2x2 + 2x + 1 = 0.
What is the summation of the roots?
Hint: Try small integers to find one of the roots and then solve the remaining degree
2 polynomial.

(b) Compute jj , where j =
√
−1.

(c) Consider the polar representation of the complex numbers and find all which satisfy
arg(z) = |z|. (Note that 0 ≤ arg(z) ≤ 2π.)

(d) Characterize the set of complex numbers satisfying z∗ = z−1.

18 Chapter 0.

Problem 0.4 (Linear Algebra) (a) Compute the determinant of the following matrix.

A =

2 0 −1 0
1 0 2 1
0 0 2 1
−1 −3 2 0

.

(b) Consider the matrices

B =

j −1 4
0 2− 3j 1
−1 2j 0
3 0 4− j

and C =

0 0 j 1
1− 5j 1 4j 2 + 2j

1 3− j 0 −7

 .

Which of the following operations are well-defined? (Note that you do NOT have to
compute.) C + B, C ·A−1, B · C, A− C, B + BT , A + AT , C−1 ·B−1, C∗ + B,

(c) Let x = [1, 2j, 1 + j, 0]. Compute AxT and xB.

(d) Compute the determinant of D = xxT and E = xT x.

Chapter 1

What Is Signal Processing ?

1.1 Introduction

As implied by the name, signal processing deals with signals on the one hand, and opera-
tions on signals on the other hand. That is, the “black box” view of signal processing is
as shown in this scheme:

Input Signal Processing Output Signal

The purpose of these notes is to help you understand what a signal is, how it relates to
the world around us, and how we can manipulate it. That is, we want to understand what
to put inside the “black box” of the previous figure in order to be able to treat relevant
signals from the real world, and produce output signals as required by applications, in
particular in the context of communication systems.

As stated above, the realm of signal processing might seem too vague, or too all-
encompassing. Any physical quantity evolving over time or space qualifies as a signal,
and any possible computation performed on such a signal is a signal processing operation.
That is, in many areas of applied sciences and engineering, people run what are essentially
“signal processing” algorithms, not always knowingly. Or, to paraphrase Molière’s Mon-
sieur Jourdain, many people “font du traitement du signal sans le savoir”. Our aim will
not be to claim as large a field as possible, but to clearly specify that there are many other
possible applications beyond those which we will study in detail; in our case, the focus will
be mostly on telecommunications and related fields in electrical engineering and computer

19

20 Chapter 1.

sciences. Whenever relevant, we will also try to illustrate the overlapping between signal
processing and other scientific disciplines such as acoustics, statistics, geophysics, applied
and computational harmonic analysis, and so on.

The outline of this introductory chapter is as follows. First, we will showcase a “gallery
of signals”, from the floods of the Nile to the stock market, in order to point out the
common traits and the differences between various signals. Next we will describe a series
of prototypical “black box” systems, ranging from the very simple to the very complicated,
all of which perform some meaningful signal processing task. We will then discuss the
idea of an “underlying model” for a signal, which can be put to advantage in the design
of signal processing algorithms. We will then sketch a very brief history of modern signal
processing, highlighting the main achievements and their impact. Finally we will conclude
the chapter with an overview of the structure of these notes. But before moving on, we
need to introduce some initial, elementary technical concepts, which will then be refined
along the way.

1.2 Elementary Concepts

Let Z, R, C denote the set of integer, real, and complex numbers respectively. Most real
world signals can be modeled as real or complex functions of one or more real arguments.
Signals of this type are called continuous-time signals and will be indicated by the familiar
lowercase notation used for real functions, e.g. f(t), x(t), and so on. Signals which are
functions of a single real argument are called one-dimensional signals. In this case the
real argument usually represents time, while the signal itself is the evolution of a given
quantity (often an electrical signal) over time signals which are functions of two arguments
are called two-dimensional signals, and the two arguments usually represent a coordinate
pair in the plane; this is for instance the case of a signal representing an image. For most
continuous-time signals considered as functions on the real line, the Fourier transform (as
defined in the standard calculus course) is a well defined operator; we will indicate the
Fourier transform of a signal f(t) as F (jΩ).

A discrete-time signal is a sequence of numbers (real or complex) indexed by one or
more integer arguments. Again, a lower case letter will represent a given sequence but, in
order to make explicit the discrete nature of the argument, the latter is enclosed in square
brackets: f [n], x[n], and so on. This somewhat unusual notation is actually quite standard
in the signal processing literature. Now, discrete-time signals are very often obtained from
“sampling” a continuous-time signal. By sampling, we mean taking the value of a signal at
regular intervals, or integer multiples of a sampling period T . This process will be studied
in detail in Chapter 10, but we shall note right away that sampling a continuous-time
signal f(t) leads to a discrete-time signal f [n] (please note the round parentheses and the

1.2. Elementary Concepts 21

square brackets):

f [n] = f(nT) n ∈ Z (1.1)

where T is a real number greater than 0. A key question is of course whether we can recover
f(t) from its samples f [n], a question we will settle in the aforementioned Chapter 10. A
Fourier representation indeed exists for most discrete-time signals as well, and its study
will be the subject of Chapter 3. In general, the Fourier transform of a discrete-time
sequence f [n] will be indicated by F (ejω).

Sometimes, one considers a finite-length signal, with indexes 0 . . . N − 1, where N
denotes the length of the signal. It is then natural to consider such a signal as a vector in
RN or CN , the N -dimensional real and complex Euclidean spaces. In such a case, we will
use linear algebra notation, that is, vectors will be denoted by lower case bold letters, e.g.
f ,x, etc. Linear transforms are given by matrices, denoted by bold upper case letters, e.g.
M. For example, a finite-dimensional version of the Fourier transform, called the discrete
Fourier transform (DFT) and discussed in Section 3.3, will map an N -dimensional “signal”
x into its N -dimensional transform y using a special matrix W:

X = W · x (1.2)

Note that the Fourier transform is also denoted by bold upper case letters, and the dif-
ference will be clear from the context. This concludes our elementary notations, where
we have introduced three types of objects central to signal processing. These types are
summarized in Table 1.1, which will be our rudimentary road map for the rest of the
chapter.

Signal Type Time-domain Notation Frequency-domain Notation

Continuous-time x(t), t ∈ R X(jΩ)

Discrete-time x[n], n ∈ N X(ejω)

Finite-length x, x ∈ CN X = Wx

Table 1.1: Fundamental signal types.

22 Chapter 1.

0 100 200 300 400 500 600
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 100 200 300 400 500 600
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(a) (b)

Figure 1.1: Speech signals. (a) Voiced sound, corresponding to the

sound “a”, (b) Unvoiced sound corresponding to “shh...”.

1.3 Examples of Signals

We will now present a series of signals drawn from our everyday experience. Most of
these are signals which are “processed” by our senses (hearing, vision). Others are more
abstract and represent our analysis of real-world phenomena.

1.3.1 Speech

For a human being, the most natural signal is depicted in Figure 1.1. It is a speech signal
in two of its typical forms, i.e. voiced speech in part (a) and unvoiced speech in part
(b). It is fairly obvious from the picture that voiced sounds look almost periodic, while
unvoiced speech possesses a noise-like character. One fact is immediately obvious from
Figure 1.1: most of us would not recognize the vowel “a” or the sound “sh” from the plot
of the signal, yet all of us will instantly recognize the sounds when played to our ears.
Welcome to signal processing! A task which is trivial for the human ear and its attached
processor (the brain) becomes a very hard problem for a computer. In particular, computer
recognition of continuous speech (as opposed to isolated words like digits for example) from
an unknown speaker (that is, without training tuned for a particular speaker) is still an
open problem, even though a child can master it easily. Speech has fascinated signal
processing researchers for decades, and due to its obvious economical importance, vast
amounts of work have gone into ”understanding” the speech signal; the two main lines of

1.3. Examples of Signals 23

research involve studying speech production, i.e. how humans produce speech signals, and
speech recognition, i.e. how humans perceive and analyze speech.

Speech can clearly be modeled as a continuous-time signal, corresponding to sound
waves produced by the vocal cords and filtered by the trachea and mouth. Yet, most of
speech processing (except in “old” analog telephony) is done in discrete-time, typically at
a sampling rate of 8kHz, or a sampling interval of T = 0.125 ms. As we will see, such
sampling does not impair the signal very much, and is thus standard in “digital” telephony.

1.3.2 Music

Next to speech, musical sounds are the most ancient signals produced by humans. Fig-
ure 1.2 shows several examples of signals produced by musical instruments, ranging from
the “simplest” to the most “complex”. As quite obvious from looking at the picture (and
even more so by listening to the sound!), there is a wide variety of musical sounds, from the
simple, sinusoidal flute to the polyphonic complexity of a full orchestra. Music through the
ages has been about synthesizing interesting sounds, and signal processing has added many
new “instruments” to the toolbox in the last decades. From vocoders (to help aspiring
singers stay in tune...) to full blown synthesizers able to imitate almost any instrument to
near perfection, examples abound where sophisticated signal processing techniques create
“new sounds”. Most are based on prior fine analysis of actual instruments, in order to
best imitate them, while others are completely “artificial”. Depending on one’s musical
taste, some of the achievements have been a mixed blessing for music. A few examples
are given in Figure 1.3.

Besides producing music, signal processing is also involved in the more mundane task
of recording, storage, transmission, etc. Again, while the signal is a sound wave, a discrete-
time version with sampling at 44 KHz is most often used, with little degradation.

1.3.3 Other One-Dimensional Signals

So far, we have looked at the two most natural signals, namely speech and music. Many
other examples are possible, and we will pick a few outstanding examples. Figure 1.4 shows
two key signals for humans, namely the electro-cardiogram, and the electro-encephalogram.
These indicate heart and brain activity, respectively. Such signals have been studied by
doctors for decades in order to monitor illness, or predict future problems. Continuous
monitoring by means of automatic analysis is becoming a reality as processing has become
sophisticated and reliability has increased (e.g. automatic defibrillation devices for heart
patients).

Mother nature is a great producer of interesting signals, from seismic activity to solar
spots. A famous example is what is considered to be on many accounts the oldest discrete-

24 Chapter 1.

2 3 4 5 6 7 8 9 10

x 10
4

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 1 2 3 4 5 6

x 10
4

−1.5

−1

−0.5

0

0.5

1

1.5

(a) (b)

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

(c) (d)

Figure 1.2: Examples of musical sounds. (a) Flute (beginning of Ravel’s
Bolero), (b) Full orchestra (ending of Ravel’s Bolero), (c) Piano (from Bach’s

Goldberg Variations), (d) String quartet (from Schubert’s Op.29).

1.3. Examples of Signals 25

200 400 600 800 1000 1200
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0 200 400 600 800 1000 1200
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

(a) (b)

400 600 800 1000 1200 1400 1600 1800 2000 2200

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0 100 200 300 400 500 600 700 800 900 1000

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

(c) (d)

Figure 1.3: Examples of musical sounds from synthetic instruments. (a) Flute
(with additive synthesis), (b) Trumpet (with FM modulation), (c) Violin (with

physical modeling), (d) Piano (with digital waveguide).

26 Chapter 1.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500
−20

−10

0

10

20

30

40

(a) (b)

Figure 1.4: Medical signals of vital importance.
(a) Electro-cardiogram (ECG), (b) Electro-encephalogram (EEG).

time signal on record. It is actually a time-series, with a sampling interval of one year
which, amongst other things, indicates the height of the floods of the Nile in ancient Egypt
from 2925 BC to 2325 BC. The floods of the Nile were studied in modern times by Hurst in
order to spot any regularity. Instead, he found the “Hurst parameter”, a fractal measure of
long-range dependence that is used today in the analysis of internet traffic; see Figure 1.5
for examples of both.

A famous time series that has obsessed many people is the stock market index, which
is known for its trends but also its unpredictability due to abrupt changes (e.g. 1929...).
The million dollar question is: What is the market value tomorrow? Yet another view
of human activity is at the center of an intense scientific and political controversy. The
signal at the heart of the debate is fairly simple, since it is the measure of the temperature
on planet earth over the last hundred years or so. But there is much more at stake than
in the stock market question: is there a global warming phenomenon, which could wipe
out civilization as we know it? You can try your guess on Figure 1.6!

1.3.4 Images

So far, all signals we considered were functions of a single variable, typically time. If we
look at signals of two variables, say f(x, y) or f [n,m], we get in the realm of image pro-
cessing. Of course, long before the advent of photography and image processing, humans
had “projected” images of the real world onto a two-dimensional surface, from Lascaux

1.3. Examples of Signals 27

(a) (b)

Figure 1.5: Long range dependent time-series. (a) The floods of the Nile in

modern times, (b) Internet traffic.

to Giza and more. Yet the modern age started with the invention of photography in the
19th century, which soon produced “scientific” images of the world around us.

A few particularities should be noted about images. Typically, images are of finite
extent, whereas many one-dimensional signals had infinite length (ignoring the big-bang
for a moment, and hoping the best for the future...). Images are either black and white
(f(x, y) is real and positive) or color (f(x, y) is a vector function depending on a color
space). Finally, until recently, images were continuous in the space dimension, whereas
now, many images are ”digital” right from the start. An image in digital form is typically
an array of 512 by 512 or 1024 by 1024 picture elements (pixels). It is to be noted that a
high quality photograph on chemical film is of much higher quality, even though the gap
is constantly narrowing.

1.3.5 Other Types of Images

Besides “classic” photographs, many other types of images are possible. For example,
in the medical field, X-ray pictures and ultrasound images are very common, examples
of which are shown in Figure 1.7. Clearly, such images have very different characteristics
from “natural” images, a fact that obviously will influence the signal processing techniques
used on such data.

28 Chapter 1.

Figure 1.6: A vital signal about the health of planet earth: temperature

evolution from 1830 to 2000.

1.3.6 Higher-Dimensional Signals

Stepping up from two to three dimensions, the dominant signal is certain video and film,
that is, “moving pictures”. An important point to notice right away is that in such three-
dimensional data, the time dimension is always discrete, e.g. 24 frames/sec in movies,
50 or 60 fields/sec in television. This is shown schematically in Figure 1.8.

Moving pictures have fascinated viewers ever since their invention late in the 19th
century. Because of the sampling in the time dimension, they are also one of the first
examples of a sampled data system. This sampling can also cause some artifacts that
are well known to fans of “western” movies (among others). It is the famous backward

Figure 1.7: Medical images. (a) X-ray image (details), (b) Ultrasound image (details).

1.3. Examples of Signals 29

x

y

Figure 1.8: Three dimensional signal as in film or video. While the spatial
dimension x and y can be continuous (film) or partly discrete (video where
there is a line structure) the time dimension is always discrete (given by the

number of images per second that are captured).

turning wagon-wheel effect, shown schematically in Figure 1.9. This is an example of
aliasing, a phenomenon typical of sampling. The reason for the “visual illusion” of the
wheel turning backward is that there are several possible continuous time events that map
to the same sampled sequence, and the human eye will pick out the most likely. In the
example above, let’s say that the wheel turns clockwise by 3π/4 between each sampling
instant. The sampled version is as in Figure 1.9. However, because of symmetry, the
same wheel turning backward (or counter clockwise) by −π/4 leads to the same sampled
sequence. This motion being smaller, it will be the ”most likely” explanation that the
viewer will see. The issue of aliasing in sampling will be studied in detail in Chapter 10.

While film and video is the most common and visible three-dimensional data set, there
are many other examples of such signals, e.g. geophysical data (representation of the earth
interior for oil exploration purposes), tomographic data (interior of the human body for
medical analysis), etc. Finally, let us mention an example of a four-dimensional data set,
used in medical signal processing. While its importance is clear, its acquisition is very
difficult: it is the “image” of the beating heart. That is, using tomographic techniques,
one reconstructs a three-dimensional image of the heart, and this over time.

In conclusion for this section on signals, let us simply remark that signals are every-
where. Wherever you look, listen or sense, signals are to be found. Humans are very good
at processing signals for which they are equipped. But there are also many key signals

30 Chapter 1.

t=0 t=1 t=2 t=3

Figure 1.9: The wagonwheel ”illusion”. Is this wheel turning forward or backward?

beyond the “natural” ones, beyond the reach of humans. And all of these signals are of
interest to signal processing systems.

1.4 Systems

A system, in our view of the world, is a box that takes a signal in, and produces an output,
typically another signal. Such a general view, applied to the many signals we have seen,
produces a wealth of possible signal processing systems. Instead of an exhaustive list, we
will pick a few examples that are emblematic signal processing tasks. A “naive” picture
of such systems is shown in Figure 1.10, where a given signal is transformed into a desired
signal.

1.4.1 Speech Recognition

Given a speech signal, a speech recognition system tries to “understand” the words as a
human would do. This seemingly elementary task (as seen from a human perspective)
is actually dauntingly difficult for a computer in its full generality. While recognizing
individual elementary sounds spoken by a known speaker is easy, understanding a con-
tinuous stream of speech by an unknown speaker is still not solved satisfactorily as of
today. Signal processing plays a key role in the first stages of a speech recognition system,
that is in pre-processing (e.g. creating a compact representation of the speech waveform,
for example through a local analysis of the spectrum) and in the modelization of speech
(e.g. linear predictive models, hidden Markov models). After such signal processing based

1.4. Systems 31

Processing

Figure 1.10: The “naive” view of a signal processing task: transforming a
given signal (here a picture) into a desired signal.

pre-processing, higher level methods are used (e.g. grammatical models for the structure
of sentences). Speech recognition is even more complex in real environments, e.g. when
noise is involved, as in a car for example.

1.4.2 Denoising

Very often, instead of getting the signal we want, we get a signal corrupted by noise. An
obvious signal processing task is therefore to clean out the noise as well as possible without
”damaging” the signal. To solve this problem, we need a model for the signal and the
noise, so as to best estimate the signal given the observed signal. One such simple model
is the additive noise model, where the noise is assumed to be independent of the signal,
as shown in Figure 1.11. Many methods exist for attacking this problem, from filtering
methods to non-linear denoising algorithms.

1.4.3 Inverse Problems

Numerous signal processing problems belong to the class of inverse problems. A generic
example, which is also quite intuitive, is the following: assume you take a picture with
your camera, but unfortunately, you take it out of focus. The result is a blurred image,
and you would like to undo the blur and recover a sharp picture1. If and how to solve this
is a typical inverse problem. In our example, the blurring operator is typically singular
(which means certain components of the original image are forever lost) and thus its
inverse is badly behaved (or ill-conditioned). Fig. 1.12 shows schematically the situation,

1You may think that only total amateurs would run into such problems, but actually professionals can
run into similar problems: NASA set up a rather expensive space telescope called Hubble, which was
unfortunately “out of focus”.

32 Chapter 1.

x n[]

w n[]

Denoising x̂ n[]
y n[]

+

Figure 1.11: A signal x[n] is corrupted by independent additive noise w[n],
followed by a denoising algorithm that produces an estimate x̂[n] given the

observed signal y[n] = x[n] + w[n].

where the inverse of the blur operator needs to be “regularized” so it is well-conditioned.
There are many other instances of such inverse problems, like for example tomographic
reconstruction in medical imaging or equalization for communication channels.

An additional reason why inverse problems are difficult is that very often, noise is
present. That is, in our scheme shown in Figure 1.12, instead of y, we get y + w where w
is some noise signal. In that case, the inverse of the blur function can amplify the noise,
and so, while the result might be sharper, it may also be very noisy. Then, combined
“deblurring” and “denoising” is needed, a much more complex task.

1.4.4 Decision Systems

In many cases, a system takes a signal as its input, but produces just a binary output. For
example, in the electrocardiogram case shown in Figure 1.7, a monitoring system simply
needs to decide if the patient is healthy or not, but obviously, such a decision can be a
matter of life or death. Similarly, a system monitoring the stock market index needs only
to decide on buying or selling a particular stock. The characteristic of such systems is
that huge amounts of data are available, and all of it might be relevant to take the right
decision. Such systems typically analyze time-series, and are thus under study in that
particular field of statistics. Yet, similar problems exist in communication systems, where
for example particular waveforms have to be detected, but are typically buried in noise.

1.4.5 Compression Systems

For storage and communication purposes, signals need to be represented by binary digits.
That is, a discrete-time signal with real values x[n] ∈ R needs to be represented by a finite

1.4. Systems 33

Figure 1.12: Example of an inverse problem. The original image (on the left)
is blurred by the acquisition procedure; the image on the right is obtained

digitally by “inverting” the blur operator (c© Los Alamos National Laboratory)

precision approximation so as to be representable by a binary number. For example, the
voice samples are typically approximated using an 8 bit number, i.e 256 different values.
This seems coarse, but is normally sufficient. But, beyond such simple sample by sample
approximation, compression systems try to remove as much redundancy as possible from a
given sampled and quantized representation. For speech, an original stream of 64 kbits/sec
(corresponding to 8000 samples per sec.), each with an 8 bit representation) can be “com-
pressed”to 8 kbits/sec, or even down to 2.4 kbits/sec, using sophisticated representation
methods. A block diagram of such a compression system is shown in Figure 1.13.

Other well known compression systems are used for digital audio and video and such
compression methods are key in all digital applications, from multi-media on CD-ROM’s to
video over the internet. The ubiquitous MP3 audio format, for example, is a sophisticated
compression scheme which exploits a perceptual model of human hearing together with
highly optimized quantization techniques. The perceptual model analyzes the audio input
and determines which portions of the signal cannot be heard anyway due to masking
effects (masking occurs when a strong spectral component “saturates” the ear around
its frequency location, thereby making nearby components inaudible). Furthermore, the
number of bits allotted to quantization is a time-varying quantity, determined so as to
push the quantization noise below the masking threshold for the signal under analysis.

Image compression, on the other hand, exploits the high spatial redundancy of digital
pictures and the fact that the eye is more sensitive to sharp edges than to color gradients.
In the JPEG compression standard, the image is divided into a grid of square blocks and
each block is processed individually. In the MPEG video compression standard (and in
its derivative, DiVX), the former approach is complemented by a sophisticated prediction

34 Chapter 1.

8 kHz
sampling

Quantization
to 1 of 256

values

Compression
system

x n[]x t[] x̂ n[]

64 kbits/sec

2.4 kbits
/sec.

Figure 1.13: The original, continuous-time speech signal is first sampled
at 8kHz, leading to a discrete-time signal x[n]. Each sample value is then

approximated by 1 out of 256 values, and thus represented by an 8 bit number.
This 64 kbits/sec digital stream is used in a complex compression system, that

creates an approximate representation using only 2.4 kbits/sec.

mechanism called motion compensation, so that the correlation between neighboring blocks
in successive video frames is exploited to reduce the number of bits used to encode each
image in the sequence of frames.

1.4.6 A Communication Systems Example

As an example of the ubiquity of signal processing in communication systems, consider
Figure 1.14. Depicted is an interconnected system of networks of different kinds, with
many different services that utilize signal processing in one way or another. As can be
seen, signal processing is an enabling technology for communication systems, since it sits
at the heart of the communication links (e.g. equalization, modulation), as well as at
the heart of many applications, from voice to image and video communication, but also
medical applications, multimedia databases, etc.

1.5 World Models

In many cases, we have prior knowledge about the signal we are processing or else, we can
acquire knowledge about the signal as we process it. In both cases, there is a notion of a
model behind the signal, and having good models for given signals is at the heart of signal
processing. This leads to model based processing as shown in Figure 1.15. To be more
specific consider a speech processing application. Speech (see Figure 1.1) is a very partic-

1.5. World Models 35

.

BU
SI
NE
SS

WOR
K P

LAC
E

EME
RGE

NCY
HOSPITAL

PHARMACY

HEAD - END

DOCTOR

SCHOOL

TOWNHALL

LIBRARY

UNIVERSITY

MEDICAL
IMAGING
CENTER

SATELLITE

SCIENCE
LABORATORY

ACADEMIC
RESEARCH

TV STATION

VIDEO
SERVER

LAN

W A N

M A

COMPRESSION

H

H

H

H

IMAGE PROCESSING STORAGE, DOCUMENT PROC.

IMAGE DATABASES

CODING
COMPRESSION
MODULATION

NEWSPAPER

MEDICAL SIGNAL AND IMAGE PROCESSING

COMPRESSION

FIB

FI
B

CO
AX

CO
AX

COA
X

MODEMS

ENHANCEMENT

Figure 1.14: Signal processing in communication systems. In an
interconnected world, with many applications using signals, signal processing is

ubiquitous.

ular signal. It is usually produced by humans (we ignore for the moment talking parrots)
and the speech production system is very well understood. Roughly speaking, speech is
either voiced (in which case it has a harmonic or almost periodic structure) or unvoiced
(that is noise-like). On top of this basic structure, the trachea, mouth, lip and nose filter
the signal, producing a spectral shaping. Thus, an elementary speech production model
is as shown in Figure 1.16. Now, any speech processing task can be helped by referring to
this model. In speech recognition, determining the voiced/unvoiced nature is a key task,
as is the recovery of the fundamental frequency of the voiced part and the spectral shaping
parameters. All these parameters feed into a ”pattern matching” algorithm that performs
the actual recognition. In speech compression, recovering the fundamental parameters
like voiced/unvoiced nature, pitch period, and spectral parameters leads to a very efficient
representation, much more so than trying to approximate the original waveform. Finally,

36 Chapter 1.

building a model

Processingx y

Figure 1.15: Model building and model based signal processing.

in speech synthesis (e.g. in text-to-speech synthesis systems), the model of Figure 1.16 is
used to generate speech that sounds fairly natural.

Yet, there are potential problems with models. The first is complexity: models could
become arbitrarily complex, thus difficult to estimate. The second is model mismatch: in
our speech example, if the sound was actually from a parrot (unlikely but possible), one
would have a hard time to find the parameters that are specific to humans!

1.6 Analog and Digital Worlds

Signal processing is at the intersection of the analog and digital worlds. These worlds
are very different, and are linked by sampling, quantization, and interpolation. After
reviewing briefly these two worlds, we discuss advantages of each.

1.6.1 The Analog World (Continuous Time, Continuous Amplitude)

The world of analog signals is the world of functions on the real line, where the function
is typically real valued. Thus, the time axis is continuous, and so is the amplitude. Most
signals from the physical world are of this type: sound waves, electrical signals, physical
measurements, etc. But also many man-made signals are of this type, like the output
of a loudspeaker or the image on a video screen. Many systems from the physical world
process such analog signals to produce other analog signals. For example, a physical
communication channel takes an analog input (the signaling waveform) and produces
an analog output (the received signal), even if the goal is to transmit a purely discrete

1.6. Analog and Digital Worlds 37

spectral
shaping

voiced

unvoiced

Figure 1.16: Basic speech production model, where two modes are considered
(voiced/unvoiced) and time-varying spectral shaping is applied.

information (like a bit from a file transfer). Analog signal processing, which has a long
history, is typically performed with analog circuits that perform operations like filtering,
amplifying, clipping etc. Analog filter design is a very well studied topic, with many
“classic” designs. Nevertheless, it remains true that “good” analog filters are typically
expensive, since they require high quality analog components. The main advantage is
that analog processing is “instantaneous” (at least in principle), that is, there is no time
lag between input and output (other than phase factors or group delays).

1.6.2 Discrete-Time, Analog Worlds (Discrete Time, Continuous Amplitude)

In certain applications, continuous-time signals are sampled, but the real-valued samples
are not further digitized (see next section). In that case, discrete-time analog circuits are
used for the processing. An example is found in charge-coupled devices (CCD’s), used for
example in video cameras. While this type of processing corresponds mathematically to
the “sampled system” case, it is rather the exception than the rule.

1.6.3 Digital Worlds (Discrete Time, Discrete Amplitude)

After sampling as in the previous section, the analog values are discretized to a countable
set (typically a finite set). That is, both the time dimension and the amplitude dimension
are now discrete. So we have the cascade of two operations:

x(t) −→ x[n] −→ x̂[n]

38 Chapter 1.

the first being sampling, the second being quantization. The second operation cannot be
undone, since quantization is a many-to-one mapping. Figure 1.17 shows the 3 types of
signals we have just seen. Now, why would one give up the real, continuous amplitude
world for this discretized and approximate representation? The reason lies of course in
the fact that such discretized values can be represented in computer memory, and that if
the discretization is fine enough, the representation is adequate. Because of the dominant
position of digital computers in the technological world, the digital representation of signals
is by now the most common. Note that both fixed point and floating point arithmetic2

are possible for such digital signal representation. However both methods are discrete and
finite amplitude representations.

1.6.4 Analog versus Digital

In many signal processing tasks, a key question is often: how much processing should be
“analog”, how much should be “digital”. Take the design of a mobile phone system: clearly,
input (voice) and output (loudspeaker) are analog, but inside, the system will probably
go several times between analog and digital representations. Processing inside the mobile
phone is digital, the digital communication over the wireless connection is analog, the
base station converts back to digital, which goes over wireline backbone networks. From
there, to reach another user, the reverse process is done, until an analog, acoustic signal
is generated to reach the recipient’s ear. Schematically, this is shown in Figure 1.18.

Another example is at the same time the best explanation of the amazing advance
of digital communication systems and a paradigm for the pervasiveness of “digital” pro-
cessing: analog versus digital telephony as seen over transatlantic links; this example is
very simple and intuitive, but is at the heart of the digital “revolution”. Given a transat-
lantic cable, should you use analog or digital transmission? In the analog case, you need
repeaters, but these will boost signal and noise almost equally (See Figure 1.19-(a)). In
the digital case, there is an inital “noise” due to quantization, but then, as long as the
noise added by the channel can be corrected by digital techniques (error correction codes
as used in CD’s), the noise gets annihilated, maintaining a reliable end-to-end quality
(see Figure 1.19-(b)). The same phenomenon can be seen in copying analog signals (e.g.
audio cassettes) versus digital signals (CD’s). While a few cascaded copies from cassette
to cassette will be too noisy to use, an arbitrary number of copies of CD’s is no problem

2Fixed point arithmetic uses a fixed and finite set of values to represent amplitude, e.g. [−N1,−N1 +
1, . . . − 1, 0, 1, . . . N2 − 1, N2] where Ni ∈ Z. The major problem is under and overflow during arithmetic
operations. Floating point arithmetic uses a mantissa (similar to the fixed point numbers we just saw)
and a scale factor given by an exponent with respect to the basis used (e.g. 2k). While this allows a much
better approximation of the real numbers R, it is still a finite representation, and underflows and round
off errors are still problematic.

1.6. Analog and Digital Worlds 39

x t()

t

t

n

x n[]

x̂ n[]

Figure 1.17: Various forms of signals between the analog and digital worlds.
(a) Analog, continuous-time signal. Both axes are continuous.

(b) Discrete-time, continuous-amplitude signal. The time axis is discrete.
(c) Discrete-time and quantized signal. Both axes are now discrete.

40 Chapter 1.

Analog Digital Analog Digital Digital

Analog Digital Analog Digital Digital

Analog fiber

Analog fiber

digital

switch

Figure 1.18: Multiple conversions between analog and digital representations

in an end-to-end wireless phone communication.

at all. (Except of course for the copyright owner!)

Finally, Table 1.2 summarizes some of the positive and negative points of analog versus
digital representations and processing. From this table we can see that the comparison
offers a mixed picture. Yet, in reality, the techniques of digital processing have advanced
more and more and, at the same time, the devices used to implement digital signal process-
ing algorithms have become more and more powerful and inexpensive. Today’s standard
desktop computers can easily perform in real time extremely complex tasks such as de-
coding DVD data, compress voice for internet telephony and modulate data for dial-up
connections, and often in parallel. What’s more, the time required for the industry to de-
velop and test such algorithms is immensely inferior to what would be necessary to design
their analog counterparts, admitting that that were at all possible. The global picture
is that of an increasingly digital world with analog processing confined to the extreme
boundaries, i.e., to the places where an interface to the physical mediums is necessary.
This is why the stress of this course is on discrete-time processing techniques.

1.7 Overview of the Course

In this chapter we presented a general overview of signal processing and we tried to show
the broad range of signals and systems where signal processing methods can be used.
Interestingly, a number of methods are common to this vast array of applications, and
these are at the center of our study. The rest of the course will try to lay a solid foundation

1.7. Overview of the Course 41

signal

noise

repeater repeater

repeaterrepeater
+ ECC + ECC

distance

distance

(a)

(b)

Figure 1.19: Comparison between analog and digital transmission over a
transatlantic cable. (a) In the analog case, both the signal and the noise are

amplified at the repeaters; (b) In the digital case, if the noise is not too much
at the first repeater, a perfect reconstruction can be achieved, and the same

holds for subsequent repeaters: the noise does not grow.

42 Chapter 1.

Analog Digital

World mostly analog Digital computers dominate
+ Precision in principle ∞ Calculations exact, reproducible

Speed is arbitrary Storage easy
Arbitrary signals are possible No noise

Computing mostly digital World is analog, so need interface
- Noise difficult to control Initial imprecision due to quantization

Storage difficult Speed limit
Restricted signals

Table 1.2: Analog versus digital.

for the mathematical basis of signal processing and proceed from there to illustrate the
design techniques and applications in more details. Here is a short description of each of
the next chapters:

Chapter 2 will introduce more formally the classes of discrete-time signals which we
will use in the course. It will also give an informal description of the sampling
theorem that describes how to obtain discrete-time signals from continuous-time
signal without information loss.

Chapter 3 will explain the different representations of periodic and finite block-lenght
discrete-time sequences. Representations in terms of the discrete-time Fourier series
(DFS) and the discrete Fourier transform (DFT) are introduced.

Chapter 4 will review background material from applied mathematics and linear alge-
bra, with an emphasis on geometric intuition via the concept of Hilbert spaces. In
particular, this background is useful in extending the representations in Chapter 3
to infinite length discrete-time sequences.

Chapter will be devoted to the discrete-time Fourier transform (DTFT) which is a
representation of discrete-time sequences. We will also study the properties of DTFT
and relate it to the DFS and DFT studied in Chapter 3.

Chapter 6 will develop the ideas of how the Fourier representations can be used in prac-
tice. In particular, applications to spectral analysis, time-frequency analysis etc.,
are introduced.

1.A. Historical Notes 43

Chapter 7 will introduce the notion of system, with an emphasis on linear time invariant
systems. We will introduce the concept of convolution sum and its application to
filtering, both in the time and the frequency domain. The concepts of stability and
causality of a system are also introduced.

Chapter 8 will introduce the z-transform and its properties. The z-transform is the
generalization of the Fourier transform to the complex plane in the discrete-time
domain, just as the Laplace transform is the generalization of the Fourier transform
in the continuous-time domain.

Chapter 9 will study the problem of digital filter design and filter implementation, with
particular emphasis on FIR filters.

Chapter 10 will deal with the fundamental operation of sampling, by which a continuous-
time signal is converted into a discrete-time sequence, and interpolation, by which a
discrete-time signal is converted to a continuous-time signal.

Chapter 11 will develop a generalization of standard, single sampling rate signal pro-
cessing to deal with multiple sampling rates, which could be needed for sampling
rate conversions. We develop the basic concepts of this rich topic by introducing
filterbanks, sub-band decomposition and basic ideas of wavelets.

Chapter 12 will tackle quantization, or approximate representations. In particular, the
problem of analog-to-digital conversion is studied in detail, including oversampling.
We also study analog-to-digital conversion and its counterpart, digital-to-analog con-
version.

Chapter 13 contains some application ideas such as denoising and a small project on
multicarrier communications.

Appendix 1.A Historical Notes

The roots of signal processing are to be found in mathematics and applied mathematics,
but the driving force behind its development lies in technological advances.

The idea of signal processing is probably as old as science itself (e.g. prediction of an
eclipse based on past observations). Closer to us, the founding father of harmonic analysis,
Joseph Fourier (1768-1830), is usually considered an important historical figure, given that
Fourier series are central in signal processing. The importance of Fourier analysis is due
to several facts, including the eigenfunction property of complex exponentials in linear
time-invariant systems and the orthogonal expansion given by Fourier bases. Convergence

44 Chapter 1.

questions (e.g. the Gibbs phenomenon) are also still important today, as they were when
leading mathematicians questioned Fourier’s claim that any periodic function could be
written as a linear combination of harmonic sine and cosine waves.

A cornerstone result for discrete-time signal processing is the sampling theorem, often
attributed to Shannon. While the theorem is indeed shown in Shannon’s 1948 landmark
paper on communication theory, it was due earlier to Whittaker and Kotelnikov. That
bandlimited functions can be represented uniquely by their samples taken at twice the
maximum frequency is one example of an interpolation formula, in this case using the sinc
function. Another view of this result is that sinc functions and their translates form an
orthonormal basis for the space of bandlimited functions. This view has been generalized
recently with the theory of wavelets.

The sampling theorem of the mid 1940’s led to sampled data systems, which allowed
to use the first computers for applications like ballistics. Such military applications also
motivated Wiener to study the problem of prediction and noise removal, leading to Wiener
filtering and its variants, some of which are still in use today. The key is that sampled
systems allow the use of computers to implement sophisticated algorithms.

The 1950’s and 1960’s saw a lot of theoretical and practical research in fields like speech
analysis and synthesis (e.g. the Vocoder) and very early image processing.

But the real “digital signal processing” revolution started in 1965, with the publication
by Cooley and Tukey of an efficient algorithm for the computation of Fourier series, the
fast Fourier transform (FFT). Together with the availability of better computers and
dedicated hardware, signal processing became a reality outside of the laboratory setting
where it was confined until then. In particular, digital signal processing was a key element
in making communication systems moved into the digital age: speech moves from analog
to digital, digital communications use equalization, teleconferencing is demonstrated, etc.

The late 1960’s and the following two decades were periods of intense developments. In
particular, image and later video processing came of age, for example with the definition of
compression standards that allowed digital communication of images and moving pictures.
But also medical imaging, with tomography and echography moving from research to
actual usage, was revolutionized by digital processing. The most audible digitalization
was of course the introduction of compact discs in 1984, which in a short time replaced
analog records by a digital version.

In parallel, the microprocessor revolution led to the introduction of specialized ma-
chines called signal processors, that is, microprocessors optimized for signal, image or
even video processing tasks. Specialized chips using VLSI technology also became com-
mon place for particular, high end signal processing tasks.

The end of the 20th century saw signal processing everywhere, from personal computers
with multimedia capabilities to complete, end-to-end digital communication for all forms

1.B. Literature 45

of signals. While many of the techniques studied in the last decades are now part of
everyday objects (e.g. portable phones), new questions constantly arise. To make an
exhaustive list is difficult as well as a moving target, but a few topics that come to mind
are the following:

• fundamental limits in compression

• joint source-channel coding, e.g. for channels like internet and mobile

• security issues, like watermarking of signals for copyright protection

• recognition, especially for very large data sets, e.g. image databases.

While standard signal processing tools are well understood, new tools are needed for
some of the challenges listed above.

Appendix 1.B Literature

Because signal processing is both a popular and a useful topic, it has spawned many
publications. An exhaustive list of books would take pages, and therefore we will only
mention a subset that is either directly related to our notes, or which we feel is part of
the general culture around signal processing.

On basic signal processing, there are several good books, including the recommended
textbook for the class, which is Discrete-Time Signal Processing, by A. V. Oppenheim
and R. W. Schafer (Prentice-Hall, 1989). For advanced signal processing, we can mention
A Wavelet Tour of Signal Processing, by S. Mallat (Academic Press, 1999), and Wavelets
and Subband Coding, by M. Vetterli and J. Kovacevic (Prentice Hall, 1995).

For background in signals and systems, we suggest Signals and Systems by Oppenheim,
Wilsky and Nawab (Prentice Hall, 1997). For Fourier analysis, a nice engineering book is
The Fourier Transform and Its Applications, by R. Bracewell (McGraw-Hill, 1999), while
there are many mathematics textbooks on the topic such as Fourier Analysis, by T. W.
Korner (Cambridge University Press, 1989).

The research literature on signal processing is published by the Institute of Electronics
and Electrical Engineers (IEEE) in several transactions, but mainly in the one on Signal
Processing, on Image Processing, and on Speech and Audio Processing. Several for profit
publishers also run signal processing journals (e.g. Elsevier’s Signal Processing magazine).

46 Chapter 1.

Chapter 2

Discrete-Time Signals

In this chapter we will introduce more formally the concept of discrete-time signal and
we will establish an associated basic taxonomy which we will use in the remainder of the
course. Historically, discrete-time signals have often been introduced as the discretized
version of continuous-time signals, i.e. as the sampled values of analog quantities such
as the voltage at the output of an analog circuit; accordingly, many of the derivations
proceeded within the framework of an underlying continuous-time reality. In truth, the
discretization of analog signals is only part of the story, and a rather minor one nowadays.
Digital signal processing, especially in the context of communication systems, is much more
concerned with the synthesis of discrete-time signals rather than with sampling. That is
why we will choose to introduce discrete-time signals from a abstract, self-contained point
of view.

2.1 Continuous and Discrete-time Signals

Almost all the signals we described were defined over a continuous space. For example we
described a speech signal as a pressure-intensity function over time. Therefore a speech sig-
nal s(t) is defined over t ∈ R, the real line. This gives the speech signal a continuous-time
representation. However, most computers deal with discrete-time signals and therefore a
fundamental question is how we can represent a continuous system in discrete-time.

s[k] = s(kTs), k ∈ Z (2.1)

By sampling a continuous-time signal one can produce a discrete-time signal. However a
basic question that arises is how much fidelity such a representation has to the original
signal. This turns out to be a very fundamental question in signal representation. For

47

48 Chapter 2.

signals with some properties it is possible it to have a completely faithful representation
using a discrete-time signal. In some other cases, the representation can be as faithful as
one wants by appropriately choosing the sampling period Ts. This is a question we re-visit
later.

2.2 Informal description of sampling theorem

Given a signal

x(t), t ∈ R

a discrete-time signal can be obtained by sampling it at regular intervals of Ts seconds,
i.e.,

x[n] = x(nTs), n ∈ Z, Ts ∈ R

If Ts is sufficiently small, then it is possible to reconstruct the original signal x(t) from its
samples {x(kTs)}k=∞

k=−∞ through an interpolation function.
Take a sinusoidal continuous-time signal

x(t) = A cos(2πf0t + θ0). (2.2)

If we sample this at times nTs, we produce

x[n] = x(nTs) = A cos(2πf0nTs + θ0). (2.3)

Now suppose f ′
0 = f0 + 1

Ts
, and we have a signal

x′(t) = A cos(2πf ′
0t + θ0) (2.4)

Sampling x′(t) at the same times nTs gives

x′[n] = A cos(2πf ′
0nTs + θ0) (2.5)

= A cos(2π(f0 +
1

Ts
)nTs + θ0) (2.6)

= A cos(2πf0nTs + θ0) (2.7)

= x[n] (2.8)

Therefore, if we sample at a frequency 1
Ts

, we can only distinguish between frequencies

of 0 and 1
2Ts

, all others produce the same samples as a sinusoid of lower frequency(or
negative frequency)

2.2. Informal description of sampling theorem 49

Example 2.1 Sampling of sinusoidal signals:
Let

x1(t) = cos(2π10t),

x2(t) = cos(2π50t).

and let Ts = 1
40 , i.e., Fs = 40Hz is the sampling frequency. Then

x1[n] = cos(2π
10

40
n) = cos(

π

2
n)

x2[n] = cos(2π
50

40
n) = cos(

5π

2
n) = cos(

π

2
n + 2πn) = cos(

π

2
n)

Hence the sampled version of x1(t) and x2(t) at a sampling rate of 40Hz are indistinguish-
able.

One can see that if we know the largest frequency that occurs, we can determine the
sampling frequency needed to faithfully and uniquely represent such a signal.
In general, if

xa(t) = sin(2πf0t) (2.9)

and Ts= sampling period

x[n] = sin(2πf0nTs) = sin(2π[f0Ts + r]n) (2.10)

Hence f ′
0 = f0 + r

Ts
r ∈ Z are indistinguishable.

For real signals, for every frequency f0, there is a mirror image at −f0.

Example 2.2 Negative and positive frequency:

sin(−2πf0t) = − sin(2πf0t)

cos(−2πf0t) = cos(2πf0t)

We need to accommodate both the positive and negative mirrors for distinguishablity.

Hence, we can say that for a sampling period Ts, only frequencies

− 1

2Ts
≤ f ≤ 1

2Ts
(2.11)

are distinguishable. Therefore, if the maximum frequency is Fmax, we need Fs = 2Fmax

for any hope of reconstruction.

50 Chapter 2.

Example 2.3 Sampling
Let signals x(t) and x′(t) be given by

x(t) = sin(2πǫt) + sin(2π75t) + sin(2π150t),

x′(t) = sin(2π75t).

If we sample these signals with a sampling frequency of Fs = (150 + ǫ) Hz we get

x[n] = sin(2πǫ
n

150 + ǫ
) + sin(2π

75

150 + ǫ
n) + sin(2π

150

150 + ǫ
n)

= sin(2πǫ
n

150 + ǫ
) + sin(2π

75

150 + ǫ
n) + sin(2π

−ǫ

150 + ǫ
n)

= sin(2π
75

150 + ǫ
n)

and

x′[n] = sin(2π
75

150 + ǫ
n).

The sampled signals are indistinguishable!
However, if Fs = (300 + ǫ)Hz then

x[n] = sin(2πǫ
ǫ

300 + ǫ
n) + sin(2π

75

300 + ǫ
n) + sin(2π

150

300 + ǫ
n)

and

x′[n] = sin(2π
75

300 + ǫ
n)

are completely distinguishable.

Remark: Distinguishablity is a necessary condition but not a sufficient condition for
being able to reconstruct.

The following is a deep result in signal representation and has impact in a lot of areas.

Theorem 2.1 If the signal x(t) satisfies the regularity condition that it is band-limited
and fmax is the largest frequency (i.e. bandwidth), then samples of x(t), {x(kTs)} for
1
Ts

> 2fmax will be sufficient to reconstruct the signal x(t).

This is a result we will return to and prove formally, but for now it is important to
understand that the discrete-time sequences that we will work with for the next few weeks
can be connected to physical, continuous-time signals under some mild conditions.

2.3. Discrete-time sequences 51

0 5 10 15 20 25 30 35 40 45 50
−6

−4

−2

0

2

4

6

0 5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

R
e(

x[
n]

)

0 5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

Im
(x

[n
])

(a) (b)

Figure 2.1: Examples of signals. (a) triangular wave; (b) complex exponential .

2.3 Discrete-time sequences

A sequence is a set of numbers denoted as

x[n], n ∈ Z

i.e. defined over the set of integers
Discrete-time sequences can arise from sampling a continuous-time sequence, a discrete-

time signal can also arise in its own. For example

x[n] = (n mod 11)− 5 (2.12)

which is the “triangular” waveform plotted in Figure 2.1-(a), or

x[n] = ej π
20

n (2.13)

which is a complex exponential of period 40 samples and which is plotted in Figure 2.1-(b).
Two example of a sequence drawn from the real world are

x[n] = The average stock market index in year n,

and

x[n] = Number of hits to a web-page in the nthhour,

which are inherently discrete-time and therefore need not be represented as a physical
modeling of a continuous-time signal. Therefore, we will deal with discrete-time signals in
their own merit and connect them to continuous-time entities much later in the class.

52 Chapter 2.

2.3.1 Basic Signals

The following sequences are fundamental building blocks in the theory of signal processing:

• The discrete-time impulse (Figure 2.2-(a))

δ[n] =

{
1 n = 0
0 n 6= 0

• The discrete-time unit step (Figure 2.2-(b))

u[n] =

{
1 n ≥ 0
0 n < 0

which can be represented as

u[n] =

n∑

k=−∞
δ[k] =

∞∑

k=0

δ[n − k].

• The discrete-time exponential decay (Figure 2.2-(c))

x[n] = anu[n], a ∈ C, |a| < 1

• The discrete-time sinusoidal oscillations (Figure 2.2-(d))

x[n] = sin(ω0n + φ)

x[n] = cos(ω0n + φ)

• The discrete-time complex exponential (Figure 2.1-(b))

x[n] = ej(ω0n+φ)

Example 2.4 Combining basic sequences

y[n] =

{
Aαn n ≥ 0
0 n < 0

takes y[n] = x[n]u[n], where x[n] = Aαn and u[n] is discrete-time unit step. (Figure 2.2-
(d))

2.3. Discrete-time sequences 53

−40 −30 −20 −10 0 10 20 30 40 50
0

0.5

1

1.5

−40 −30 −20 −10 0 10 20 30 40 50
0

0.5

1

1.5

(a) (b)

−40 −30 −20 −10 0 10 20 30 40 50
0

0.5

1

1.5

−40 −30 −20 −10 0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

(c) (d)

Figure 2.2: Basic signals.

Definition 2.1 A sequence {x[n]} is said to have period N if

x[n] = x[n + N], for all n ∈ Z

For a complex exponential x[n] = ejω0n if it is to have a period of N , we need

ejω0n = ejω0(n+N), ∀n

i.e.,

ω0N = 2πr, r ∈ Z

or ω0 = 2πr
N which means that since N ∈ Z, we need ω0 to be rational for a complex

exponential to be periodic in a discrete sense.

54 Chapter 2.

Example 2.5 Let x1[n] = cos(πn
4). Since for all n, x1[n] = x1[n + 8], we have a period

of N = 8 for the sequence.
However, x2[n] = cos(3πn

8) gives x2[n + 8] = cos[3πn
8 + 3π] = −x2[n] and hence does not

have a period of 8. In fact it has a period of N = 16. Therefore, even though we think of
a higher ”‘frequency”’ for x2[n] in comparison to x1[n], it has a larger period. This is due
to the limitations imposed by integer time index n for discrete-time signals.

2.3.2 Digital Frequency

With respect to the last two examples a note on the concept of “frequency” is in order. In
the analog world the usual unit of measure for frequency is the Hertz, which has a physical
dimension of s−1. In the discrete-time world, where the index n represents dimensionless
time, “digital” frequency is expressed in radians which is itself an dimensionless quantity1.
The best way to appreciate this is to consider an algorithm to generate successive samples
of a discrete time sinusoid at a digital frequency ω0:

ω ← 0; initialization
φ← initial phase value;
repeat

x← sin(ω + φ); compute next value
ω ← ω + ω0; update phase

until done

At each iteration2 , the argument of the trigonometric function is incremented by ω0 and
a new output sample is produced. With this in mind, it is easy to see that the highest
frequency manageable by a discrete-time system is 2π; for any frequency larger than this,
the inner 2π-periodicity of the trigonometric functions “maps back” the output values to
a frequency between 0 and 2π. In formulas:

sin(n(ω + 2kπ) + φ) = sin(nω + φ) (2.14)

1An angle measure in radians is dimensionless since it is defined in terms of the ratio of two lengths,
the radius and the arc subtended by the measured angle on an arbitrary circle.

2Here is the same algorithm written as a C function, if it helps:
extern double omega0;

extern double phi;

static double omega = 0;

double GetNextValue()

{
omega += omega0;

return sin(omega + phi);

}

2.3. Discrete-time sequences 55

for all values of k ∈ Z. This 2π-equivalence of digital frequencies is a pervasive concept in
digital signal processing and it has many important consequences which we will study in
detail throughout the course.

2.3.3 Elementary Operators

Elementary operations on sequences are defined as follows:

• Shift. The shifted version of the sequence x[n] by an integer k is

y[n] = x[n− k]

If k is positive, the signal has been delayed ; if k is negative, it has been advanced.

• Scaling. The scaled version of the sequence x[n] by a factor α ∈ C is

y[n] = αx[n]

• Sum. The sum of two sequences x[n] and w[n] is their term-by-term sum,

y[n] = x[n] + w[n]

• Product. The product of two sequences x[n] and w[n] is their term-by-term prod-
uct,

y[n] = x[n]w[n]

• Moving average

y[n] =
1

M1 + M2 + 1

M2∑

k=−M1

X[n − k].

• Integration. The discrete-time equivalent of integration is the running sum:

y[n] =

n∑

k=−∞
x[k]

56 Chapter 2.

• Differentiation. A discrete-time approximation to differentiation is the first-order
difference3:

y[n] = x[n]− x[n− 1]

With respect to section 2.3.1, note how the unit step can be obtained by applying the
integration operator to the discrete-time impulse; conversely, the impulse can be obtained
by applying the differentiation operator to the unit step.

Definition 2.2 Let L(·) be an operation. The operation is linear if

L(αx1[n] + βx2[n]) = αL(x1[n]) + βL(x1[n]), (2.15)

for any sequences x1[n], x2[n] and scalars α and β.

All the operations defined above are linear operations.

Example 2.6 The shift operation is linear. Let L(x[n]) = x[n − k]. Now, if y1[n] =
x1[n− k] and y2[n] = x2[n− k], then y[n] = L(αx1[n] + βx2[n]) = αx1[n− k] + βx2[n− k])
which can be expressed as y[n] = αy1[n] + βy2[n].

Example 2.7 Suppose y[n] = x2[n]. If y1[n] = x1[n]2, and y2[n] = x2[n]2, then y[n] =
L(x1[n]+x2[n]) = (x1[n]+x2[n])2 = x1[n]2+x2[n]2+2x1[n]x2[n] which can not be expressed
as y1[n] + y2[n]. So this operation is not linear.

2.3.4 The Reproducing Formula

The signal reproducing formula is a simple application of the basic signal and signal
properties we have just seen and it states that:

x[n] =

∞∑

k=−∞
x[k]δ[n − k] (2.16)

In words, any signal can be expressed as a linear combination of suitably weighed shifted
impulses. In this case, the weights are simply the signal values. While apparently self-
evident, this formula will reappear in a multitude of reincarnations in the rest of the
course. You are encouraged to spend a few minutes thinking about how it actually works.

3We will see later, when we study filters, that the “correct” approximation to differentiation is given
by a filter H(ejω) = jω. For most application, however, the first-order difference will suffice.

2.4. Classes of Discrete-Time Signals 57

2.3.5 Energy and power

We define the energy of a discrete-time signal as

Ex = ||x||22 =

∞∑

n=−∞
|x[n]|2 (2.17)

(where the squared-norm notation will be clearer after the next chapter.) This definition
is consistent with the idea that, if the values of the sequence represent a time-varying
voltage, the above sum would express the total energy (in joules) dissipated over a 1Ω-
resistor. Obviously, the energy is finite only if the above sum converges, i.e., if the sequence
x[n] is square-summable. A signal with this property is sometimes referred to as a finite-
energy signal. For a simple example of the converse, note that a periodic signal which is
not identically zero is not square-summable.

We define the power of a signal as the usual ratio of energy over time, taking the limit
over the number of samples considered:

Px = lim
N→∞

1

2N

N−1∑

−N

|x[n]|2; (2.18)

Clearly, signals whose energy is finite have zero total power (i.e. their energy dilutes to
zero over an infinite time duration). Note however that many signals whose energy is
infinite do have finite power and, in particular, so do periodic signals (such as sinusoids
and combinations thereof). Due to their periodic nature, however, the above limit is
undetermined; we therefore define their power to be simply the average energy over a
period. Assuming that the period is N samples, we have:

Px =
1

N

N−1∑

n=0

|x[n]|2. (2.19)

2.4 Classes of Discrete-Time Signals

The examples of discrete-time signals in (2.12) and (2.13) are two-sided, infinite sequences.
Of course, in the practice of signal processing, it is impossible to deal with infinite se-
quences: for a processing algorithm to compute in a finite amount of time and use a finite
amount of storage, the input data must be of finite length; even for algorithms that operate
on the fly, i.e. algorithms that produce an output sample for each new input sample, an
implicit finiteness is imposed by the necessarily limited life span of the processing device
or, in the extreme limit, of the supervising engineer. This limitation was eminently clear
in our attempt to plot the sequences in Figures 2.1-(a), (b): we were content with showing

58 Chapter 2.

a representative portion of the sequences, and we relied on their analytical description to
describe their behavior outside of the observation window we chose for the plot. When
the discrete-time signal admits no closed-form representation, as is basically always the
case when dealing with real-world signals, its finite time support arises naturally because
of the finite time we spend measuring said signal: every piece of music has a beginning
and an end, and so does any phone conversation. In the case of the sequence representing
the Dow Jones index, for instance, we sort of cheated since the index does not even exist
for years before 1884, and its value tomorrow is certainly not known – so that’s not really
a sequence. But, more importantly and more often, the finiteness of a discrete-time signal
is arbitrarily imposed since we are interested in concentrating our processing efforts on
a small portion of an otherwise much longer signal; in a speech recognition system, for
instance, the practice is to cut up a speech signal into small segments and try to identify
the phonemes associated to each one of them4. A special case is that of periodic signals;
even though these are bona-fide infinite sequences, it is clear that all information about
them is contained in just one period. By describing graphically or otherwise this period,
we are in fact providing a complete description of the sequence. In order to capture these
particular cases, we will divide signals into three main families.

2.4.1 Finite-Length Signals

As we just mentioned, finite-length discrete-time signals of length N are just a collection of
N complex values. To introduce a point that will reappear throughout these notes, a finite-
length signal of length N is entirely equivalent to a vector in CN . This equivalence is of
immense import since all the tools of linear algebra become readily available for describing
and manipulating finite-length signals. We can represent an N -point finite-length signal
using the standard vector notation

x = [x0 x1 . . . xN−1]
T ;

note the transpose operator, which declares x as a column vector; this is the customary
practice in the case of complex-valued vectors. Alternatively, we can (and often will) use
a notation that mimics that which we use for proper sequences:

x[n], n = 0, . . . , N − 1;

here we must remember that, although we use the notation x[n], x[n] is not defined for
values outside its support, i.e. for n < 0 or for n ≥ N . Note that we can always obtain
a finite-length signal from an infinite sequence by simply dropping the sequence values

4Note that, in the end, phonemes are pasted together into words and words into sentences; therefore,
for a complete speech recognition system, long-range dependencies become important again.

2.4. Classes of Discrete-Time Signals 59

outside the indices of interest. Vector and sequence notations are equivalent and will be
used interchangeably according to convenience; in general, the vector notation is useful
when we want to stress the algorithmic or geometric nature of certain signal processing
operations. The sequence notation is useful in stressing the algebraic structure of signal
processing.

Finite-length signals are extremely convenient entities: their energy is always finite as
long as the elements in the signals are finite; as a consequence, no stability issues arise in
processing. From the computational point of view, they are not only a necessity but often
the cornerstone of very efficient algorithmic design (as we will see for instance in the case
of the FFT); one could say that all “practical” signal processing lives in CN . It would
be extremely awkward, however, to develop the whole theory of signal processing only in
terms of finite-length signals; the asymptotic behavior of algorithms and transformations
for infinite sequences is extremely valuable as well since a stability result proven for a
general sequence will hold for all finite-length signals too. Furthermore the notational
flexibility which infinite sequences derive from their function-like definition is extremely
practical from the point of view of the notation. We can immediately recognize and
understand the expression x[n − k] as a k-point shift of a sequence x[n]; but, in the case
of finite-support signals, how are we to define such a shift? We would have to explicitly
take into account the finiteness of the signal and the associated “border effects”, i.e. the
behavior of operations at the edges of the signal. This is why, in most derivations which
involve finite-length signal, these signals will be embedded into a proper sequences, as we
will see momentarily.

2.4.2 Infinite, Aperiodic Signals

The most general type of discrete-time signal is represented by a generic infinite complex
sequence. Although, as we said, they lie beyond our processing and storage capabilities,
they are invaluably useful as a generalization in the limit. As such, they must be handled
with some care when it comes to their properties. We will see shortly that two of the most
important properties of infinite sequences concern their summability: this can take the
form of either absolute summability (stronger condition) or square summability (weaker
condition corresponding to finite energy).

2.4.3 Periodic Signals and Periodic Extensions

A periodic sequence with period N is one for which

x̃[n] = x̃[n + kN], k ∈ Z. (2.20)

The tilde notation x̃[n] will be used whenever we need to explicitly stress a periodic
behavior. Clearly a N -periodic sequence is completely defined by its N values over a

60 Chapter 2.

x̃[n] = . . . xN−2, xN−1,

x
︷ ︸︸ ︷
x0, x1, x2, . . . , xN−2, xN−1, x0, x1, . . .

l→ n = 0

x̃[n− 1] = . . . xN−3, xN−2, xN−1, x0, x1, x2, . . . , xN−2,
︸ ︷︷ ︸

x′

xN−1, x0, x1, . . .

Figure 2.3: Equivalence between a right shift by one of a periodized signal
and the circular shift of the original signal. x and x′ are the length-N original

signal and its right circular shift by one, respectively.

period; that is, a periodic sequence “carries no more information” that a finite-length
signal of length N . In this sense, periodic sequences are a bridge between finite-length
signals and infinite sequences. We are therefore ready to discover the first way to embed a
finite-length signal x[n], n = 0, . . . ,N−1 into a sequence which is by taking its periodized
version:

x̃[n] = x[n mod N], n ∈ Z; (2.21)

this is called the periodic extension of the finite length signal x[n]. This type of extension
is the “natural” one in many contexts, for reasons which will be apparent later when
we study the frequency-domain representation of discrete-time signals. Note that now
an arbitrary shift of the periodic sequence correspond to the periodization of a circular
shift of the original finite-length signal. A circular shift by k ∈ Z is easily visualized by
imagining a shift register; if we are shifting towards the right (k > 0), the values which
pop out of the rightmost end of the shift register are pushed back in at the other end5.
The relationship between circular shift of a finite-length signal and the linear shift of its
periodic extension is depicted in Figure 2.3. Finally, the energy of a periodic extension
becomes infinite, while its power is simply the energy of the finite-length original signal
scaled by 1/N .

Example 2.8 What is the period of the following sequence?

x̃[n] = 2 + sin(
2π

3
n) + cos(

4π

5
n)

5For example, if x = [1 2 3 4 5], a right circular shift by 2 yields x = [4 5 1 2 3].

2.5. Summary 61

To answer this, we need to look for N such that for all n, x̃[n + N] = x̃[n]. This means
that we need to find N for which

2 + sin

(
2π

3
(n + N)

)

+ cos

(
4π

5
(n + N)

)

= 2 + sin

(
2π

3
n

)

+ cos

(
4π

5
n

)

. (2.22)

We have that sin
(

2π
3 (n + N1)

)
= sin

(
2π
3 n
)

for N1 = 3 and sin
(

4π
5 (n + N2)

)
= sin

(
4π
5 n
)

for N2 = 5. If we take N equal to the least common multiple of N1 and N2 we satisfy (2.22).
Hence N = 15.

2.4.4 Finite-Support Signals

An infinite discrete-time sequence x̄[n] is said to have finite support if its values are zero
for all indices outside of an interval; that is, there exist N and M ∈ Z such that

x̄[n] = 0 for n < M and n > M + N − 1.

Note that, although x̄[n] is an infinite sequence, the knowledge of M and of the N nonzero
values of the sequence completely specify the entire signal. This suggest another approach
to embedding a finite-length signal x[n], n = 0, . . . ,N − 1 into a sequence, i.e.

x̄[n] =

{
x[n] if 0 ≤ n < N − 1
0 otherwise

n ∈ Z (2.23)

where we have chosen M = 0 (but any other choice of M would do as well). Note that
here, in contrast to the the periodic extension of x[n], we are actually adding arbitrary
information in the form of the the zero values outside of the support interval. This is not
without consequences, as we will see in the following chapters. In general we will use the
bar notation x̄[n] for sequences defined as the finite support extension of a finite-length
signal. Note that now the shift of the finite-support extension gives rise to a zero-padded
shift of the signal locations between M and M + N − 1; the dynamics of the shift are
shown in Figure 2.4.

2.5 Summary

The main points introduced by this chapter have been:

• The formal definition for the concept of discrete-time signal.

• A gallery of prototypical signals and fundamental signal operators.

• A discussion of digital frequency and its 2π-periodic nature.

62 Chapter 2.

x̄[n] = . . . , 0, 0,

x
︷ ︸︸ ︷
x0, x1, x2, . . . , xN−2, xN−1, 0, 0, 0, 0, . . .

l→ n = 0

x̄[n− 1] = . . . 0, 0, 0, x0, x1, x2, . . . , xN−3, xN−2,
︸ ︷︷ ︸

x′

xN−1, 0, 0, . . .

Figure 2.4: Relationship between the right shift by one of a finite-support
extension and the zero padded shift of the original signal. x and x′ are the

length-N original signal and its zero-padded shift by one, respectively.

• The definitions of energy and power.

• A classification of signals into finite-length, infinite-length, periodic and finite-support
signals, with their respective properties.

The fundamental discrete-time signal types, along with their properties, are summarized
in Table 2.1.

2.5. Summary 63

Signal Type Notation Energy Power

Finite-Length x[n], n = 0, 1, . . . ,N − 1
x, x ∈ CN

∑N−1
n=0 |x[n]|2 undef.

Infinite-Length x[n], n ∈ Z eq. (2.17) eq. (2.18)

N -Periodic x̃[n], n ∈ Z,
x̃[n] = x̃[n + kN]

∞ eq. (2.19)

Finite-Support x̄[n], n ∈ Z

x̄[n] 6= 0 for M ≤ n ≤M + N − 1

∑M+N−1
n=M |x[n]|2 0

Table 2.1: Basic discrete-time signal types.

Chapter 3

Representation of Discrete-Time
Sequences (DFS, DFT)

Fourier theory has a long history, from J. Fourier’s early work on the transmission of heat
to recent results on non-harmonic Fourier series and related topics. Fourier theory is a
branch of harmonic analysis, and in that sense, a topic in pure and applied mathematics.
At the same time, because of its usefulness in practical applications, Fourier analysis is a
key tool in several engineering branches, and in signal processing in particular.

Why is Fourier analysis so important? To understand this, it is useful to take a little
philosophical detour. Interesting signals are time-varying quantities: you can imagine for
instance the voltage level at the output of a microphone or the measured level of the tide at
a particular location; in all cases, the variation of a signal over time implies that a transfer
of energy is happening someplace, and this is what ultimately we want to study. Now,
a time-varying value which only increases over time is not only a physical impossibility
but a recipe for disaster for whatever system is supposed to deal with it: fuses will blow,
wires will melt and so on. Oscillations, on the other hand, are nature’s and man’s way
to keep things in motion without trespassing all physical bounds; from Maxwell’s wave
equation to the mechanics of the vocal cords, from the motion of an engine to the ebb
and flow of tide, oscillatory behavior is the recurring theme. Sinusoidal oscillations, as
it stands, are the purest form of such a constrained motion and, in a nutshell, Fourier’s
immense contribution was to show that (at least mathematically) one could express any
given phenomenon as the combined output of a number of sinusoidal “generators”.

Sinusoids have another remarkable property which justifies their ubiquitous presence.
Indeed, any linear transformation of a sinusoid is a sinusoid at the same frequency : we
express this by saying that sinusoidal oscillations are eigenfunctions of linear systems. This
is a formidable tool for the analysis and design of signal processing structures, as we will

65

66 Chapter 3.

see in much detail in the context of linear systems.

The purpose of the present chapter is to review key results on Fourier series and Fourier
transforms in the context of discrete-time signal processing. As it turns out, and as we
hinted at in the previous chapter, the Fourier transform of a signal is a change of basis in
its appropriate Hilbert space. While this notion constitutes an extremely useful unifying
framework, we will also point out the peculiarities of its specialization within the different
classes of signals. In particular, for finite-length signals we will highlight the eminently
algebraic nature of the transform, which will lead to efficient computational procedures;
for infinite sequences, we will analyze some of its interesting mathematical subtleties.

A periodic sequence has the property that

x̃[n + N] = x̃[n] ∀n,

and N is a period. Therefore a periodic sequence is completely specified by N values.
Without loss of generality, we can take these N values from x[0], . . . , x[N − 1].
One representation of this sequence is in the ”time domain”, but one can imagine com-
pletely equivalent representations in other forms (bases). We will consider other represen-
tations of such signals in this class such as

• Fourier Transform (through complex exponentials)

• Z-Transform

• Time-frequency representation (like wavelets)

A way to think of these different representations is that each of them has some canonical
properties suited to particular scenarios. The most important representation, historically
as well as in applications, is the so-called Fourier representation.

3.1 Preliminaries

3.1.1 Terminology

The Fourier transform of a signal is an alternative representation of the data in the signal.
While a signal lives in the time domain1, its Fourier representation lives in the frequency
domain. We can move back and forth at will from one domain to the other using the
direct and inverse Fourier operators, since these operators are invertible.

In this chapter we will study three types of Fourier transforms which apply to the three
main classes of signals we have seen so far:

1Discrete-time, of course.

3.1. Preliminaries 67

• the Discrete Fourier Transform (DFT), which maps length-N signals into a set of N
discrete frequency components

• the Discrete Fourier Series (DFS), which maps N -periodic sequences into a set of N
discrete frequency components

• the Discrete-Time Fourier Transform (DTFT), which maps infinite sequences into
the space of 2π-periodic functions of a real-valued argument.

The frequency representation of a signal (given by a set of coefficients in the case of
the DFT and DFS and by a frequency distribution in the case of the DTFT) is called the
spectrum.

3.1.2 Complex Oscillations? Negative Frequencies?

In the introduction, we hinted at the fact that Fourier analysis allows us to decompose
a physical phenomenon into oscillatory components. It may seem odd, however, that we
chose to use complex oscillation for the analysis of real-world signals. It may seem even
more odd that these oscillations can have a negative frequency and that, as we will soon
see in the context of the DTFT, the spectrum extends over to the negative axis.

The starting point in answering these legitimate questions is to recall that the use of
complex exponentials is essentially a matter of convenience. One could develop a complete
theory of frequency analysis for real signals using only the basic trigonometric functions.
You may actually have seen this in the context of Fourier series; yet the notational overhead
is undoubtedly heavy since it involves two separate sets of coefficients for the sine and
cosine basis functions, plus a distinct term for the zero-order coefficient. The use of
complex exponentials elegantly unifies these separate series into a single complex-valued
sequence. Yet, one may ask again, what does it mean for the spectrum of a musical
sound to be complex? Simply put, the complex nature of the spectrum is a compact way
of representing two concurrent pieces of information which uniquely define each spectral
component: its frequency and its phase. This couple of values is a two-element vector
in R2 but, since R2 is isomorphic to C, we use complex numbers for their mathematical
convenience.

What about negative frequencies, then? Again, first of all consider a basic complex
exponential sequence such as x[n] = ejωn. We can visualize its evolution over discrete-
time as a series of points on the unit circle in the complex plane. At each step, the
angle increases by ω, defining a counterclockwise circular motion. It is easy to see that
a complex exponential sequence of frequency −ω is just the same series of points which
moves clockwise instead; this is illustrated in detail in Figure 3.1. We will show that
if we decompose a real signal into complex exponentials, for any given frequency value,

68 Chapter 3.

x[1]

ω

x[2]

ω

x[3]

ω

x[4]

ω

y[1]

ω

y[2]

ω

y[3]

ω

y[4]

ω

x[0] = y[0]

Figure 3.1: Complex exponentials as a series of points on the unit circle;
x[n] = ejωn and y[n] = e−jωn for ω = π/5.

the phases of the positive and negative components are always opposite in sign; as the
two oscillations move in opposite directions along the unit circle, their complex part will
always cancel out exactly, thus returning a purely real signal2.

The final step in developing a comfortable feeling for complex oscillations comes from
the realization that, in the synthesis of discrete-time signals (and especially in the case
of communication systems) it is actually more convenient to work with complex-valued
signals themselves. While in the end the transmitted signal of a device like an ADSL box
is a real signal, the internal representation of the underlying sequences is complex, and
therefore complex oscillations become a necessity.

2To anticipate a question which may appear later, the fact that modulation “makes negative frequencies
appear in the positive spectrum” is really a consequence of the very mundane formula:

cos α cos β =
1

2
[cos(α + β) + cos(α − β)].

3.2. Representation of Periodic Sequences: The Discrete-Time Fourier Series (DFS)69

3.1.3 Complex Exponentials

The basic ingredient of all Fourier representations (transforms) is the complex exponential
which we have seen before

x[n] = Aejωn = A cos(ωn) + jA sin(ωn) (3.1)

A natural question to ask is why we would use a complex oscillating signal, when most
signals we encounter are real. The simplest answer is in terms of notational convenience.
It is possible to develop representation using only real sinusoids, but in order to account
for the phase as well as frequency, it becomes more cumbersome.
A real sinusoid can always be represented using complex sinusoids as follows:

sin(ωn) =
ejωn − e−jωn

2j

cos(ωn) =
ejωn + e−jωn

2

Moreover, a representation using complex sinusoids is inherently more general.

3.2 Representation of Periodic Sequences: The Discrete-Time
Fourier Series (DFS)

Since we want to represent periodic signals of period N using complex exponentials, we
need to find a set of complex exponentials which contain a whole number of periods over
N . Let us examine

wk[n] = ejωkn.

Since we want wk[n] to contain a whole number of periods over N samples, we need to
have ωk such that

wk[0] = wk[N],

i.e.

wk[N] = 1 = ejωkN .

Clearly this equation has N possible solutions,

ωk =
2π

N
k, k = 0, · · · , N − 1.

70 Chapter 3.

Therefore, if we define

WN = e−j 2π
N

then the family of sequences with the property of having complete periods over N samples,
is

wk[n] = W−nk
N , n = 0, . . . ,N − 1, k = 0, . . . ,N − 1.

That is we have defined a family of N sequences which have a complete period over N
samples.
Now suppose that we want to represent the periodic signals using the family of sequences
{wk[n]}N−1

k=0 . Given a periodic sequence x̃[n], we want to solve for X̃k, k = 0, · · · ,N −1, in

x̃[n] =
1

N

N−1∑

k=0

X̃kwk[n] =
1

N

N−1∑

k=0

X̃ke
j 2π

N
nk.

The factor 1/N has been added for notational convenience further along in the analysis.

We can write this as

x̃[0] =
1

N

N−1∑

k=0

X̃k (3.2)

x̃[1] =
1

N

N−1∑

k=0

X̃ke
j 2π

N
k (3.3)

...

x̃[N − 1] =
1

N

N−1∑

k=0

X̃ke
j

2π(N−1)
N

k (3.4)

We want to express the above equations in matrix form. Therefore, we introduce

w
(k)
k =

[

1 W−k
N W−2k

N . . . W
−(N−1)k
N

]T
(3.5)

and the matrix Λ defined as

ΛH =

(
w(0)

)T

(
w(1)

)T

...
(
w(N−1)

)T

.

3.2. Representation of Periodic Sequences: The Discrete-Time Fourier Series (DFS)71

In matrix form, we have

x̃[0]
x̃[1]

...
x̃[N − 1]

=
1

N

1 1 · · · 1

1 ej 2π
N

1 · · · ej 2π
N

(N−1)

...
...

. . .
...

1 ej 2π(N−1)
N · · · ej 2π(N−1)2

N

︸ ︷︷ ︸

ΛH

X̃ [0]

X̃ [1]
...

X̃ [N − 1]

. (3.6)

We have N unknowns and N equations, and hence if the equations are linearly independent
we can expect a solution.
Now, note that

(

w(k)
)H
·w(m) =

[

1 e−j 2π
N

k . . . e−j 2π
N

k(N−1)
]

1

ej 2π
N

m

...

ej 2π
N

m(N−1)

=
N−1∑

i=0

ej 2π
N

(m−k)i

=

{

N k = m

0 k 6= m
. (3.7)

This follows from the fact that for k 6= m

N−1∑

i=0

ej 2π
N

(m−k)i =
1− ej 2π

N
(m−k)N

1− ej 2π
N

(m−k)
= 0.

Therefore, the rows of the matrix Λ in (3.6) are orthogonal (Not orthonormal, but that
can be fixed by normalizing by

√
N .)

Hence (3.7) shows that

〈w(k),w(m)〉 =

{
N k = m
0 k 6= m

making {w(0), · · · ,w(N−1)} an orthognal set of vectors in CN .

Theorem 3.1 Λ ΛH = NI

72 Chapter 3.

Proof

w(0)

...

w(N−1)

[
(
w(0)

)H · · ·
(
w(N−1)

)H
]

= [ap,q]N×N = NI,

where

ap,q = 〈w(p),w(q)〉.
�

Hence, looking at equation (3.6), we see that

X̃[0]

X̃[1]
...

X̃[N − 1]

= Λ

x̃[0]
x̃[1]
...
x̃[N − 1]

(3.8)

=

1 · · · 1

e−j 2π
N

0 · · · e−j 2π
N

(N−1)

...
. . .

...

e−j 2π(N−1)
N

0 · · · e−j 2π(N−1)2

N

x̃[0]
x̃[1]
...
x̃[N − 1]

. (3.9)

Therefore,

X̃[k] =

N−1∑

n=0

x̃[n]e−j 2π
N

kn. (3.10)

Hence, we have the following representation of the periodic sequence {x̃[n]} through
{X̃ [k]}N−1

k=0 and the class of periodic exponentials {wk[n]}N−1
k=0 as

x̃[n] =
1

N

N−1∑

k=0

X̃ [k]wk[n], (3.11)

where

X̃[k] =
N−1∑

n=0

x̃[n]wk[n]H . (3.12)

Thus {X̃ [k]}N−1
k=0 can be thought of as the weights on the complex exponentials to represent

a periodic sequence.
Notes

3.2. Representation of Periodic Sequences: The Discrete-Time Fourier Series (DFS)73

1. Any periodic sequence can be therefore be represented as a weighted sum of complex
exponentials. This is a akin to decomposing a periodic sequence into elementary
periodic functions.

2. Since 〈w(k),w(m)〉 = δk−mN , the vectors w(k), k = 0, · · ·N −1 are orthogonal and
form a basis of CN . The representation for periodic sequences is a consequence of
this property. We implicitly used this in in inverting Λ in 3.6 to find the weights
{X̃ [k]}N−1

k=0 .

3. Extending this thought process, one can envisage expanding {x̃[n]} in any basis of
Cn, which is also periodically extended.

In summary, we have the following Discrete-time Fourier Series (DFS) representation of
discrete-time periodic sequences. The synthesis formula,

x̃[n] =
1

N

N−1∑

k=0

X̃[k]ej 2π
N

kn. (3.13)

The analysis formula:

X̃ [k] =

N−1∑

n=0

x̃[n]e−j 2π
N

kn. (3.14)

This set of equations describe how to synthesize {x̃[n]} given the Discrete-time Fourier
Series (DFS) coefficients {X̃ [k]} and how to analyze {x̃[n]} to produce DFS coefficients
{X̃ [k]}.

Example 3.1 Suppose x[n] = sin(2π
N n)

This has a period of N . Since

sin(
2π

N
n) =

1

2j
ej 2π

N
n − 1

2j
e−j 2π

N
n

=
1

2j
ej 2π

N
n − 1

2j
ej 2π

N
(N−1)n

Hence we see that

X̃ [0] =
1

2j
, X̃ [N − 1] = − 1

2j
, X̃[k] = 0, k = 1, · · ·N − 2

In general the synthesis and analysis equations can be written in matrix form as:

x̃ =
1

N
ΛHX̃ (3.15)

74 Chapter 3.

X̃ = Λx̃ (3.16)

where

x̃ = [x̃[0], · · · , x̃[N − 1]]T

X̃ = [X̃ [0], · · · , X̃ [N − 1]]T

Note that we can find the energy in one period of the sequence in terms of its Fourier
series coefficients as

||x̃||22 =

N−1∑

n=0

|x̃[n]|2 =
1

N2
X̃HΛ · ΛHX̃ =

1

N

N−1∑

k=0

|X̃ [n]|2 =
1

N
||X̃||22

Therefore, the energy in one period of the periodic signal is N -times the energy in the
Fourier series coefficients.

N ||x̃||22 = ||X̃||22
This is called Parseval’s relationship.

3.2.1 Interpretation of the Fourier series

We have expressed the periodic sequence x̃[n] as a weighted sum of N sinusoids,

x̃[n] =
1

N

N−1∑

k=0

X̃ [k]ej 2π
N

kn =
1

N

N−1∑

k=0

X̃[k]wk[n].

The magnitude and the phase weighting of each sinusoid wk[n] = ej 2π
N

kn is given by X̃ [k],
which is the Fourier series coefficient. Therefore X̃[k] shows “how much” of an oscillatory
behavior at freqency 2π

N k is contained in the periodic signal x̃[n]. The coefficients {X̃[k]}
can therefore be interpreted as the spectrum of the signal. Parseval’s relationship shows
that up to a scaling factor of N , the energy contained in the spectrum of the signal is the
same as the energy in the signal itself, i.e. , N

∑N−1
n=0 |x̃[n]|2 =

∑N−1
n=0 |X̃[n]|2.

One can view {X̃[k]} as just a different representation of {x̃[n]}.

Example 3.2 (Discrete Fourier Series) Consider the periodic discrete signal x̃[n] of
period 10, defined on 0 ≤ n ≤ 9 as

x̃[n] =

{
1 0 ≤ n ≤ 4
−1 5 ≤ n ≤ 9

3.2. Representation of Periodic Sequences: The Discrete-Time Fourier Series (DFS)75

(a) Find X̃ [k], the discrete Fourier series of x̃[n].

(b) Compare X̃ [3] and X̃[−33]. What is the period of X̃[n]?

(c) Define ỹ[n] = x̃[n− 5]. What is the discrete Fourier series of ỹ[n]?

(d) Let z̃[n] = X̃ [n]. Find the discrete Fourier series of z̃[n] and compare it to x̃[n].

The answers to these questions are:

(a)

X̃ [k] =

N−1∑

n=0

x̃[n]e−j 2π
10

nk

=

4∑

n=0

e−j 2π
10

nk −
9∑

n=5

e−j 2π
10

nk

=
4∑

n=0

e−j 2π
10

nk − e−jπk
4∑

n′=0

e−j 2π
10

n′k

=
(

1− e−jπk
) 1− e−j 2π

10
5k

1− e−j 2π
10

k

=

{

0, for k even
4

1−e−j 2π
10 k

, for k odd.

(b) We can immediately say that the period of X̃[k] is N = 10. For any sequence of
period N , it’s DFS is of period N . This is a basic property of the DFS that should be
known. We can easily derive this property as follows: Let ỹ[n] be a (any) sequence
of period M . Then

Ỹ [k + M] =

M−1∑

n=0

ỹ[n]e−j 2π
M

n(k+M)

=
M−1∑

n=0

ỹ[n]e−j 2π
M

nke−j2πn

=

M−1∑

n=0

ỹ[n]e−j 2π
M

nk

= Ỹ [k],

76 Chapter 3.

so Ỹ [k], the DFS of ỹ[n] has period M .

Since X̃ [k] has period 10, X̃ [−33] = X̃ [7] = X̃[N − 3].

We know that for any DFS of a real periodic sequence

X̃[N − k] = X̃ [k]∗, k = 0, . . . ,N − 1. (3.17)

This gives X̃[−33] = X̃ [3]∗.

Equation (3.17) can easily be derived:

X̃ [N − k]∗ =

(
N−1∑

n=0

x̃[n]e−j 2π
N

n(N−k)

)∗

=
N−1∑

n=0

x̃[n]∗e−j 2π
N

nk

= X̃[k],

where the last equality follows from the assumption that the input sequence is real.

(c) For ỹ[n] = x̃[n− 5] we use another basic property of the DFS:

x̃[n− n0]
DFS↔ e−j 2π

N
n0kX̃ [k]. (3.18)

Again, we can easily derive this ourselves:

Ỹ [k] =

N−1∑

n=0

x̃[n− n0]e
−j 2π

N
nk

=
N−1∑

n=0

x̃[n]e−j 2π
N

(n+n0)k

= e−j 2π
N

n0kX̃ [k].

Using (3.18) gives us

Ỹ [k] = e−j 2π
10

5kX̃[k] = −X̃[k].

3.3. The Discrete Fourier Transform (DFT) 77

(d) We are asked to compute

Z̃[n] =

N−1∑

k=0

X̃[k]e−j 2π
N

nk.

Remember that all sequences are periodic. If we consider Z̃[−n]/N , we get

Z̃[−n]/N =
1

N

N−1∑

k=0

X̃[k]ej 2π
N

nk,

which is exactly the reconstruction formula for x̃[n], so Z̃[n] = x̃[−n]/N .

3.3 The Discrete Fourier Transform (DFT)

We will now develop a similar Fourier representation for a finite-length signal. The basic
idea is to consider a signal of length N, such that

x[n] = 0, n ≥ N,n < 0

and represent it as a sum of N finite-length complex exponentials. To do this we borrow the
idea from the discrete Fourier series representation. We can think of the a-periodic finite
length sequence {x[n]}n=N−1

n=0 as a single-period of a periodic sequence x̃[n] by constructing
x̃[n] as ,

x̃[n] = x[n], 0 ≤ n ≤ N − 1

x̃[n] = x̃[n + N], ∀n

Therefore using the Fourier-series representation we have

x[n] =
1

N

N−1∑

k=0

X[k]ej 2π
N

kn (3.19)

X[k] =

N−1∑

n=0

x[n]e−j 2π
N

kn (3.20)

In matrix form, the Discrete Fourier Transform (DFT) can be written as

x =
1

N
ΛH ·X (3.21)

78 Chapter 3.

X = Λ · x (3.22)

where x =
[
x[0]x[1] . . . x[N − 1]

]T
and x =

[
X[0]X[1] . . . X[N − 1]

]T
.

Therefore, another interpretation of the DFT is in terms of basis representation. Given
any vector x ∈ C, we can think of

x =

N−1∑

n=0

x[n]en

where en ∈ CN is the “unit vector”

en =

e
(n)
0

e
(n)
1

...

e
(n)
N−1

∈ CN

with components

e
(n)
i =

{
1 i = n
0 i 6= n

By looking at the DFT, we see that

x =
1

N
ΛH ·X

where

ΛH =

(
w(0)

)T

(
w(1)

)T

...
(
w(N−1)

)T

=

1 · · · 1

ej 2π
N

0 · · · ej 2π
N

(N−1)

...
. . .

...

ej
2π(N−1)

N
0 · · · ej

2π(N−1)2

N

and

w(k) =

1

ej 2π
N

k

...

ej 2π(N−1)
N

k

∈ CN×1

is an expansion of x in the orthogonal basis,
{(

w(0)
)T

, · · · ,
(

w(N−1)
)T }

3.3. The Discrete Fourier Transform (DFT) 79

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5
k = 0

R
e(

x[
n]

)

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

Im
(x

[n
])

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5
k=1

ℜ
{ w

(k
) }

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

ℑ{
 w

(k
) }

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5
k=7

ℜ
{ w

(k
) }

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

ℑ{
 w

(k
) }

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5
k=63

ℜ
{ w

(k
) }

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

ℑ{
 w

(k
) }

Figure 3.2: Some DFT basis vectors w(k) for N = 64; k = 0, 1, 7 and 63.

with coefficients 1
N X̃[k]. This gives another interpretation of the DFT as an expansion

of a sequence in another “basis” set, and therefore giving it an alternate representation.
This viewpoint is actually quite useful and general and to be able to utilize it we make a
detour to understand vector spaces.

Example 3.3 (Discrete Fourier Transform) Derive the DFT for a general sinu-
soidal sequence, x̃[n] = sin(2πL

N n + θ), n = 0, . . . ,N .

80 Chapter 3.

For L a positive integer we have

X[k] =

N−1∑

n=0

sin(
2πL

N
n + θ)e−j 2π

N
nk

=
N−1∑

n=0

ej(2πL
N

n+θ) − e−j(2πL
N

n+θ)

2j
e−j 2π

N
nk

=
ej(−π/2+θ)

2

N−1∑

n=0

e−j(2π
N

n(k−L) +
ej(π/2−θ)

2

N−1∑

n=0

e−j(2π
N

n(k+L)

=

{
N
2 ej(−π/2+θ) k = L
N
2 ej(π/2−θ) k = N − L.

3.4 Properties of the DFS

Symmetries & Structure. The DFS of a real sequence x̃[n] ∈ R possesses the following
symmetries:

X̃[k] = X̃∗[−k] the transform is conjugate-symmetric (3.23)

|X̃ [k]| = |X̃ [−k]| the magnitude is symmetric (3.24)

∡X̃[k] = −∡X̃[−k] the phase is antisymmetric (3.25)

Re{X̃ [k]} = Re{X̃ [−k]} the real part is symmetric (3.26)

Im{X̃ [k]} = −Im{X̃ [−k]} the imaginary is antisymmetric (3.27)

Finally, if x[n] is real and symmetric (using the symmetry definition in (3.34)), then the
DFS is real:

x̃[k] = x̃[−k]⇐⇒ X̃[k] ∈ R (3.28)

while, for real antisymmetric signals we have that the DFS is purely imaginary.

Linearity & Shifts. The DFS is a linear operator, since it is a matrix-vector product. A
shift in the discrete-time domain leads to multiplication by a phase term in the frequency
domain:

x̃[n− n0]
DFS←→W kn0

N X̃ [k] (3.29)

while multiplication of the signal by a complex exponential of frequency a multiple of
2π/N leads to a shift in frequency:

W−nL
N x̃[n]

DFS←→ X̃ [k − L]. (3.30)

3.5. Properties of the DFT 81

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.3: Examples of finite-length symmetric signals for N = 2, 3, 4, 5.

Energy Conservation. We have already seen the conservation of energy property in the
context of basis expansion. Here, we will simply recall Parseval’s Theorem, which states:

N−1∑

n=0

|x̃[n]|2 =
1

N

N−1∑

k=0

|X̃ [k]|2. (3.31)

3.5 Properties of the DFT

The properties of the DFT are obviously the same as those for the DFS, given the formal
equivalence of the transforms. The only detail is how to interpret shifts, index reversal
and symmetries for finite, length-N vectors; this is easily solved by considering the fact
that the DFT subsumes an N -periodic structure and therefore the underlying model for
the signal is that of periodic extension. We can therefore consider the periodized version
of the signal, operate the shift and then take the values from 0 to N − 1. Explicitly, shifts
and index reversal of a length-N vector are carried out modulo N ; the reversal of a signal
x[n] = x = [x[0] x[1] . . . x[N − 1]] is:

x[−n mod N] = [x[0] x[N − 1] x[N − 2] . . . x[2] x[1]] (3.32)

whereas its shift by k is the circular shift:

x[(n − k) mod N] = [x[k] x[k − 1] . . . x[0] x[N − 1] x[N − 2] . . . x[k + 1]]. (3.33)

This implies that, when we say a length-N signal x[k] is symmetric, we have in fact:

x[k] = x[N − k], k = 1, 2, . . . , ⌊(N − 1)/2⌋; (3.34)

82 Chapter 3.

note that the index k starts off at one in the above definition and ends at the floor of
(N − 1)/2; this means that X[0] is always unconstrained and so is x[N/2] for even-length
signals. Figure 3.3 shows some examples of symmetric length-N signals for different values
of N . Of course the same definition can be used for antisymmetric signals with just a
change of sign.

Symmetries & Structure. The DFT of a real sequence x[n] ∈ R possesses the following
symmetries:

X[k] = X∗[−k mod N] the transform is conjugate-symmetric(3.35)

|X[k]| = |X[−k mod N]| the magnitude is symmetric (3.36)

∡X[k] = −∡X[−k mod N] the phase is antisymmetric (3.37)

Re{X[k]} = Re{X[−k mod N]} the real part is symmetric (3.38)

Im{X[k]} = −Im{X[−k mod N]} the imaginary is antisymmetric (3.39)

Finally, if x[n] is real and symmetric (using the symmetry definition in (3.34), then the
DFT is real:

x[k] = x[N − k], k = 1, 2, . . . , ⌊(N − 1)/2⌋ ⇐⇒ X[k] ∈ R (3.40)

while, for real antisymmetric signals we have that the DFT is purely imaginary.

Linearity & Shifts. The DFT is obviously a linear operator. A circular shift in the
discrete-time domain leads to multiplication by a phase term in the frequency domain:

x[(n− n0) mod N]
DFT←→W kn0

N X[k] (3.41)

while the finite-length equivalent of the Modulation theorem states:

W−nL
N x[n]

DFT←→ X[(k − L) mod N]. (3.42)

Energy Conservation. See (3.31).

3.6 Summary

This chapter introduced the concept of Fourier Transform for digital signals. The main
points have been:

• A review of complex exponentials, finding a set of orthogonal complex exponentials;

• The DFS for periodic sequences;

3.7. Problems 83

• The DFT as a change of basis in CN , both in matrix and explicit form;

• Symmetries and structures of the two transforms.

Here is a tables of common DFT transforms:

Some DFT pairs for length-N signals: (n, k = 0, 1, . . . ,N − 1)

x[n] = δ[n− k] X[k] = e−j 2π
N

k

x[n] = 1 X[k] = Nδ[k]

x[n] = ej 2π
N

L X[k] = Nδ[k − L]

x[n] = cos(2π
N Ln + φ) X[k] = (N/2)[ejφδ[k − L] + e−jφδ[k −N + L)]]

x[n] = sin(2π
N Ln + φ) X[k] = (−jN/2)[ejφδ[k−L]− e−jφδ[k−N +L]]

x[n] =

1 for n ≤M − 1

0 for M ≤ n ≤ N − 1

X[k] =
sin((π/N)Mk)

sin((π/N)k)
e−j π

N
(M−1)k

3.7 Problems

Problem 3.1 Derive the formula for the DFT of the length-N signal

x[n] = cos((2π/N)Ln + φ).

Problem 3.2 Consider a length-64 signal x[n] which is the sum of the three sinusoidal
signals plotted in Figure 3.4. Compute the DFT coefficients X[k], k = 0, 1, . . . , 63 using
the results from Problem 3.1.

Problem 3.3 The DFT and inverse DFT (IDFT) formulas are similar, but not identical.
Consider a length-N signal x[n], N = 0, . . . ,N−1; what is the length-N signal y[n] obtained
as

y[n] = DFT{DFT{x[n]}}

(i.e. by applying the DFT algorithm twice in a row)?

84 Chapter 3.

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3

Figure 3.4: Three sinusoidal signals.

Problem 3.4 (Implementing DFT in MATLAB) In this exercise we want to pro-
vide a simple m-file in MATLAB to compute the discrete Fourier transform of a given
sequence. The inputs of the function are the input sequence x as a row-vector and the
length of the transform N . It checks the length of x to be satisfied with N . Then a
transformation matrix W will be formed and the DFT vector X will be produced by a
matrix-vector multiplication. The magnitude of the DFT should be plotted at the end.

Download the m-file myDFT from the course website and put it into your work directory.
Fill the blanks and run the function to compute and plot the DFT of x[n], n = 0, . . . , 45,
given in Exercise 1. Read MATLAB help for the standard function “fft”. Compare the
output of your function to output of fft.

Problem 3.5 (DFT with Different Lengths) Consider the finite length sequences

x[n] = y[n] =

1 0 ≤ n ≤ 5

0 otherwise

.

(a) Use your myDFT m-file to find the DFT of length 6 for x[n].

(b) Repeat part (a) to compute length 12 DFT of x[n].

Let a[n] and b[n] be two length N sequences. The circular convolution of the two
sequences a[n] and b[n] is defined as

a[n]⊗ b[n] =

N−1∑

m=0

a[m]b[(n−m) mod N].

3.7. Problems 85

Note that b[(n −m) mod N] is a circular shifted version of b[n], i.e.

b[(n −m) mod N] =
[

b[N −m] b[N −m + 1] . . . b[N − 1] b[0] . . . b[N −m− 1]
]

.

In the remaining parts of this exercise we are going to implement the circular convolution
in MATLAB.

(c) Download the rcshift m-file from the website and fill the blanks. At the end compute
the circular shift of length 3 to the right of t(1:10)=sin([1:10]).

(d) Download the cir conv and complete it according to its comments.

(e) Use your cir conv m-file to compute the 6-point circular convolution of x[n] and
y[n].

(f) Compute the 12-point circular convolution of x[n] and y[n] and call it in z[n].

(g) Compare the results of the two circular convolutions.

(h) compare the DFT of z[t] to the multiplication of DFT’s of x[n] and y[n].

Problem 3.6 Compute the DFS of x [n] = cos(π n
3) and y [n] = 1 + cos(π n

3)

86 Chapter 3.

Chapter 4

Signals and Hilbert Space

In the 17th century, algebra and geometry started to interact in a fruitful synergy which
continues to the present day. Descartes’s original idea of translating geometric constructs
into algebraic form spurred a new line of attack in mathematics; soon, a series of aston-
ishing results was produced for a number of problems which had long defied geometrical
solutions (such as, famously, the trisection of the angle). It also spearheaded the no-
tion of vector space, in which a geometrical point could be represented as an n-tuple of
coordinates; this, in turn, readily evolved into the theory of linear algebra. Later, the
concept proved useful in the opposite direction: many algebraic problems could benefit
from our innate geometrical intuition once they were cast in vector form; from the easy
three-dimensional visualization of concepts such as distance and orthogonality, more com-
plex algebraic constructs could be brought within the realm of intuition. The final leap of
imagination came with the realization that the concept of vector space could be applied
to much more abstract entities such as infinite-dimensional objects and functions. In so
doing, however, spatial intuition could be of limited help and so the notion of vector space
had to be formalized in much more rigorous terms; we will see that the definition of Hilbert
space is one such formalization.

Most of the signal processing theory which we will study in the course can be usefully
cast in terms of vector notation and the advantages of this approach are exactly what we
just delineated before. First of all, all the standard machinery of linear algebra becomes
immediately available and applicable; this greatly simplifies the formalism used in the
mathematical proofs which will follow and, at the same time, it fosters a good intuition
with respect to the underlying principles which are being put in place. Furthermore,
the vector notation creates a frame of thought which seamlessly links the more abstract
results involving infinite sequences to the algorithmic reality involving finite-length signals.
Finally, on the practical side, vector notation is the standard paradigm for numerical

87

88 Chapter 4.

analysis packages such as Matlab; signal processing algorithm expressed in vector notation
translate to working code with very little effort.

In the previous chapter we established the basic notation for the different classes of
discrete-time signals which we will encounter time and again in the rest of the course and
we hinted at the fact that a tight correspondence can be established between the concept
of signal and that of vector space. In this chapter we will pursue this link further, firstly
by reviewing the familiar Euclidean spaces in finite dimensions and then by extending the
concept of basic vector spaces to infinite-dimensional Hilbert spaces.

4.1 A Quick Review of Euclidean Geometry

Euclidean geometry is a straightforward formalization of our spatial sensory experience;
hence its cornerstone role in developing a basic intuition for vector spaces. Everybody is
(or should be) familiar with Euclidean geometry and the natural “physical” spaces like
R2 (the plane) and R3 (the three-dimensional space). The notion of distance is clear,
orthogonality is intuitive and maps to the idea of a “right angle”. Even a more abstract
concept such as that of basis is rather easy to think of (the standard coordinate concepts
of latitude, longitude and height, which correspond to the three orthogonal axes in R3).
Unfortunately, immediate spatial intuition fails us for higher dimensions (i.e. for RN with
N > 3), yet the basic concepts introduced for R3 generalize easily to RN so that it is easier
to state such concepts for the higher-dimensional case and specialize them with examples
for N = 2 or N = 3. These notions ultimately will be generalized even further to more
abstract types of vector spaces. For the moment, let us review the properties of RN , the
N -dimensional Euclidean space.

Vectors and Notation. A point in RN is specified by an N -tuple of coordinates1:

x =

x0

x1

...

xN−1

= [x0 x1 . . . xN−1]
T

where xi ∈ R, i = 0, 1, . . . , N −1. We call this set of coordinates a vector and the N -tuple
will be denoted synthetically by the symbol x; coordinates are usually expressed with

1N-dimensional vectors are by default column vectors.

4.1. A Quick Review of Euclidean Geometry 89

respect to a “standard” orthonormal basis2. The vector 0 = [0 0 . . . 0]T , i.e. the null
vector, is considered the origin of the coordinate system.

The generic n-th element in vector x is indicated by the subscript xn. In the following
we will often consider a set of M arbitrarily chosen vectors in RN and this set will be indi-
cated by the notation {x(k)}k=0...M−1. Each vector in the set is indexed by the superscript

·(k). The n-th element of the k-th vector in the set is indicated by the notation x
(k)
n

Inner Product. The inner product between two vectors x,y ∈ RN is defined as:

〈x,y〉 =
N−1∑

n=0

xnyn (4.1)

We say that x and y are orthogonal, or x ⊥ y, when the inner product is zero:

x ⊥ y ⇐⇒ 〈x,y〉 = 0 (4.2)

Norm. The norm of a vector is defined in terms of the inner product as

‖x‖2 =

√
√
√
√

N−1∑

n=0

x2
n = 〈x,x〉1/2 (4.3)

It is easy to visualize geometrically that the norm of a vector corresponds to its length,
i.e. to the distance between the origin and the point identified by the vector’s coordinates.
A remarkable property linking the inner product and the norm is the Cauchy-Schwarz
inequality (whose proof is a little tricky); given x,y ∈ RN we always have:

|〈x,y〉| ≤ ‖x‖2‖y‖2

Distance. The concept of norm is used to introduce the notion of Euclidean distance
between two vectors x and y:

d(x,y) = ‖x− y‖2 =

√
√
√
√

N−1∑

n=0

(xn − yn)2. (4.4)

From this, we can easily derive the Pythagorean theorem for N dimensions: if two vectors
are orthogonal, x ⊥ y, and we consider the sum vector z = x + y, we have:

‖z‖22 = ‖x‖22 + ‖y‖22 (4.5)

2The concept of basis will be defined more precisely later on; for the time being, consider a standard
set of orthogonal axes.

90 Chapter 4.

The above properties are graphically shown in Figure 4.1 for R2.

Bases. Consider a set of M arbitrarily chosen vectors in RN : {x(k)}k=0...M−1. Given
such a set, a key question is that of completeness: can any vector in RN be written as a
linear combination of vectors from the set? In other words, we ask ourselves whether for
any z ∈ RN we can find a set of M coefficients αk ∈ R such that z can be expressed as:

z =

M−1∑

k=0

αkx
(k). (4.6)

Clearly, M needs to be greater or equal to N , but what conditions does a set of vectors
{x(k)}k=0...M−1 need to satisfy so that (4.6) holds for any z ∈ RN? There needs to be
a set of M vectors that span RN , and it can be shown that this is equivalent to saying
that the set must contain at least N linearly independent vectors. In turn, N vectors
{y(k)}k=0...N−1 are linearly independent if the equation

N−1∑

k=0

βky
(k) = 0 (4.7)

is satisfied only when all the βk’s are zero. A set of N linearly independent vectors for RN

is called a basis and, amongst bases, the ones with mutually orthogonal vectors of norm
equal to one are called orthonormal bases. For an orthonormal basis {y(k)} we therefore
have:

〈y(k),y(h)〉 =

1 if k = h

0 otherwise

(4.8)

Figure 4.2 reviews the above concepts in low dimensions.
The standard orthonormal basis for RN is the canonical basis {δ(k)}k=0...N−1 with

δ
(k)
n = δ[n − k] =

1 if n = k

0 otherwise

The orthonormality of such a set is immediately apparent. Another important orthonormal
basis for RN is the normalized Fourier basis {w(k)}k=0...N−1 for which:

w(k)
n =

1√
N

e−j 2π
N

nk;

the orthonormality proof for the basis is left as an exercise.

4.1. A Quick Review of Euclidean Geometry 91

x

y

x

x-y
y

x

 y

(a) (b) (c)

z=x+y

Figure 4.1: Elementary properties of vectors in R2. (a) Orthogonality of two
vectors x and y. (b) Difference vector x− y and distance between x and y.

(c) Sum of two orthogonal vectors z = x + y, and Pythagorean theorem.

y1

 y3

y4

y1

 y3

 y2

(a) (b)

y2

Figure 4.2: Linear independence and bases. (a) (y(1),y(2),y(3)) are coplanar
in R3 , and so do not form a basis. y(4) and any two of {y(1),y(2),y(3)} are

linearly independent. (b) Any two of {y(1),y(2),y(3)} form a basis, and
{y(1),y(3)} form an orthogonal basis.

92 Chapter 4.

4.2 From Vector Spaces to Hilbert Spaces

The purpose of the previous review was to briefly review the elementary notions and
spatial intuitions of Euclidean geometry. A thorough study of vectors in RN and CN is
the subject of linear algebra; yet, the idea of vectors, orthogonality and bases is much
more general, the basic ingredients being an inner product and the use of a square norm
as in (4.3).

While the analogy between vectors in CN and length-N signal is readily apparent, the
question now hinges on how we are to proceed in order to generalize the above concepts to
the class of infinite sequences. Intuitively, for instance, we can let N grow to infinity and
obtain C∞ as the Euclidean space for infinite sequences; in this case, however, much care
must be exercised with expressions such as (4.1) and (4.3) which can diverge for sequences
as simple as x[n] = 1 for all n. In fact, the proper generalization of CN to an infinite
number of dimensions is in the form of a particular vector space called Hilbert space;
the structure of this kind of vector space imposes a set of constraints on its elements
so that divergence problems such as the one we just mentioned no longer bother us.
When we embed infinite sequences into a Hilbert space, these constraints translate to
the condition that the corresponding signals have finite energy — which is a mild and
reasonable requirement.

Finally, it is important to remember the notion of Hilbert space is applicable to much
more general vector spaces than CN ; for instance, we can easily consider spaces of functions
over an interval or over the real line. This generality is actually the cornerstone of a branch
of mathematics called functional analysis. While we will not tread very far into these kind
of generalizations, we will certainly point out a few of them along the way. The space
of square integrable functions, for instance, will turn out to be a marvelous tool a few
chapters from now when, finally, the link between continuous- and discrete-time signals
will be explored in detail.

4.2.1 The Recipe for Hilbert Space

A word of caution: we are now starting to operate in a world of complete abstraction.
Here a vector is an entity per se and, while analogies and examples in terms of Euclidean
geometry can be useful visually, they are by no means exhaustive. In other words: vectors
are no longer just N -tuples of numbers; they can be anything. This said, a Hilbert space
can be defined in incremental steps starting from an general notion of vector space and by
supplementing this space with two additional features: the existence of an inner product
and the property of completeness.

Vector Space. Consider a set of vectors V and a set of scalars S (which can be either R

4.2. From Vector Spaces to Hilbert Spaces 93

or C for our purposes). A vector space H(V, S) is completely defined by the existence of a
vector addition operation and a scalar multiplication operation which satisfy the following
properties for any x,y, z, ∈ V and any α, β ∈ S:

• Addition is commutative:

x + y = y + x (4.9)

• Addition is associative:

(x + y) + z = x + (y + z) (4.10)

• Scalar multiplication is distributive:

α(x + y) = αx + αy (4.11)

(α + β)x = αx + βx (4.12)

α(βx) = (αβ)x (4.13)

• There exists a null vector 0 in V which is the additive identity so that ∀ x ∈ V :

x + 0 = 0 + x = x (4.14)

• ∀ x ∈ V there exists in V an additive inverse −x such that:

x + (−x) = (−x) + x = 0 (4.15)

• There exists an identity element “1” for scalar multiplication so that ∀ x ∈ V :

1 · x = x · 1 = x. (4.16)

Inner Product Space. What we have so far is the simplest type of vector space; the next
ingredient which we will consider is the inner product which is essential to build a notion
of distance between elements in a vector space. A vector space with an inner product is
called an inner product space. An inner product for H(V, S) is a function from V × V to
S which satisfies the following properties for any x,y, z, ∈ V :

94 Chapter 4.

• It is distributive with respect to vector addition:

〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 (4.17)

• It possesses the scaling property with respect to scalar multiplication3:

〈x, αy〉 = α〈x,y〉 (4.18)

〈αx,y〉 = α∗〈x,y〉 (4.19)

• It is commutative within complex conjugation:

〈x,y〉 = 〈y,x〉∗ (4.20)

• The self-product is real and positive:

〈x,x〉 ≥ 0 (4.21)

〈x,x〉 ∈ R

〈x,x〉 = 0⇐⇒ x = 0. (4.22)

From this definition of the inner product a series of additional definitions and properties
can be derived: first of all, orthogonality between two vectors is defined with respect to
the inner product, and we will say that non-zero vectors x and y are orthogonal, or x ⊥ y,
if and only if

〈x,y〉 = 0 (4.23)

From the definition of an inner product we can define the norm of a vector as:

||x|| = 〈x,x〉1/2 (4.24)

In turn, the norm satisfies the Cauchy-Schwartz inequality :

|〈x,y〉| ≤ ‖x‖ · ‖y‖ (4.25)

with strict equality if and only if x = αy.

3Note that in our notation, the left operand is conjugated.

4.2. From Vector Spaces to Hilbert Spaces 95

Proof: If y = 0, then (4.25) holds since 〈x,0〉 = 0.
If y 6= 0, then for every scalar α we have

0 ≤ ‖x− αy‖2 = 〈x− αy,x− αy〉 = 〈x,x〉 − α〈x,y〉 − α∗ [〈y,x〉 − α〈y,y〉] .

If we choose α = 〈y,x〉
〈y,y〉 then we have

0 ≤ 〈x,x〉 − 〈y,x〉
〈y,y〉 〈x,y〉 =

〈x,x〉〈y,y〉 − |〈x,y〉|2
〈y,y〉 ,

or

|〈x,y〉| ≤ ‖x‖ · ‖y‖,

with equality iff x = αy. �

The norm also satisfies the triangle inequality :

‖x + y‖ ≤ ‖x‖ + ‖y‖ (4.26)

with strict equality if and only if x = αy and α ∈ R+.

Proof:

‖x + y‖2 = 〈x + y,x + y〉 = ‖x‖2 + 〈x,y〉 + 〈y,x〉 + ‖y‖2.

Since for any complex number u, Re(u) ≤ |u| and Im(u) ≤ |u| , we have 〈x,y〉 ≤ |〈x,y〉|,
and 〈y,x〉 ≤ |〈x,y〉|.
Hence

‖x + y‖2 ≤ ‖x‖2 + ‖y‖2 + 2|〈x,y〉| ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2 .

Taking square roots we get

‖x + y‖ ≤ ‖x‖ + ‖y‖. �

96 Chapter 4.

For orthogonal vectors, the triangle inequality becomes the famous Pythagorean The-
orem:

‖x + y‖2 = ‖x‖2 + ‖y‖2 for x ⊥ y (4.27)

Hilbert Space. A vector space H(V, S) equipped with an inner product is called an
inner product space. To obtain a Hilbert space, we need completeness. This is a slightly
more technical notion, which essentially implies that convergent sequences of vectors in
V have a limit that is also in V . To gain intuition, think of the set of rational numbers
Q versus the set of real numbers R. The set of rational numbers is incomplete, because
there are convergent sequences in Q which converge to irrational numbers. The set of
real numbers contains these irrational numbers, and is in that sense the completion of Q.
Completeness is usually hard to prove in the case of infinite-dimensional spaces; in the
following it will be tacitly assumed and the interested reader can easily find the relevant
proofs in advanced analysis textbooks. As a last technicality, we will also only consider
separate Hilbert spaces, which are the ones that admit orthonormal bases.

4.2.2 Examples of Hilbert Spaces

Finite Euclidean Spaces. The vector space CN , with the “natural” definition for the
sum of two vectors z = x + y as:

zn = xn + yn (4.28)

and the definition of the inner product as:

〈x,y〉 =

N−1∑

n=0

x∗
nyn (4.29)

is a Hilbert space.

Polynomial Functions. An example of “functional” Hilbert space is the vector space
PN ([0, 1]) of polynomial functions on the interval [0, 1] with maximum degree N . It is a
good exercise to show that P∞([0, 1]) is not complete: consider for instance the sequence
of polynomials

pn(x) =
n∑

k=0

xk

k!

this series converges as pn(x)→ ex 6∈ P∞([0, 1]).

4.2. From Vector Spaces to Hilbert Spaces 97

Square Summable Functions. Another interesting example of functional Hilbert space
is the space of square integrable functions over a finite interval. For instance, L2([−π, π])
is the space of real or complex functions on the interval [−π, π] which have finite norm.
The inner product over L2([−π, π]) is defined as:

〈f, g〉 =

∫ π

−π
f∗(t)g(t)dt, (4.30)

so that the norm of f(t) is:

‖f‖ =

√
∫ π

−π
|f(t)|2dt. (4.31)

For f(t) to belong to L2([−π, π]) it must be ‖f‖ <∞.

4.2.3 Inner Products and Distances

The inner product is a fundamental tool in a vector space since it allows us to introduce
a notion of distance between vectors. The key intuition about this is a typical instance
in which a geometric construct helps us generalize a basic idea to much more abstract
scenarios. Indeed, take the simple Euclidean space RN and a given vector x; for any
vector y ∈ RN the inner product 〈x,y〉 is the measure of the orthogonal projection of y
over x. We know that the orthogonal projection defines the point on x which is closest
to y and therefore it indicates “how well” we can approximate y by a simple scaling of x.
To see this, just note that

〈x,y〉 = ‖x‖‖y‖ cos θ

where θ is the angle between the two vectors (you can work out the expression in R2 to
easily convince you of this; the result generalizes to any other dimension). Clearly, if the
vectors are orthogonal, the cosine is zero and no approximation will be possible. Since the
inner product is dependent on the angular separation between the vectors, it represents a
first rough measure of similarity between x and y; in broad terms, it provides a measure
of the difference in shape between vectors.

In the context of signal processing, this is particularly relevant since the difference in
“shape” between signals is what we are interested in most of the time. As we stated several
times before, discrete-time signals are vectors; the computation of their inner product will
assume different names according to the processing context we find ourselves in: it will
be called filtering, when we are trying to approximate or modify a signal; or it will be
called correlation when we are trying to detect one particular signal amongst many. Yet,
in all cases, it will still be an inner product, i.e. a qualitative measure of similarity between

98 Chapter 4.

vectors. In particular, the concept of orthogonality between signal implies that the signals
are perfectly distinguishable or, in other words, that their shape is completely different.

The need for a quantitative measure of similarity in some applications calls for the
introduction of the Euclidean distance, which is derived from the inner product as:

d(x,y) = 〈x− y,x− y〉1/2 = ‖x− y‖. (4.32)

In particular, for CN the Euclidean distance is defined as:

d(x,y) =

√
√
√
√

N−1∑

n=0

|xn − yn|2; (4.33)

whereas for L2([−π, π]) we have:

d(x,y) =

√
∫ π

−π
|x(t)− y(t)|2dt. (4.34)

In the practice of signal processing, the Euclidean distance is referred to as the root
mean square error4; this is a global, quantitative goodness-of-fit measure when trying to
approximate signal y with x.

Incidentally, there are other types of distance measures which do not rely on a notion
of inner product; for example in CN we could define

d(x,y) = max
0≤n<N

|xn − yn|. (4.35)

This distance is based on the supremum norm and is usually indicated by ‖x − y‖∞;
however, it can be shown that there is no inner product from which this norm can be
derived and therefore no Hilbert space can be constructed where ‖ · ‖∞ is the natural
norm. Nonetheless, this norm will reappear later, in the context of optimal filter design.

4.3 Subspaces, Bases, and Projections

Now that we have defined the properties of Hilbert space, it is only natural to start looking
at the consequent inner structure of such a space. The best way to do so is by introducing
the concept of basis. You can think of a basis as the “skeleton” of a vector space, a
structure which holds everything together; yet, this skeleton is flexible and we can twist
it, stretch it and rotate it in order to highlight some particular structure of the space and

4Almost always, the square distance is considered instead; its name is then the mean square error, or
MSE

4.3. Subspaces, Bases, and Projections 99

bring out the particular information we are interested in. All this is accomplished by a
linear transformation called a change of basis; for instance, the Fourier transform is an
instance of basis change.

Sometimes we will be interested in exploring more in detail a specific subset of a given
vector space; this is accomplished via the concept of subspace. A subspace is, as the name
implies, a restricted region of the global space with the additional properties that it is
closed under the usual vector operations. This implies that, once in a subspace, we can
operate freely without ever leaving its confines; just like a full-fledged space, a subspace
has its own skeleton (i.e. the basis) and, again, we can exploit the properties of this basis
to highlight the features we are interested in.

4.3.1 Definitions

Assume H(V, S) is a Hilbert space, with V a vector space and S a set of scalars (i.e. C).

Subspace. A subspace of V is defined as a subset P ⊆ V that satisfies the following
properties:

• Closure under addition, i.e.

∀ x,y ∈ P ⇒ x + y ∈ P (4.36)

• Closure under scalar multiplication, i.e.

∀ x ∈ P,∀ α ∈ S ⇒ αx ∈ P. (4.37)

Clearly, V is a subspace of itself.

Span. Given an arbitrary set of M vectors W = {x(m)}m=0,1,...,M−1, the span of these
vector is defined as:

span(W) =

{M−1∑

m=0

αmx(m)

}

, αm ∈ S (4.38)

i.e. the span of W is the set of all possible linear combinations of the vectors in W . The
set of vectors W is called linearly independent if the following holds:

M−1∑

m=0

αmx(m) = 0 ⇐⇒ αm = 0 for m = 0, 1, . . . ,M − 1. (4.39)

Basis. A set of K vectors W = {x(k)}k=0,1,...,K−1 from a subspace P is a basis for that
subspace if:

100 Chapter 4.

• The set W is linearly independent.

• Its span covers P , i.e. span(W) = P .

The last statement affirms that any y ∈ P can be written as a linear combination of
{x(k)}k=0,1,...,K−1 or that, for all y ∈ P , there exist K coefficients αk such that

y =
K−1∑

k=0

αkx
(k); (4.40)

this is equivalently expressed by saying that the set W is complete in P .

Orthogonal/Orthonormal Basis. An orthonormal basis for a subspace P is a set of K
basis vectors W = {x(k)}k=0,1,...,K−1 for which:

〈x(i),x(j)〉 = δ[i− j] 0 ≤ i, j < K (4.41)

which means orthogonality across vectors and unit norm. Sometimes, we can have that the
set of vectors is orthogonal but not normal (i.e. the norm of the vectors is not unitary). This
is hardly a problem provided that we remember to include the appropriate normalization
factors in the analysis and/or synthesis formulas. Alternatively, an orthogonal set of
vectors can be normalized via the Gram-Schmidt procedure, which you can find in any
linear algebra textbook.

Among all bases, orthonormal bases are the most “beautiful” in some sense because
of their structure and their properties. One of the most important properties for finite-
dimensional spaces is the following:

• A set of N orthogonal vectors in an N -dimensional subspace is a basis for the sub-
space.

In other words, in finite dimensions, once we find a full set of orthogonal vectors we are
sure that the set spans the space.

4.3.2 Properties of Orthonormal Bases

Let W = {x(k)}k=0,1,...,K−1 be an orthonormal basis for a (sub)space P . Then the following
properties hold (all of which are easily verified):

Analysis Formula. The coefficients in the linear combination (4.40) are obtained simply
as:

αk = 〈x(k),y〉 (4.42)

4.3. Subspaces, Bases, and Projections 101

The coefficients {αk} are called the Fourier coefficients5 of the orthonormal expansion of
y with respect to the basis W and (4.42) is called the Fourier analysis formula; conversely,
Equation (4.40) is called the synthesis formula.

Parseval’s Identity For an orthonormal basis, there is a norm conservation property given
by Parseval’s identity :

‖y‖2 =

K−1∑

k=0

|〈x(k),y〉|2. (4.43)

For physical quantities, the norm is dimensionally equivalent to a measure of energy;
accordingly, Parseval’s identity is also known as the energy conservation formula.

Basis Completion Let G =
{
z(ℓ)
}L−1

ℓ=0
be a set of orthonormal vectors in a subspace P

of dimension K > L. Clearly, G is not a basis for P . If
{
x(k)

}K−1

k=0
form an orthonormal

basis, then we can find vectors
{
z̃(ℓ)
}K−1

ℓ=L
such that

{{
z(ℓ)
}L−1

ℓ=0
,
{
z̃(ℓ)
}K−1

ℓ=L

}

form an

orthonormal basis for P . This can be done in the following manner, since
{
x(k)

}K−1

k=0
is

an orthonormal basis for P , we want to find z̃(L) ∈ P s.t.

z̃(L) =
K−1∑

k=0

αkx
(k) , 〈z̃(L), z(ℓ)〉 = 0, ℓ = 0, · · · , L− 1

=⇒
K−1∑

k=0

αk〈x(k), z(ℓ)〉 = 0, ℓ = 0, · · · , L− 1

=⇒

〈x(0), z(0)〉 · · · 〈x(K−1), z(0)〉
...

...

〈x(0), z(L−1)〉 · · · 〈x(K−1), z(L−1)〉

α0

...

αK−1

= 0.

5Fourier coefficients often refer to the particular case of Fourier series. However, the term generally
refers to coefficients in any orthonormal basis.

102 Chapter 4.

Since

〈x(0), z(0)〉 · · · 〈x(K−1), z(0)〉
...

...

〈x(0), z(L−1)〉 · · · 〈x(K−1), z(L−1)〉

∈ CL×K ,

we can find a vector in its null space (which is of dimension K−L) to obtain z̃(L) (properly
normalized). In a similar manner we can find z̃(ℓ), ℓ = L, · · · ,K − 1 by

〈z̃(ℓ), z(p)〉 = 0, for p = 0, · · · , L− 1

〈z̃(ℓ), z̃(q)〉 = 0, for q = L, · · · , ℓ− 1.

This amounts to finding a vector in the null space of

〈x(0), z(0)〉 · · · 〈x(K−1), z(0)〉
...

...

〈x(0), z(L−1)〉 · · · 〈x(K−1), z(L−1)〉

〈x(0), z̃(L)〉 · · · 〈x(K−1), z̃(L)〉
...

...

〈x(0), z̃(ℓ−1)〉 · · · 〈x(K−1), z̃(ℓ−1)〉

Therefore by defining z(ℓ) = z̃(ℓ), ℓ = L, · · · ,K − 1, we get an orthonormal basis
{
z(ℓ)
}K−1

ℓ=0
for P , which extends the orthonormal set

{
z(ℓ)
}L−1

ℓ=0
to a basis spanning P .

Therefore for any y ∈ P ,

‖y‖2 =

K−1∑

k=0

|〈z(k),y〉|2 ≥
L−1∑

ℓ=0

|〈z(ℓ),y〉|2.

Best Approximations. Assume P is a subspace of V ; if we try to approximate a vector
y ∈ V by a linear combination of basis vectors from the subspace P , then we are led to the
concepts of least squares approximations and orthogonal projections. First of all, we define
the best linear approximation ŷ ∈ P of a general vector y ∈ V to be the approximation

4.3. Subspaces, Bases, and Projections 103

which minimizes the norm ‖y− ŷ‖. Such approximation is easily obtained by projecting y
onto an orthonormal basis for P , as shown in Figure 4.3. With W our usual orthonormal
basis for P , the projection is given by:

ŷ =

K−1∑

k=0

〈x(k),y〉x(k) (4.44)

Define the approximation error as the vector d = y− ŷ. The best approximation ŷ ∈ P is
such that the error d = y − ŷ is orthogonal to all vectors z ∈ P , i.e., y − ŷ ⊥ z ∀z ∈ P.

Proof: Let ŷ be the unique vector such that d = y − ŷ is orthogonal to all vectors
z ∈ P . Consider any vector g ∈ P which is a candidate for the best approximation to y
in P .

‖y − g‖2 = ‖(y − ŷ) + (ŷ − g)‖2 = ‖y − ŷ‖2 + ‖ŷ − g‖2 + 〈y − ŷ, ŷ − g〉+ 〈ŷ − g,y − ŷ〉.

However, since ŷ,g ∈ P , ŷ − g ∈ P and hence

〈ŷ − g,y − ŷ〉 = 0 = 〈y − ŷ, ŷ − g〉.

Hence we have

‖y − g‖2 = ‖y − ŷ‖2 + ‖ŷ − g‖2 ≥ ‖y − ŷ‖2

with equality iff g = ŷ. �

It can be easily shown that the approximation minimizes the error square norm, i.e.

arg min
ŷ∈P
‖y − ŷ‖2 = d. (4.45)

This approximation with an orthonormal basis has a key property: it can be suc-
cessively refined. Assume you have the approximation with the first m terms of the
orthonormal basis:

ŷm =

m−1∑

k=0

〈x(k),y〉x(k) (4.46)

and now you want to compute the (m + 1)-term approximation. This is simply given by

ŷm+1 =

m∑

k=0

〈x(k),y〉x(k) = ŷm + 〈x(m),y〉x(m) (4.47)

104 Chapter 4.

x1

 x3

x2

x

x)

Figure 4.3: Orthogonal projection of the vector x onto the subspace W
spanned by (x(1),x(2)), leading to the approximation x̂. This approximation

minimizes the square norm ‖x− x̂‖2 among all approximations belonging to W .

While this seems obvious, it is actually a small miracle, since it does not hold for more
general, non-orthonormal bases.

Bessel’s Inequality. The generalization of Parseval’s equality is Bessel’s inequality. Sup-
pose M =

{
e(k)

}
is an orthonormal set, but not a basis for the entire space V . Define a

subspace:

P = Span(M) = Span
{{

e(k)
}}

.

Let us consider the projection of an arbitrary vector x ∈ V , onto P . We have seen that
this is given by

x̂ =
∑

k

〈e(k),x〉e(k)

and that (x− x̂) ⊥ g, ∀g ∈ P . In particular, since x̂ ∈ P , we see that

z , x− x̂ ∈ P , z ⊥ x̂ and

x = x− x̂
︸ ︷︷ ︸

z

+x̂ = z + x̂.

Hence by Pythagoras theorem:

‖x‖2 = ‖z‖2 + ‖x̂‖2

4.3. Subspaces, Bases, and Projections 105

or: 0 ≤ ‖z‖2 = ‖x‖2 − ‖x̂‖2

or: ‖x̂‖2 (a)
=
∑

k |〈e(k),x〉|2 ≤ ‖x‖2
where (a) follows from Parseval’s relationship.

Hence for any orthonormal set
{
e(k)

}
,

∑

k

|〈e(k),x〉|2 ≤ ‖x‖2 −→ Bessel’s inequality. (4.48)

4.3.3 Examples of Bases

Considering the examples of 4.2.2, we have the following:

Finite Euclidean Spaces. For the simplest case of Hilbert spaces, namely CN , orthonor-
mal bases are also the most intuitive since they contain exactly N mutually orthogonal
vectors of unit norm. The classical example is the canonical basis {δ(k)}k=0...N−1 with

δ
(k)
n = δ[n − k] (4.49)

but we will soon study more interesting bases such as the Fourier basis {w(k)}, for which

w(k)
n = ej 2π

N
nk.

In CN , the analysis and synthesis formulas (4.42) and (4.40) take a particularly neat form.
For any set {x(k)} of N orthonormal vectors one can indeed arrange the conjugates of the
basis vectors6 as the successive rows of an N × N square matrix M so that each matrix
element is

Mmn = (x(m)
n)∗;

M is called a change of basis matrix. Given a vector y, the set of expansion coefficient
{αk}k=0...N−1 can now be written itself as a vector7 α ∈ CN . Therefore, we can rewrite
the analysis formula (4.42) in matrix-vector form and we have:

α = My. (4.50)

6Other definitions may build M by stacking the non-conjugated basis vectors instead; the procedure
is however entirely equivalent. Here we choose this definition in order to be consistent with the usual
derivation of the Discrete Fourier Transform, which we will see in the next chapter.

7This isomorphism is rather special and at the foundation of Linear Algebra. If the original vector
space V is not CN , the analysis formula will always provide us with a vector of complex values, but this
vector will not be in V .

106 Chapter 4.

The reconstruction formula (4.40) for y from the expansion coefficients becomes in turn:

y = MH
α (4.51)

where the superscript denotes the Hermitian transpose (transposition and conjugation of
the matrix). The previous equation shows that y is a linear combination of the columns
of MH , which, in turn, are of course the vectors {x(k)}. The orthogonality relation (4.49)
takes the following forms

MHM = I (4.52)

MMH = I (4.53)

since left inverse equals right inverse for square matrices; this implies that M has orthonor-
mal rows as well as orthonormal columns.

Polynomial Functions. A basis for PN ([0, 1]) is {xk}0≤k<N . This basis, however, is
not an orthonormal basis. It can be transformed to an orthonormal basis by a standard
Gram-Schmidt procedure; the basis vectors thus obtained are called Legendre polynomials.

Square Summable Functions. An orthonormal basis set for L2([−π, π]) is the set
{(1/
√

2π)ejnt}n∈Z. This is actually the classic Fourier basis for functions on an inter-
val. Please note that here, as opposed to the previous examples, the number of basis
vectors is actually infinite. The orthogonality of these basis vectors is easily verified; their
completeness, however, is extremely hard to prove and this, unfortunately, is pretty much
the rule for all non-trivial infinite-dimensional basis sets.

4.4 Signal Spaces Revisited

We are now in the position to formalize our intuitions so far with respect to the equivalence
between discrete-time signals and vector spaces, with a particularization for the three main
classes of signals we have introduced in the previous chapter. Note that in the following,
we will liberally interchange the notations x and x[n] to denote a sequence as a vector
embedded in its appropriate Hilbert space.

4.4.1 Finite-Length Signals

The correspondence between the class of finite-length, length-N signals and CN should
be so immediate at this point that it does not need further comment. As a reminder, the
canonical basis is the canonical basis for CN . The k-th canonical basis vector will often
be expressed in signal form as:

δ[n− k] n = 0, . . . , N − 1, k = 0, . . . ,N − 1

4.4. Signal Spaces Revisited 107

4.4.2 Periodic Signals

As we have seen, N -periodic signals are equivalent to length-N signals. The space of
N -periodic sequences is therefore isomorphic to CN . In particular, the sum between two
sequences considered as vectors is the standard pointwise sum for the elements:

z[n] = x[n] + y[n] n ∈ Z (4.54)

while, for the inner product, we extend the summation over a period only:

〈x[n], y[n]〉 =

N−1∑

n=0

x∗[n]y[n]. (4.55)

The canonical basis for the space of N -periodic sequences is the canonical basis for CN ,
because of the isomorphism; in general, any basis for CN is also a basis for the space of
N -periodic sequences. Sometimes, however, we will also consider an explicitly periodized
version of the basis. For the canonical basis, in particular, the periodized basis is composed

of N vectors of infinite length {δ̃(k)}k=0...N−1 with:

δ̃
(k)

=

∞∑

i=−∞
δ[n− k − iN]

Such a sequence is called a pulse train. Note that here we are abandoning mathematical
rigor, since the norm of each of these basis vectors is infinite; yet the pulse train, if handled
with care, can be a useful tool in formal derivations.

4.4.3 Inifinite Sequences

Finally, this is where we have been heading to all along. For infinite sequences, whose
“natural” Euclidean space would appear to be C∞, the situation is rather delicate. While
the sum of two sequences can be defined in the usual way, by extending the sum for CN

to C∞, care must be taken when evaluating the inner product. We already pointed out
that

〈x[n], y[n]〉 =

∞∑

n=−∞
x∗[n]y[n] (4.56)

can diverge even for simple constant sequences such as x[n] = y[n] = 1. A way out of this
impasse is to restrict ourselves to l2(Z), the space of square summable sequences, for which

‖x‖2 =
∑

n∈Z

|x[n]|2 <∞ (4.57)

108 Chapter 4.

This is the space of choice for all the theoretical derivations involving infinite sequences.
Note that these sequences are often called “of finite energy”, since the square norm corre-
sponds to the definition of energy as given in (2.17).

The canonical basis for l2(Z) is simply the set {δ(k)}k∈Z; in signal form:

δ
(k) = δ[n − k], n, k ∈ Z (4.58)

This is an infinite set, and actually an infinite set of linearly independent vectors, since

δ[n− k] =
∑

l∈Z/k

αlδ[n − l] (4.59)

has no solution for any k. Note that, for an arbitrary signal x[n] the analysis formula gives

αk = 〈δ(k),x〉 = 〈δ[n − k], x[n]〉 = x[k]

so that the reconstruction formula becomes

x[n] =
∞∑

k=−∞
αkδ

(k) =
∞∑

k=−∞
x[k]δ[n − k]

which is the reproducing formula (2.16). The Fourier basis for l2(Z) will be introduced
and discussed at length in the next chapter.

As a last remark, note that the space of all finite-support signals, which is clearly
a subset of l2(Z), does not form a Hilbert space. Clearly, the space is closed under
addition and scalar multiplication, and the canonical inner product is well behaved since
all sequences have only a finite number of nonzero values. The space however is not
complete; to see this, consider the following family of signals

yk[n] =

1/n |n| < k

0 otherwise

For k growing to infinity the sequence of signals converges as yk[n] → y[n] = 1/n for all
n; while y[n] is indeed in l2(Z), since

∞∑

n=0

1

n2
=

π2

6
,

y[n] is clearly not a finite-support signal.

4.5. Summary 109

4.5 Summary

The purpose of this chapter was to lay a solid geometrical and algebraic foundation to the
theory of discrete-time signal processing. This was achieved by establishing a correspon-
dence between signals and vectors in a Hilbert space. The main points we have covered
are:

• A review of Euclidean geometry in the context of simple vector spaces such as RN .

• The step-by-step definition of Hilbert space as a complete, inner product vector
space.

• The properties of inner product and their extension to the concept of norm and
distance.

• The concepts of basis and orthonormal basis, with a special emphasis on the latter.

• Examples of Hilbert space: CN , PN ([0, 1]), L2([−π, π]) with their respective inner
products and bases.

• A correspondence between the three main classes of discrete-time signals and three
suitable types of Hilbert space. In particular, CN for finite-length and periodic
sequences and l2(Z) for infinite sequences.

4.6 Problems

Problem 4.1 Consider the Fourier basis {w(k)}k=0,...,N−1, defined as:

w
(k)
n = e−j 2π

N
nk.

1. Prove that it is an orthogonal basis in CN .

2. Normalize the vectors in order to get an orthonormal basis.

110 Chapter 4.

Chapter 5

The DTFT (Discrete-Time Fourier
Transform)

We will now consider a Fourier representation for infinite non-periodic sequences. Let us
start out abruptly: the Discrete-Time Fourier Transform of a sequence x[n] is defined as:

X(ejω) =

∞∑

n=−∞
x[n]e−jwn. (5.1)

The DTFT is therefore a complex-valued function of the real argument ω, and, as can be
easily verified, it is periodic in ω with period 2π. The somewhat odd notation X(ejω) is
quite standard in the signal processing literature and offers several advantages:

• it stresses the basic periodic nature of the transform since, obviously, ej(ω+2π) = ejω;

• regardless of context, it immediately identifies a function as the Fourier transform
of a discrete-time sequence: something like U(ejλ) is just as readily recognizable;

• it provides a nice notational framework which unifies the Fourier transform and the
z-transform (which we will see later)

The DTFT, when it exists, can be inverted via the integral

x[n] =
1

2π

∫ π

−π
X(ejω)ejωndω (5.2)

as can be easily verified by substituting (5.1) into 5.2) and using
∫ π

−π
e−jω(n−k) = 2πδ[n − k].

111

112 Chapter 5.

In fact, due to the 2π periodicity of the DTFT, the integral in (5.2) can be computed over
any 2π-wide interval on the real line (i.e. between 0 and 2π, for instance). The relation
between a sequence x[n] and its DTFT X(ejω) will be indicated in the general case by:

x[n]
DTFT←→ X(ejω)

While the DFT and DFS were signal transformation which involved only a finite num-
ber of quantities, both the infinite summation and the real-valued argument appearing in
the DTFT can create an uneasiness which overshadows the conceptual similarities between
the transforms. In the following, we will start by defining the mathematical properties of
the DTFT and we will try to build an intuitive feeling for this Fourier representation both
with respect to its physical interpretation and to its conformity to the “change of basis”
framework we used for the DFT and DFS.

Mathematically, the DTFT is a transform operator which maps discrete-time sequences
onto the space of 2π-periodic functions. Clearly, for the DTFT to exist, the sum in (5.1)
must converge, i.e. the limit for M →∞ of the partial sum

XM (ejω) =

M∑

n=−M

x[n]e−jwn (5.3)

must exist and be finite. Convergence of the partial sum in (5.3) is very easy to prove for
absolutely summable sequences, that is for sequences satisfying

lim
M→∞

=

M∑

n=−M

|x[n]| <∞ (5.4)

since

|XM (ejω)| ≤
M∑

n=−M

|x[n]e−jwn| =
M∑

n=−M

|x[n]| (5.5)

For this class of sequences it can be also proved that the convergence of XM (ejω) to X(ejω)
is uniform and that X(ejω) is continuous. While absolute summability is a sufficient
condition, it can be shown that the sum in (5.3) is convergent also for all square-summable
sequences, i.e. for sequences whose energy is finite; this is very important to us with
respect to the discussion in Section 4.4.3 where we defined the Hilbert space l2(Z). In the
case of square summability only, however, the convergence of (5.3) is no longer uniform
but takes place only in the mean-square sense, i.e.

lim
M→∞

∫ π

−π
|XM (ejω)−X(ejω)|2dω = 0. (5.6)

5.1. The DTFT as the Limit of a DFS 113

Convergence in the mean square sense implies that, while the total energy of the error
signal becomes zero, the pointwise values of the partial sum may never approach the values
of the limit. One manifestation of this odd behavior is called the Gibbs phenomenon, which
will have important consequences in our approach to filter design, as we will see later.
Furthermore, in the case of square-summable sequences, X(ejω) is no longer guaranteed
to be continuous.

5.1 The DTFT as the Limit of a DFS

A way to gain some intuition about the structure of the DTFT formulas is to consider the
DFS of periodic sequences with longer and longer period. Intuitively, as we look at the
structure of the Fourier basis for the DFS, we can see that the number of basis vectors
in (3.19) grows with the length N of the period and, consequently, the frequencies of the
underlying complex exponentials become “denser” between 0 and 2π. We want to show
that, in the limit, we end up with the reconstruction formula of the DTFT.

To do so, let us restrict ourselves to the domain of absolute summable sequences; for
these sequences we know that the sum in (5.1) exists. Now, given an absolutely summable
sequence x[n], we can always build an N -periodic sequence x̃[n] as

x̃[n] =

∞∑

i=−∞
x[n + iN] (5.7)

for any value of N ; this is guaranteed by the fact that the above sum converges for all
n ∈ Z (because of the absolute summability of x[n]) so that all values of x̃[n] are finite.
Clearly, there is overlap between successive copies of x[n]; the intuition, however, is the
following: since in the end we will consider very large values for N and since x[n], because
of absolute summability, decays rather fast with n, the resulting overlap of “tails” will be
negligible. In other words, we have:

lim
N→∞

x̃[n] = x[n].

Consider now the DFS of x̃[n]:

X̃ [k] =

N−1∑

n=0

x̃[n]e−j 2π
N

nk =

∞∑

i=−∞
(

N−1∑

n=0

x[n + iN]e−j 2π
N

(n+iN)k) (5.8)

where in the last term we have used (5.7), interchanged the order of the summation and
exploited the fact that e−j(2π/N)(n+iN)k = e−j(2π/N)nk. We can see that, for every value of

114 Chapter 5.

i in the outer sum, the argument of the inner sum varies between iN and iN + N − 1, i.e.
non overlapping intervals, so that the double summation can be simplified as

X̃[k] =

∞∑

m=−∞
x[m]e−j 2π

N
mk (5.9)

and therefore

X̃[k] = X(ejω)|ω= 2π
N

k. (5.10)

This already gives us a noteworthy piece of intuition: the DFS coefficients for the peri-
odized signal are a discrete set of values of its DTFT (here considered solely as a formal
operator) computed at multiples of 2π/N . As N grows, the spacing between these fre-
quency intervals narrows more and more so that, in the limit, the DFS converges to the
DTFT.

To see that this assertion is consistent, we can now write the DFS reconstruction
formula using the DFS values given to us by (5.10) in (3.20):

x̃[n] =
1

N

N−1∑

k=0

X(ej 2π
N

k)ej 2π
N

nk. (5.11)

By defining ∆ = (2π/N), we can rewrite the above expression as

x̃[n] =
1

2π

N−1∑

k=0

X(ej(k∆))ej(k∆)n∆ (5.12)

and the summation is easily recognized as the Riemann sum with step ∆ approximating
the integral of f(ω) = X(ejω)ejωn between 0 and 2π. As N goes to infinity (and therefore
x̃[n]→ x[n]), we can therefore write

x̃[n]→ 1

2π

∫ 2π

0
X(ejω)ejωndω (5.13)

which is indeed the DTFT reconstruction formula (5.2)1.

Example 5.1 Consider the signal x[n] shown in Fig. 5.1. We can build a periodic signal
with period N = 3 based on x[n] which is shown in Fig. 5.2.

1Clearly (5.13) is equivalent to (5.2) in spite of the different integration limits since all the quantities
under the integral sign are 2π-periodic and we are integrating over a period.

5.2. The DTFT as a Formal Change of Basis 115

Figure 5.1: x[n]

Figure 5.2: x̃[n],N = 3

5.2 The DTFT as a Formal Change of Basis

We will now show that, if we are willing to sacrifice mathematical rigor, the DTFT can be
cast in the same conceptual framework we used for the DFT and DFS, namely as a basis
change in a vector space. The following formulas are to be taken as nothing more than
a set of purely symbolic derivations, since the mathematical hypotheses under which the
results are well defined are far from obvious and are completely hidden by the formalism.
It is only fair to say, however, that the following expressions represent a very handy and
intuitive toolbox to grasp the essence of the duality between the discrete-time and the
frequency domains and that they can be put to use very effectively to derive quick results
when manipulating sequences.

One way of interpreting equation (5.1) is to see that, for any given value ω0, the
corresponding value of the DTFT is the inner product in l2(Z) of the sequence x[n] with

116 Chapter 5.

the sequence ejω0n; at least formally, we are still performing a projection in a vector space
akin to C∞:

X(ejω) = 〈ejωn, x[n]〉

here, however, the set of “basis vectors” {ejωn}ω∈R is indexed by the real variable ω and
is therefore uncountable. This uncountability is mirrored in the inversion formula (5.2),
in which the usual summation is replaced by an integral; in fact, the DTFT operator
maps l2(Z) onto L2([−π, π]) which is a space of 2π-periodic, square integrable functions.
This interpretation preserves the physical meaning given to the inner products in (5.1) as
a way to measure the frequency content of the signal at a given frequency; in this case
the number of oscillators is infinite and their frequency separation becomes infinitesimally
small.

To complete the picture of the DTFT as a change of basis, we want to show that, at
least formally, the set {ejωn}ω∈R constitutes an orthogonal “basis” for l2(Z)2. In order to
do so we need to introduce a quirky mathematical entity called the Dirac delta functional;
this is defined in an implicit way by the following formula:

∫ ∞

−∞
δ(t− τ)f(t)dt = f(τ) (5.14)

where f(t) is an arbitrary integrable function on the real line; in particular:

∫ ∞

−∞
δ(t)f(t)dt = f(0). (5.15)

While no ordinary function satisfies the above equation, δ(t) can be interpreted as a short-
hand for a limiting operation. Consider for instance the family of parametric functions3

rk(t) = k rect(kt) (5.16)

which are plotted in Figure 5.3. For any continuous function f(t) we can write

∫ ∞

−∞
rk(t)f(t)dt = k

∫ 1/2k

−1/2k
f(t)dt = f(γ)|γ∈[−1/2k,1/2k] (5.17)

2You can see here already why this line of thought is shaky: indeed, ejωn 6∈ l2(Z)!
3The rect function is introduced in its full glory in Section 7.7.1; it is defined as

rect(x) =

8

>

>

<

>

>

:

1 for |x| ≤ 1/2

0 otherwise

5.2. The DTFT as a Formal Change of Basis 117

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

k = 1

k = 2

k = 3

k = 4

k = 5

Figure 5.3: The Dirac delta as the limit of a family of rect functions.

where we have used the mean value theorem. Now, as k goes to infinity we have that the
integral converges to f(0) and so we can say that the limit of the series of functions rk(t)
converges then to the Dirac delta. The delta, as we said, cannot be considered as a proper
function so the expression δ(t) outside of an integral sign has no mathematical meaning;
it is customary however to associate an “idea” of function to the delta and we can think
of it as being undefined for t 6= 0 and to have a value of ∞ at t = 0. This interpretation,
together with (5.14), defines the so-called sifting property of the Dirac delta; this property
allows us to write (outside of the integral sign):

δ(t − τ)f(t) = f(τ)δ(t− τ) (5.18)

The physical interpretation of the Dirac delta is related to quantities expressed as contin-
uous distributions for which the most familiar example is probably that of a probability
distribution (pdf). These functions represents a value which makes physical sense only
over an interval of nonzero measure; the punctual value of a distribution is only an abstrac-
tion. The Dirac delta is the operator that extracts this punctual value from a distribution,
in a sense capturing the essence of considering smaller and smaller observation intervals.

To see how the Dirac delta applies to our basis expansion, note that equation (5.14)
is formally identical to an inner product over the space of functions on the real line; by
using the definition of such an inner product we can therefore write:

f(t) =

∫ ∞

−∞
〈δ(s − τ), f(s)〉 δ(t− τ)dτ (5.19)

which is in turn formally identical to the reconstruction formula of Section 4.4.3. In reality
we are interested in the space of 2π-periodic functions, since that is where DTFT’s live;

118 Chapter 5.

this is easily accomplished by building a 2π-periodic version of the delta as:

δ̃(ω) = 2π

∞∑

k=−∞
δ(ω − 2πk). (5.20)

where the leading 2π factor is for later convenience. The resulting object is called a pulse
train, similarly to what we built for the case of periodic sequences in C̃N . Using the pulse
train and given any 2π-periodic function f(ω), the reconstruction formula (5.19) becomes:

f(ω) =
1

2π

∫ σ+2π

σ
〈δ̃(θ − φ), f(θ)〉 δ̃(ω − φ)dφ (5.21)

for any σ ∈ R.
Now that we have the delta notation in place, we are ready to start. First of all, we

will show the formal orthogonality of the basis functions {ejωn}ω∈R. We can write

1

2π

∫ π

−π
δ̃(ω − ω0)e

jωndω = ejω0n; (5.22)

the left-hand side of this equation has the exact form of the DTFT reconstruction for-
mula (5.2) and so we have found the the fundamental relationship

ejω0n DTFT←→ δ̃(ω − ω0). (5.23)

Now, the DTFT of a complex exponential ejσn is, in our change of basis interpretation,
simply the inner product 〈ejωn, ejσn〉; because of (5.23) we can therefore write:

〈ejωn, ejσn〉 = δ̃(ω − σ). (5.24)

We will now recall for the last time that the delta notation subsumes a limiting op-
eration: the DTFT pair (5.23) should be interpreted as a shorthand for the limit of the
partial sums

sk(ω) =

k∑

n=−k

e−jωn

(where we have chosen ω0 = 0 for the sake of example). Figure 5.4 plots |sk(ω)| for
increasing values of k (we show only the [−π, π] interval, although of course the functions
are 2π-periodic). The family of functions sk(ω) is exactly equivalent to the family of rk(t)’s
we saw in (5.16); they too become narrower and narrower while keeping a constant area
(which turns out to be 2π). That is why we can say simply that sk(ω)→ δ̃(ω).

5.3. Relationships Between Transforms 119

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

k=5

k=15

k=40

Figure 5.4: Plot of the function |∑k
n=−k e−jωn| for different values of k.

From (5.23) we can easily obtain other interesting results: by setting ω0 = 0 and by
exploiting the linearity of the DTFT operator we can derive the DTFT of a constant
sequence:

α
DTFT←→ αδ̃(ω); (5.25)

or, using Euler’s formulas, the DTFT’s of sinusoidal functions:

cos(ω0n + φ)
DTFT←→ (1/2)[ejφ δ̃(ω − ω0) + e−jφδ̃(ω + ω0)] (5.26)

sin(ω0n + φ)
DTFT←→ (−j/2)[ejφδ̃(ω − ω0)− e−jφδ̃(ω + ω0)] (5.27)

As we can see from the above examples, we are defining the DTFT for sequences which
are not even square summable; again, these transforms are purely a notational formalism
used to capture a behavior in the limit as we showed before.

5.3 Relationships Between Transforms

We will conclude this section on the DTFT by showing that, thanks to the delta formalism,
the DTFT is the most general type of Fourier transform for discrete-time signals. Con-
sider a length-N signal x[n] and its N DFT coefficients X[k]; consider also the sequences
obtained from x[n] either by periodization or by building a finite-support sequence. The
computation of the DTFT’s of these sequences will highlight the relationships linking the
three types of discrete-time transforms we have seen so far.

120 Chapter 5.

Periodic Sequences. Given a length-N signal x[n], n = 0, . . . ,N − 1, consider the
associated N -periodic sequence x̃[n] = x[n mod N] and its N DFS coefficients X[k]. If
we try to write the analysis DTFT formula for x̃[n] we have:

X̃(ejω) =
∞∑

n=−∞
x̃[n]e−jωn

=

∞∑

n=−∞

(

1

N

N−1∑

k=0

X[k]ej 2π
N

nk

)

e−jωn (5.28)

=
1

N

N−1∑

k=0

X[k]

(∞∑

n=−∞
ej 2π

N
nke−jωn

)

(5.29)

where in (5.28) we have used the DFS reconstruction formula. Now it is immediate
to recognize in the last term of (5.29) as the DTFT of a complex exponential of fre-
quency (2π/N)k; we can therefore write

X̃(ejω) =
1

N

N−1∑

k=0

X[k]δ̃(ω − 2π

N
k) (5.30)

which is the relationship between the DTFT and the DFS. If we restrict ourselves to the
[−π, π] interval, we can see that the DTFT of a periodic sequence is a series of regularly
spaced deltas placed at the N roots of unity and whose amplitude is proportional to the
DFS coefficients of the sequence. In other words, the DTFT is uniquely determined by the
DFS and vice versa.

Finite-Support Sequences. Given a length-N signal x[n], n = 0, . . . ,N − 1 and its N
DFT coefficients X[k], consider the associated finite-support sequence:

x̄[n] =

x[n] 0 ≤ n < N

0 otherwise

;

we can easily derive the DTFT of x̄ as

X̄(ejω) =

N−1∑

k=0

X[k]Λ(ω − 2π

N
k) (5.31)

with

Λ(ω) =
1

N

N−1∑

m=0

e−jωm

5.4. Properties of the DTFT 121

What the above expression means is that the DTFT of the finite support sequence x̄[n]
is again uniquely defined by the N DFT coefficients of the finite-length signal x[n] and it
can be obtained by a simple Lagrangian interpolation. As in the previous case, the values
of DTFT at the roots of unity are equal to the DFT coefficients; note, however, that the
transform of a finite support sequence is very different from the DTFT of a periodized
sequence. The latter, in accordance with the definition of the Dirac delta, is defined only
in the limit and for a finite set of frequencies; the former is just a (smooth) interpolation
of the DFT.

5.4 Properties of the DTFT

The DTFT possesses the following properties:

Symmetries & Structure. The DTFT of a time-reversed sequence is:

x[−n]
DTFT←→ X(e−jω) (5.32)

while, for the complex conjugate of a sequence we have

x∗[−n]
DTFT←→ X∗(e−jω). (5.33)

For the very important case of a real sequence x[n] ∈ R we have that the DTFT is
conjugate-symmetric:

X(ejω) = X∗(e−jω) (5.34)

which leads to the following symmetries (again: for real signals only):

|X(ejω)| = |X(e−jω)| the magnitude is symmetric (5.35)

∡X(ejω) = −∡X(e−jω) the phase is antisymmetric (5.36)

Re{X(ejω)} = Re{X(e−jω)} the real part is symmetric (5.37)

Im{X(ejω)} = −Im{X(e−jω)} the imaginary is antisymmetric (5.38)

Finally, if x[n] is real and symmetric, then the DTFT is real:

x[n] ∈ R, x[−n] = x[n]⇐⇒ X(ejω) ∈ R (5.39)

while, for real antisymmetric signals we have that the DTFT is purely imaginary:

x[n] ∈ R, x[−n] = −x[n]⇐⇒ Re{X(ejω)} = 0. (5.40)

122 Chapter 5.

Linearity & Shifts. The DTFT is a linear operator:

αx[n] + βy[n]
DTFT←→ αX(ejω) + βY (ejω). (5.41)

A shift in the discrete-time domain leads to multiplication by a phase term in the frequency
domain:

x[n− n0]
DTFT←→ e−jωn0X(ejω) (5.42)

while multiplication of the signal by a complex exponential (i.e. signal modulation by a
complex “carrier” at frequency ω0) leads to:

ejω0nx[n]
DTFT←→ X(ej(ω−ω0)) (5.43)

which means that the spectrum is shifted by ω0. This last result is known as the Modulation
Theorem.

Energy Conservation. The DTFT satisfyes the Plancherel-Parseval equality:

〈x[n], y[n]〉 =
1

2π
〈X(ejω), Y (ejω)〉 (5.44)

or, using the respective definitions of inner product for l2(Z) and L2([−π, π]):

∞∑

n=−∞
x∗[n]y[n] =

1

2π

∫ π

−π
X∗(ejω)Y (ejω)dω (5.45)

(note the explicit normalization factor 1/2π). The above equality specializes into Parse-
val’s Theorem as:

∞∑

n=−∞
|x[n]|2 =

1

2π

∫ π

−π
|X(ejω)|2dω (5.46)

which establishes the conservation of energy property between the time and the frequency
domains.

Modulation Property

x[n]y[n]
DTF T←→ 1

2π

∫ π

−π
X
(

ejθ
)

Y
(

ej(ω−θ)
)

dθ

Proof:

∑

n

y[n]x[n]e−jωn =
∑

n

y[n]
1

2π

∫ π

−π
X
(

ejθ
)

ejθndθ e−jωn

5.4. Properties of the DTFT 123

=
1

2π

∫ π

−π
X
(

ejθ
)∑

n

y[n]e−j(ω−θ)ndθ =
1

2π

∫ π

−π
X
(

ejθ
)

Y
(

ej(ω−θ)
)

dθ

Planchard-Parseval equality

∑

n

x∗[n]y[n]
DTF T←→ 1

2π

∫ π

−π
X∗ (ejω

)
Y
(
ejω
)
dω

or 〈x,y〉 DTF T←→ 1

2π
〈X,Y〉

Proof: From the modulation property, we have

z[n] = x∗[n]y[n]
DTF T←→ Z

(
ejω
)

=
1

2π

∫ π

−π
X∗
(

e−jθ
)

Y
(

ej(ω−θ)
)

dθ

=⇒
∑

n

x∗[n]y[n] =
∑

n

z[n] = Z
(
ejω
)
∣
∣
∣
∣
ω=0

=
1

2π

∫ π

−π
X∗
(

e−jθ
)

Y
(

e−jθ
)

dθ

=
1

2π

∫ π

−π
X∗
(

ejθ
)

Y
(

ejθ
)

dθ

Example 5.2

a) Determine the DTFT of the sequence

x [n] =

A for 0 ≤ n ≤ L− 1

0 otherwise

b) Give an approximate plot of the magnitude and phase of the spectrum (feel free to use
matlab: create a sequence x [n] of length N = 1000 for example, use fft or myDFT

to compute the N-point DFT and set A = 1 and L = 5, check out the commands abs

and angle).

c) Given Y (ejω) = e−jωβX(ejω), calculate Z(ejω) = X(ejω) ∗ Y (ejω) for β ∈ Z,β < 0.

Solution:

124 Chapter 5.

a) First, we calculate the DTFT of x [n] as follows:

X(ejω) =
L−1∑

n=0

Ae−jωn = A
1− e−jωL

1− e−jω
= Ae−j(ω

2
)(L−1) sin(ωL/2)

sin(ω/2)

b) The amplitude and phase of X(ω) are given by:

|X(ejω))| =

|A|L when ω = 0

|A|| sin(ωL/2)
sin(ω/2) | otherwise

∠X(ejω)) = ∠A− (ω/2)(L − 1) + ∠
sin(ωL/2)
sin(ω/2)

where we should remember that the phase of a real quantity is zero if the quantity is
positive and π if it is negative. The amplitude and phase are plotted in Figure 5.5.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

ω

|X(
ω)|

(a) AMPLITUDE

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

ω

∠(ω
)

(b) PHASE

Figure 5.5: Amplitude and phase of X(ejω)

c) We know that convolution in the frequency domain is equivalent to multiplication in

the time domain. Hence, z [n] = x [n] y [n]
DTFT↔ Z(ejω) = X(ejω)∗Y (ejω). Further,

Y (ejω) = e−jωβX(ejω)
DTFT↔ y [n] = x [n− β]. Given that β < 0, x is a delayed

version of y (see Figure 3). Straightforwardly, Z(ejw) is the DTFT of z [n], which
has the same form as x [n]. Setting A→ A2 and L− 1→ L− 1 + β in the solution
to point (a), we get:

Z(ejω) = A2e−j(ω
2
)(L+β−1) sin(ω(L + β)/2)

sin(ω/2)

5.5. Summary 125

Figure 5.6: The dark rectangle represents y [n], while the blank rectangle
represents x [n]. The hatched zone is where the two signal overlap and their

product is non-zero.

5.5 Summary

This chapter introduced the concept of the discrete-time Fourier Transform. Here is a
table of common transforms:

126 Chapter 5.

Some DTFT pairs:

x[n] = δ[n − k] X(ejω) = e−jωk

x[n] = 1 X(ejω) = δ̃(ω)

x[n] = u[n] X(ejω) =
1

1− e−jω
+

1

2
δ̃(ω)

x[n] = anu[n] |a| < 1 X(ejω) =
1

1− ae−jω

x[n] = ejω0n X(ejω) = δ̃(ω − ω0)

x[n] = cos(ω0n + φ) X(ejω) = (1/2)[ejφδ̃(ω − ω0) + e−jφδ̃(ω + ω0)]

x[n] = sin(ω0n + φ) X(ejω) = (−j/2)[ejφδ̃(ω − ω0)− e−jφδ̃(ω + ω0)]

x[n] =

1 for 0 ≤ n ≤ N − 1

0 otherwise

X(ejω) =
sin((N/2)ω)

sin(ω/2)
e−j N−1

2
ω

5.6 Problems

Problem 5.1 Let x[n] and y[n] be two complex valued sequences and X(ejw) and Y (ejw)
their corresponding DTFTs.

(a) Show that

〈x[n], y[n]〉 =
1

2π
〈X(ejw), Y (ejw)〉,

where we use the inner products for l2(Z) and L2([−π, π]) respectively.

(b) What is the physical meaning of the above formula when x[n] = y[n] ?

5.6. Problems 127

Problem 5.2 (DFT and DTFT) Consider the infinite non-periodic sequence

x[n] =

0 n < 3
1 3 ≤ n < 10
−1 10 ≤ n < 15
0 n ≥ 15.

(a) Derive the DTFT X(ejw) of x[n]. (Don’t use MATLAB.)

(b) Use MATLAB to plot the magnitude of X(ejw) for 1000 points in the interval [0, 2π].

(c) In MATLAB, use your myDFT function with N = 20 to compute the DFT of x[n].
Compare this plot to one obtained in (b).

(d) Repeat part (c) for N = 50, 100, 1000. What can you conclude?

(e) Can you prove your your conclusion analytically?

Problem 5.3 Let x[n] be a discrete-time sequence defined as

x[n] =

M − n 0 ≤ n ≤M,
M + n −M ≤ n ≤ 0,
0 otherwise.

for some odd integer M.

(a) Show that x[n] can be express as the convolution of two discrete-time sequences x1[n]
and x2[n]. Check your result with Matlab for M = 11.

(b) Using the results found in (a), compute the DTFT of x[n].

Problem 5.4 Consider the system H implementing the input-output relation y[n] = H{x[n]} =
x2[n].

(a) Prove by example that the system is nonlinear.

(b) Prove that the system is time-invariant

Now consider the following cascade system:

x[n] H G v[n]
y[n]

128 Chapter 5.

where G is the following ideal highpass filter:

G(ejω) =

{
0 for |ω| < π/2
2 otherwise

(as per usual, G(ejω) is 2π-periodic (i.e. prolonged by periodicity outside of [−π, π])). The
output of the cascade is therefore v[n] = G{H{x[n]}}.

(c) Compute v[n] when x[n] = cos(ω0n) for ω0 = 3π/8. How would you describe the
transformation operated by the cascade on the input?

(d) Compute v[n] as before, with now ω0 = 7π/8

Chapter 6

Fourier Analysis - Practice

In the previous sections we have developed three frequency representations for the
three main types of discrete-time signals; the derivation was eminently theoretical and
concentrated mostly upon the mathematical properties of the transforms seen as a change
of basis in Hilbert space. In the following sections we will see how to put the Fourier
machinery to practical use.

We have seen two fundamental ways to look at a signal: its time-domain representa-
tion, in which we consider the values of the signal as a function of discrete time, and its
frequency-domain representation, in which we consider its energy and phase content as a
function of digital frequency. The information contained in each of the two representa-
tions is exactly the same, as guaranteed by the invertibility of the Fourier transform; yet,
from the analysis point of view, we can choose to concentrate on one or the other domain
according to what we are specifically looking for. Consider for instance a piece of music;
such a signal contains two coexisting perceptual features, rhythm and melody. Rhythm is
determined by the sequence of musical notes which are played: its “natural” domain is
therefore the time domain; melody, on the other hand, is determined by the pitch of the
notes which are played: since pitch is related to the frequency content of the sound, the
natural domain of this feature is the frequency domain.

6.1 The Transforms in Practice

We will recall the DTFT is mostly a theoretical analysis tool; the DTFT’s which can
be computed exactly (i.e. those in which the sum in (5.1 can be solved in closed form)
represent only a small set of sequences; yet, these sequences are highly representative

129

130 Chapter 6.

and they will be used over and over to illustrate a prototypical behavior. The DFT1,
on the other hand, is fundamentally a numerical tool in that it defines a finite set of
operations which can be computed in a finite amount of time; in fact, a very efficient
algorithmic implementation of the DFT exists under the name of Fast Fourier Transform
(FFT) which only requires on the order of N log(N) operations for an N -point vector.
The DFT, as we know, only applies to finite-length signals but this is actually fine since in
practice all measured signals have finite support; in principle, therefore, the DFT suffices
for the spectral characterization of real-world sequences. Since the transform of a finite-
length signal and its DTFT are related by (5.30) or by (5.31) according to the underlying
model for the infinite-length extension, we can always use the DTFT to illustrate the
fundamental concepts of spectral analysis for the general case and then particularize the
results for finite-length sequences.

6.1.1 Plotting Spectral Data

The first question we ask ourselves is how to represent spectral data. Since the transform
values are complex numbers, it is customary to separately plot their magnitude and their
phase; more often than not, we will concentrate on the magnitude only, which is related to
the energy distribution of the signal in the frequency domain2. For infinite sequences whose
DTFT can be computed exactly, the graphical representation of the transform is akin to
a standard function graph — again, the interest here is mostly theoretical. Consider now
a finite-length signal of length N ; its DFT can be computed numerically, and it yields a
length-N vector of complex spectral values. These values can be displayed as such (and
we obtain a plain DFT plot) or they can be used to obtain the DTFT of the periodic or
finite-support extension of the original signal.

Consider for example the length-16 triangular signal x[n] in Figure 6.1-(a); note in
passing that the signal is symmetric according to our definition in (3.34) so that its DFT
is real. The DFT coefficients |X[k]| are plotted in Figure 6.1-(b); according to the fact
that x[n] is a real sequence, the set of DFT coefficients is symmetric (again according
to (3.34)). The k-th DFT coefficient corresponds to the frequency (2π/N)k and therefore
the plot’s abscissa extends implicitly from 0 to 2π; this is a little different than what we
are used to in the case of the DTFT, where we usually consider the [−π, π] interval, but it
is customary. Furthermore, the difference is easily eliminated if we consider the sequence
of X[k] as being N -periodic (which it is, as we showed in Section 3.2) and plot the values

1And the DFS, of course, which is formally identical. As a general remark, whenever we talk about the
DFT of a length-N signal, the same will hold for the DFS of an N-periodic signal; for simplicity, from now
on we will just concentrate on the DFT.

2A notable exception is the case of transfer function for digital filters, in which phase information is
extremely important; we will study this in the next chapter.

6.1. The Transforms in Practice 131

from −k/2 to k/2 for k even, or from −(k − 1)/2 to (k − 1)/2 for k odd.
This can be made explicit by considering the N -periodic extension of x[n] and by using

the DFS-DTFT relationship (5.10); the standard way to plot this is as in Figure 6.1-(c).
Here the pulse trains δ̃(ω − (2π/N)k) are represented as lines (or arrows) scaled by the
magnitude of the corresponding DFT coefficients. By plotting the representative [−π, π]
interval, we can appreciate in full the symmetry of the transform’s magnitude.

By considering the finite-support extension of x[n] instead, and by plotting the mag-
nitude of its DTFT, we obtain Figure 6.1-(d). The points in the plot can be computed
directly from the summation defining the DTFT (which, for finite-support signals only
contains a finite number of terms) and by evaluating the sum over a sufficiently fine grid
of values for ω in the [−π, π] interval; alternatively, the whole set of points can be ob-
tained in one shot from an FFT with a sufficient amount of zero-padding (more on this
later). Again, the DTFT of a finite-support extension is just a smooth interpolation of
the original DFT points and no new information is added.

6.1.2 Computing the Transform: the FFT

The Fast Fourier Transform, or FFT, is not another type of transform but simply the
name of an efficient algorithm to compute the DFT. The algorithm, in its different flavors,
is so ubiquitous and so important that the acronym FFT is often used liberally to indicate
the DFT (or the DFS, which would be more appropriate since the underlying model is
that of a periodic signal).

We have already seen in (3.6) that the DFT can be expressed in terms of a matrix
vector multiplication:

X = Wx;

as such, the computation of the DFT requires on the order of N2 operation. The FFT
algorithm exploits the highly structured nature of W to reduce the number of operations
to N log(N). In matrix form this is equivalent to decomposing W into the product of
a series of matrices with mostly zero or unity elements. The algorithmic details of the
FFT will be studied later; we can already state, however, that the FFT algorithm is
particularly efficient for data lengths which are a power of two and that, in general, the
more prime factors the data length can be decomposed into, the more efficient the FFT
implementation.

6.1.3 Cosmetics: Zero Padding

FFT algorithms are tailored to the specific length of the input signal. When the input
signal’s length is a large prime number or when only a subset of FFT algorithms is avail-
able (when, for instance, all we have is the radix-2 algorithm, which processes input vector

132 Chapter 6.

0 5 10 15
−1

0

1

2

3

4

5

6

7

8

9

0 5 10 15
−10

0

10

20

30

40

50

60

70

(a) (b)

−3 −2 −1 0 1 2 3
−10

0

10

20

30

40

50

60

70

−3 −2 −1 0 1 2 3
−10

0

10

20

30

40

50

60

70

(c) (d)

Figure 6.1: Plotting spectral information (all transforms are plotted in
magnitude only). (a) Original length-16 signal; (b) Its DFT (or, equivalently,

one period of its DFS); (c) The DTFT of its periodic extension; (d) The DTFT
of its finite-support extension.

with length a power of two) it is customary to extend the length of the signal to match
the algorithmic requirements. This is usually achieved by zero padding, i.e. the length-N
data vector is extended to a chosen length M by appending (M − N) zeros to it. Now,
the maximum resolution of an N -point DFT, i.e. the separation between frequency com-
ponents, is 2π/N . By extending the signal to a longer length M , we are indeed reducing
the separation between frequency components. One may think that this artificial increase
in resolution will allow the DFT to show finer details of the input signal’s spectrum. It is
not so.

6.2. Spectral Analysis 133

The M -point DFT X(M) of an N -point data vector x, obtained via zero-padding, can
be obtained directly from the “canonical” N -point DFT of the vector X(N) via a simple
matrix multiplication:

X(M) = MM,NX(N); (6.1)

here the M ×N matrix MM,N is given by

MM,N = W′
MWH

N

where WN is the standard DFT matrix and W′
M is the M × N matrix obtained by

keeping just the first N columns of the standard DFT matrix WM . The fundamental
meaning of (6.1) is that, by zero padding, we are adding no information to the spectral
representation of a finite-length signal. Details of the spectrum which were not apparent
in an N -point DFT still won’t be apparent in a zero padded version of the same. It can
be shown that (6.1) is a form of Lagrangian interpolation of the original DFT samples;
therefore the zero-padded DFT will be more attractive in a “cosmetic” fashion since the
new points, when plotted, will show a smooth curve between the original DFT points (and
this is how plots such as the one in Figure 6.1-(d) are obtained).

6.2 Spectral Analysis

The spectrum is a complete, alternative representation of a signal; by analyzing the spec-
trum one can obtain at a glance the fundamental information to characterize and classify
a signal in the frequency domain.

Magnitude The magnitude of a signal’s spectrum obtained by the Fourier transform
represents the energy distribution in frequency for the signal. It is customary to broadly
classify discrete time signals into three classes:

• Lowpass (or baseband) signals, for which the magnitude spectrum is concentrated
around ω = 0 and negligible elsewhere (Figure 6.2-(a)).

• Highpass signals, for which the spectrum is concentrated around ω = π and negli-
gible elsewhere, notably around ω = 0 (Figure 6.2-(b)).

• Passband signals, for which the spectrum is concentrated around ω = ωp and
negligible elsewhere, notably around ω = 0 and ω = π (Figure 6.2-(c)).

For real-valued signals the magnitude spectrum is a symmetric function and the above
classifications take this symmetry into account. Also, all spectra are 2π periodic so that
the above definitions are to be interpreted in a 2π-periodic fashion.

134 Chapter 6.

0 π−π 2π−2π 0 π−π 2π−2π

(a) (b)

0 π−π 2π−2π ω
p

−ω
p

(c)

Figure 6.2: Classification of signal based on spectral magnitude.
(a) Baseband; (b) Passband; (c) Highpass. Note the 2π-periodicity of the

spectrum (the replicas are plotted with a dotted line).

Phase As we said before, the Fourier representation allows us to think of any signal
as the sum of the outputs of a (potentially infinite) number of sinusoidal generators.
While the magnitude of the spectrum defines the inherent power produced by each of
the generators, its phase defines the relative alignment of the generated sinusoids. This
alignment determines the shape of the signal in the discrete-time domain. To illustrate

6.3. Time-Frequency Analysis 135

this with an example, consider the following 64-periodic signal3:

x̃[n] =
3∑

k=0

1

2k + 1
sin(

2π

64
(2k + 1)n + φk)

= sin((2π/64)n + φ0) + (1/3) sin((2π/64)3n + φ1) +

(1/5) sin((2π/64)5n + φ2) + (1/7) sin((2π/64)7n + φ3);

the magnitude of the DFS X̃[k] is independent of the values of φ0, . . . , φ3 and it is plotted
in Figure 6.3-(a). If we set φk = 0, k = 0, 1, 2, 3 we obtain the discrete-time signal which
is plotted in Figure 6.3-(b). Now consider modifying the individual phases so that φk =
2πk/3; the resulting signal is the one depicted in Figure 6.3-(c) for which, as we just noted,
the magnitude DFS does not change.

6.3 Time-Frequency Analysis

Recall our example at the beginning of this chapter, when we considered the time and
frequency information contained in a piece of music. We said that the melodic informa-
tion is related to the frequency content of the signal; obviously this is only partially true,
since the melody is determined not only by the pitch values but also by their duration and
order. Now, if we take a global Fourier Transform of the entire musical piece we have a
comprehensive representation of the frequency content of the piece: in the resulting spec-
trum there is information about the frequency of each played note4. The time information,
however, that is the information pertaining to the order in which the notes are played, is
completely hidden by the spectral representation. This makes us consider whether we can
consider a time-frequency representation of a signal, in which both time and frequency
information are readily apparent.

6.3.1 The Spectrogram

The simplest time-frequency transformation is called the spectrogram. This consists in
splitting the signal into small consecutive (and possibly overlapping) length-N pieces and
computing the DFT of each. What we obtain is the following function of discrete-time
and frequency index:

S[k,m] =

N−1∑

i=0

x[mM + i]W ik
N (6.2)

3The signal is the sum of the first four terms of the canonical trigonometric expansion of a square wave
of period 64.

4Of course, even with the efficiency of the FFT algorithm, the computation of the DFT of an hour-long
signal is beyond practical means.

136 Chapter 6.

0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

35

(a)

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) (c)

Figure 6.3: Effects of phase shift. (a) The magnitude DFS; (b) The signal
with zero phase; (c) The same signal with a linear phase term.

where M , 1 ≤M ≤ N controls the overlap between segments. In matrix notation we have

S = WN

x[0] x[M] x[2M] · · ·
x[1] x[M + 1] x[2M + 1] · · ·
...

...
... · · ·

x[N − 1] x[M + N − 1] x[L] · · ·

(6.3)

The resulting spectrogram is therefore an N ×⌊L/M⌋ matrix, where L is the total length
of the signal x[n]. It is usually represented graphically as a plot in which the x-axis is
the discrete-time index m, the y-axis is the discrete frequency index k and a color is the
magnitude of S[k,m], with darker colors for larger values.

6.4. Digital Frequency vs. Real Frequency 137

As an example of the insight we can gain from the spectrogram, consider analyzing the
well-known “Bolero” by Ravel. Figure 6.4 shows the spectrogram of the initial 37 seconds
of the piece. In the first 13 seconds the only instrument playing is the snare drum, and
the vertical line in the spectrogram represent at the same time the wide frequency content
of a percussive instrument and its rhythmic pattern: if we look at the spacing between
lines, we can identify the “trademark” drum pattern of Ravel’s Bolero. After 13 seconds,
the flute starts playing the theme; this is identifiable in the dark horizontal stripes which
denote a high energy content around the frequencies which correspond to the pitches of
the melody; with further analysis we could even hope to identify the exact notes. The
clarity of this plot is due to the simple nature of the signal; if we now plot the spectrogram
of the last 20 seconds of the piece, we obtain Figure 6.5. Here the orchestra is playing full
blast, as indicated by the high energy activity across the whole spectrum; we can barely
detect the rhythmic shouts that precede the final chord.

6.3.2 The Uncertainty Principle

Each of the columns of S represents the “local” spectrum of the signal for a time interval
of length N . We can therefore say that the time resolution of the spectrogram is N
samples since the value of the signal at time n0 will influence the DFT of the N -point
window around n0. Seen from another point of view, the time information is “smeared”
over an N -point interval. At the same time, the frequency resolution of the spectrogram
is 2π/N (and we cannot increase it by zero-padding, as we just showed). The conflict is
therefore apparent: if we want to increase the frequency resolution we need to take longer
windows but in so doing we lose the time localization of the spectrogram; likewise, if we
want to achieve a fine resolution in time, the corresponding spectral information for each
‘time slice” will be very coarse. It is easy to show that the amount of overlap does not
change the situation. In practice we will have to choose an optimal tradeoff taking the
characteristics of the signal into consideration.

The above problem, described for the case of the spectrogram, is actually a particular
instance of a general uncertainty principle for time-frequency analysis. The principle states
that, independently of the analysis tools we put in place, we can never hope to achieve
arbitrarily good resolution in both time and frequency since there exists a lower bound
greater than zero for the product of the localization measure in time and frequency.

6.4 Digital Frequency vs. Real Frequency

We have seen that, in the representation of discrete-time signals, the notion of a dimen-
sionless discrete “time” makes the whole ensemble of signal processing proofs and tools

138 Chapter 6.

seconds

ω /2
π

0 4 9 13 18 23 27 32 37
0

1

Figure 6.4: Spectrogram representation of the beginning of Ravel’s Bolero.

DFT size is 1024 samples, overlap is 512 samples.

independent of the underlying physical nature that the signals represent. Similarly, we
have just derived a frequency representation for signals which is based on a notion of
dimensionless frequency; because of the periodicity of the Fourier basis, all we know is
that π is the highest digital frequency we can represent. Again, the power of generality
is (or will soon be) apparent: a digital filter which is designed to remove the upper half
of a signal’s spectrum can be used with any type of input sequence and the results will
stay the same. This abstraction, however, is not without its drawbacks from the point of
view of intuition; after all, we are very familiar with signals in the real world for which
time is expressed in seconds and frequency is expressed in Hertz. We say for instance
that speech has a bandwidth up to 4KHz, that the human ear is sensitive to frequencies
up to 20KHz, that a cell phone transmits in the GHz band, and so on. What does “π”
mean in these cases? The precise, formal link between real-world signal and discrete-time
signal processing is given by the sampling theorem, which we will study later. The funda-
mental idea, however, is that we can remove the abstract nature of a discrete-time signal
(and, correspondingly, of a dimensionless frequency) by associating a time duration to the
interval between successive discrete-time indices in the sequence.

Let us say that the “real-world” time between indices n and n + 1 in a discrete-time
sequence is T seconds; this could correspond to sampling a signal every T seconds or to
generating a synthetic sequence with a DSP chip whose clock cycle is T seconds. Recall
that the phase increment between successive samples of a generic complex exponential ejωn

6.4. Digital Frequency vs. Real Frequency 139

seconds

ω /2
π

0 2 4 7 9 11 14 16 18 21
0

1

Figure 6.5: Spectrogram representation of the end of Ravel’s Bolero.

is ω radians. The oscillation will therefore complete a full cycle in nf = (2π/ω) samples. If
T is the real-world time between samples, the full cycle will be completed in nfT seconds
and so its frequency will be f = (nfT)−1. The relationship between the digital frequency
ω and the “real” frequency f in Hertz as determined by the “clock” period T is therefore:

f
T←→ 1

2π

ω

T
(6.4)

In particular, the highest real frequency which can be represented in the discrete-time
system (which corresponds to ω = π) is

Fmax = Fs/2

where we have used Fs = (1/T); Fs is nothing but the operating frequency of the discrete
time system (also called the sampling frequency or clock frequency). With this notation,
the digital frequency ω0 corresponding to a real frequency f0 is:

ω0 = 2π
f0

Fs

The compact disk system, for instance, operates at a frequency Fs = 44.1KHz; the max-
imum representable frequency for the system is 22.5KHz (which constitutes the highest-
pitched sound which can be encoded on and reproduced by a CD).

140 Chapter 6.

6.5 Problems

Problem 6.1 (Fast Fourier Transform) Let WN = ej 2π
N . Then, one can write the

DFT as

X(k) =
N−1∑

n=0

x(n)W kn
N

for 0 ≤ n ≤ N − 1.

1. To compute X(0)...X(N − 1), how many complex multiplications and additions do
you have to perform (as a function of N) using the formula above?

2. Let N = LM . Instead of storing x(n) in a vector, we now store store it in a table
such that x(l,m) = x(l + mL) as shown in Table 6.1.

Table 6.1: Table representaion of a sequence
l m 0 1 ... M-1

0 x(0) x(L) ...
1 x(1) x(L+1)
2 ...
...
L-1 x(LM-1)

Similarly, let X(p, q) = X(Mp + q). Show that:

X(p, q) =

L−1∑

l=0

{

W lq
N

[
M−1∑

m=0

x(l,m)W mq
M

]}

W lp
L

3. One can decompose the above operation as follows:

• F (l, q) =
∑M−1

m=0 x(l,m)W mq
M

(0 ≤ q ≤M − 1, for each of the rows l = 0...L − 1)

• G(l, q) = W lq
N F (l, q)

(0 ≤ l ≤ L− 1 and 0 ≤ q ≤M − 1)

• X(p, q) =
∑L−1

l=0 G(l, q)W lp
L

(0 ≤ p ≤ L− 1, for each column q = 0...M − 1)

How many complex multiplications and additions do you now need to compute the
Fourier transform (as a function of N,M and L)? Compare the answers in in point
1 and this question when N=1000, L=2 and M=500.

Chapter 7

Linear Systems

7.1 Definition and Properties

In its most general form, a discrete-time system can be described as a black box accepting
a number of discrete-time sequences as inputs and producing another number of discrete-
time sequences at its output. In this course we are interested in studying the class of
linear time-invariant (LTI) discrete-time systems with a single input and a single output;
a system of this type will be referred to as a filter. A linear time-invariant systems H
can thus be viewed as an operator which transforms an input sequence into an output
sequence:

y[n] = H{x[n]}

Linearity is expressed by the equivalence

H{ax1[n] + bx2[n]} = aH{x1[n]}+ bH{x2[n]} (7.1)

for any two sequences x1[n] and x2[n] and any two scalars a, b ∈ C. Time-invariance is
expressed by

y[n] = H{x[n]} ⇔ H{x[n− n0]} = y[n− n0] (7.2)

For a linear time-invariant system, knowledge of the system response to the input δ[n]
is sufficient to completely characterize the system; H{δ[n]} is called the impulse response
of the system. Indeed, we know that for any sequence we can always write the canonical
orthonormal expansion (i.e. the famous reproducing formula)

x[n] =

∞∑

k=−∞
x[k]δ[n − k]

141

142 Chapter 7.

and therefore, if we let H{δ[n]} = h[n], we can apply (7.1) and (7.2) to obtain

y[n] = H{x[n]} =

∞∑

k=−∞
x[k]h[n − k] (7.3)

The above sum is called the convolution of sequences x[n] and h[n] and will be denoted
by the convolution operator “∗”:

y[n] = x[n] ∗ h[n]

Clearly, for the convolution of two sequences to exist, the sum in (7.3) must be finite and
this is always the case if both sequences are absolutely summable. As in the case of the
DTFT, absolute summability is just a sufficient condition and the sum (7.3) can be well
defined in certain other cases as well. A few notes on the impulse response:

• Since the impulse response is defined as the transformation of the discrete-time delta
and since the delta is an infinite-length signal, the impulse response is always an
infinite-length signal, i.e. a sequence. From now on, except when otherwise indicated,
we will assume any impulse response to be at least in l2(Z); sometimes, we will also
need absolute summability.

• When the impulse response is nonzero only for a finite number of sequence indices,
i.e. when the impulse response is a finite-support sequence, the resulting filter is
called a Finite Impulse Response filter (FIR). In all other cases the filter is called
Infinite Impulse Response (IIR).

• The nonzero values of a filter’s impulse response are often called taps. An FIR filter
always has a finite number of taps.

• The convolution is commutative since, with a change of variable, (7.3) becomes:

y[n] =

∞∑

k=−∞
x[k]h[n − k] =

∞∑

k=−∞
h[k]x[n − k].

• For FIR filters, the convolution sum entails only a finite number of operations; if
h[n] = 0 for n < 0 and n ≥ N , the above expression becomes simply

y[n] =

N−1∑

k=0

h[k]x[n − k].

Convolution sums involving a finite-support impulse response, therefore, are always
well defined. We express this also by saying that FIR filter are unconditionally stable.

7.1. Definition and Properties 143

• To make the notation and the derivations easier, in the following we will assume
that filter impulse responses are real-valued sequences.

• Sometimes, to indicate the value of the convolution at a particular time index n0,
we will write y[n0] = (x ∗ y)[n0]

7.1.1 Properties of the convolution

The basic properties of the convolution operator are:

• Linearity:

x[n] ∗ (α · y[n] + β · w[n]) = α · x[n] ∗ y[n] + β · x[n] ∗ w[n] (7.4)

• Time-invariance:

w[n] = x[n] ∗ y[n] ⇔ x[n] ∗ y[n− k] = w[n − k] (7.5)

• Commutativity: (Figure 7.1)

x[n] ∗ y[n] = y[n] ∗ x[n] (7.6)

Figure 7.1: Commutativity

• Associativity:

x[n] ∗ (y[n] ∗ w[n]) = (x[n] ∗ y[n]) ∗ w[n]. (7.7)

This last property describes the effect of connecting two filters in cascade; the re-
sulting impulse response is the convolution of the impulse responses. Note however
that the property does not hold for sequences which are not square summable. A
classic counterexample is the following: if you take the three sequences

x[n] = u[n] the unit step
y[n] = δ[n]− δ[n − 1] the first-difference operator
w[n] = 1 a constant signal

144 Chapter 7.

where clearly x[n], w[n] 6∈ l2(Z), it is easy to verify that

x[n] ∗ (y[n] ∗ w[n]) = 0

(x[n] ∗ y[n]) ∗ w[n] = 1.

7.1.2 The meaning of the convolution

It is immediate to see that for two sequences x[n] and h[n] it is

x[n] ∗ h[n] = 〈h∗[n− k], x[k]〉;
that is, the value at index n of the convolution of two sequences is the inner product (in
l2(Z)) of the first sequence – conjugated1, time-reversed and re-centered at n – with the
input sequence. The above expression describes the output of a filtering operation as a
series of “localized” inner products; filtering, therefore, measures the localized similarity
(in the inner product sense, i.e. in the sense of the correlation) between the input sequence
and a prototype sequence (the time-reversed impulse response).

In general, the convolution operator for a signal is defined with respect to the in-
ner product of its underlying Hilbert space. For the space of N -periodic sequences, for
instance, the convolution is defined as

x̃[n] ∗ ỹ[n] =

N−1∑

k=0

x̃[k]ỹ[n− k] (7.8)

=
N−1∑

k=0

x̃[n− k]ỹ[k] (7.9)

which is consistent with the inner product definition in (4.55).

7.1.3 Convolution of frequency spectrum

We can also consider the convolution of DTFT’s. In this case, since we are in the space
of 2π-periodic functions of a real variable, the convolution is defined as

X(ejω) ∗ Y (ejω) =
1

2π
〈X∗(ej(ω−σ)), Y (ejσ)〉 (7.10)

=
1

2π

∫ π

−π
X(ej(ω−σ))Y (ejσ)dσ (7.11)

=
1

2π

∫ π

−π
X(ejσ)Y (ej(ω−σ))dσ (7.12)

which is consistent with the inner product definition for L2[−π, π] signals in (4.30).

1Since we consider only real impulse responses, the conjugation operator is in this case redundant.

7.2. Circular convolution 145

7.2 Circular convolution

We can extend the thought process of convolution as inner products and define it for
periodic sequences over a period rather than throughout. That is, we define the circular
convolution as

x̃[n] ⊛ ỹ[n] =

N−1∑

k=0

x̃[k]ỹ[n− k], (7.13)

for periodic sequences x̃[n], ỹ[n]. But we can extend it to any finite-length sequence by
taking its periodic extension, i.e.

x[n] ⊛ [n] =
N−1∑

k=0

x[k]y[(n − k)N], (7.14)

where

(n− k)N =

{
n− k n− k ≥ 0
N + (n− k) n− k < 0

(7.15)

Figure 7.2: Circular convolution

7.3 Stability

A system is bounded-input, bounded-output (BIBO) stable, if its output is bounded for
all bounded input sequences. That is, if x[n] is such that there exists a constant A ∈ R+

for which

|x[n]| < A ∀ n,

then we want there to exist a constant B ∈ R+ such that,

|y[n]| = |h[n] ∗ x[n]| = |(h ∗ x)[n]| < B ∀ n.

146 Chapter 7.

A necessary and sufficient condition for BIBO stability is that h[n] (its impulse response)
is absolutely summable, i.e.

+∞∑

k=−∞
|h[k]| < C <∞, (7.16)

for some C ∈ R+. The sufficiency can be seen by noticing

|y[n]| =
∣
∣
∣
∣
∣

+∞∑

k=−∞
h[k]x[n − k]

∣
∣
∣
∣
∣

(a)

≤
+∞∑

k=−∞
|h[k]| |x[n− k]|

(b)
< A

+∞∑

k=−∞
|h[k]|

(c)
< A · C , B <∞,

where (a) follows due to the property of complex numbers that |a + b| ≤ |a|+ |b|, and (b)
follows from bounded input assumption and (c) from absolute summability of h[n]. The
necessity is seen by considering

x[n] =

{
h∗[−n]
|h[−n]| if h[−n] 6= 0

0 otherwise.

Since,

|x[n]| = |h
∗[−n]|
|h∗[n]| = 1 <∞,

then,

y[0] =

+∞∑

k=−∞
x[k]h[0 − k] =

+∞∑

k=−∞

h∗[−k]

|h[−k]|h[−k] =

+∞∑

k=−∞
|h[−k]| =

+∞∑

k=−∞
|h[k]| ,

which means that if h[n] is not absolutely summable, then y[0] is unbounded and hence
the system is BIBO unstable.

7.3. Stability 147

7.3.1 Causality

A system is called causal if its output does not depend on future values of the input.
For an LTI system this implies that the associated impulse response is zero for negative
indices.

h[n] = 0, for n < 0, (7.17)

since for such a system

y[n] =
+∞∑

k=−∞
h[k]x[n − k] =

∞∑

k=0

h[k]x[n − k].

Therefore y[n] depends only on x[n], x[n− 1], . . .
More generally, consider a filter F for which there exists an M ∈ Z such that its

impulse response is zero for n < M . If we consider the pure delay filter D, whose impulse
response is

d[n] = δ[n − 1],

we can easily see that F can be made strictly causal by cascading M delays in front of it.
Clearly, an FIR filter is always causal up to a delay.

Example 7.1 (Linearity and Time Invariance)
For each of the following systems, determine if they are time variant or time invariant,

linear or non-linear, causal or not causal.

(a) y [n] = nx [n]

(b) y [n] = x [−n]

(c) y [n] = x [n] cos(ω0n)

Solution:

Let us express the general relationship between x [n] and y [n] as y [n] ≡ T (x [n])

(a) • T (x [n− k]) = nx [n− k] 6= y [n− k] = [n− k] x [n− k] → time variant (feed-
ing a delayed version of the input to the system does not produce the same
output as feeding the original signal to the system and delaying the output).

• T (αx1 [n]+βx2 [n]) = n(αx1 [n]+βx2 [n]) = αnx1 [n]+βnx2 [n] = αT (x1 [n])+
βT (x2 [n])→ linear.

• The output only depends on present (and past) inputs → causal.

148 Chapter 7.

(b) • T (x [n− k]) = x [−n− k] 6= y [n− k] = x [−n + k]→ time variant

• T (αx1 [n]+βx2 [n]) = αx1 [−n]+βx2 [−n]) = αT (x1 [n])+βT (x2 [n])→ linear.

• The output can depend on future inputs (e.g., y [−3] = x [3]) inputs → not
causal.

(c) • T (x [n− k]) = x [n− k] cos(ω0n) 6= y [n− k] = x [n− k] cos(ω0 [n− k])→ time
variant

• T (αx1 [n]+βx2 [n]) = (αx1 [n]+βx2 [n]) cos(ω0 [n]) = αT (x1 [n])+βT (x2 [n])→
linear.

• The output only depends on present (and past) inputs → causal.

Example 7.2 (Stability)

(a) Given an LTI system with impulse response

h [n] =

{
an for n ≥ 0
bn for n < 0

Give the values of a, b ∈ R for which it is BIBO stable. (Hint: for what values of a
and b is

∑∞
n=−∞ |h [n] | <∞))

(b) Consider the system given by

y [n] = ay [n− 1] + x [n]

where a is a constant. Let y [−1] = 0. What is the impulse response of this system.
Prove that this system is not BIBO stable for any a (Hint: compute successive values
of y [n] , n ≥ 0, then express y [n] as a function of x [n] and set x [n] = δ [n] to get
the impulse response).

(c) We know that the output of an LTI system is bounded if

Sh =
∞∑

k=−∞
|h [k] | <∞

A direct consequence is that h [n], the impulse response, goes to zero as n approaches
infinity (i.e., h [n] is identically 0 for large enough n). Show that the output y [n] of
such a system goes to zero as n approaches infinity, if x [n] < Mx for n < n0 and
x [n] = 0 for n ≥ n0. (Hint: bound |y [n0 + N] | and look at the limit when N →∞).

7.3. Stability 149

Solution:

(a)
∑∞

n=−∞ |h [n] | = ∑∞
n=0 |an| +∑−1

n=−∞ |bn|. The first sum converges when |a| < 1.

For the second sum, we have
∑−1

n=−∞ |bn| =∑∞
n=1(

1
|b|)

n = 1
|b|(1+ 1

|b| +
1

|b|2 +...), which

converges when |b| > 1. Hence, to guarantee convergence, we must have |a| < 1 < |b|.
(b) Observe that:

y [0] = ay [−1] + x [0] = x [0]
y [1] = ax [0] + x [1]
y [2] = a2x [0] + ax [1] + x [2]
...
y [n] =

∑n
k=0 akx [n− k]

Replacing x [n] by δ [n], we get y [n] = h [n] = anu [n]. As we have seen in the
previous question, this sum does not converge for a ≥ 1, and consequently a bounded
input (e.g., a δ function) does not necessarily lead to a bounded output (an → ∞,
as n→∞).

(c) We have

|y [n0 + N] | = |

=0,x[n]=0 for n≥n0
︷ ︸︸ ︷

N−1∑

k=−∞
h [k] x [n0 + N − k] +

∑∞
k=N h [k]x [n0 + N − k] |

≤∑∞
k=N |h [k] ||x [n0 + N − k] |

≤Mx
∑∞

k=N |h [k] |

then,

lim
N→∞

|y [n0 + N] | ≤Mx lim
N→∞

∞∑

k=N

|h [k] | = 0

Example 7.3 Consider the interconnection of systems shown in Fig. 7.3.

(a) Express the overall impulse response h in terms of h1,h2,h3 and h4.

(b) Determine h [n] when

h1 [n] =

1
2 for n = 0 and n = 2
1
4 for n = 1
0 otherwise

, h2 [n] = h3 [n] = (n + 1)u [n] and h4 [n] = δ [n− 2].

150 Chapter 7.

Figure 7.3: System for Problem 7.3

(c) Determine the response of the system in the previous question when x [n] = δ [n + 2]+
3δ [n− 1]− 4δ [n− 3].

Solution:

(a) One can immediately see that:

h [n] = h1 [n] ∗
h234

︷ ︸︸ ︷

(h2 [n]− h3 [n] ∗ h4 [n]
︸ ︷︷ ︸

h34

)

(b) Referring to the notation in the previous point, we can calculate:

h34 [n] =
∑∞

k=−∞ u [k] (k + 1)δ [n− 2− k] = u [n− 2] (n− 1)

h234 [n] = h2 [n]− h34 [n] = (n + 1)u [n]− (n− 1)u [n− 2] =

0 when n < 0
1 when n = 0
2 otherwise

h [n] = h1 [n] ∗ h234 [n] =
∑2

k=0 h1 [k]h234 [n− k] =

n=0
︷︸︸︷

1

2
, 5

4 , 2, 5
2 , 5

2 , 5
2 , ...

(c) Finally, we calculate the value of the output when the input x is given:

y [n] = δ [n + 2] ∗ h [n] + 3δ [n− 1] ∗ h [n]− 4δ [n− 3] ∗ h [n]
= h [n + 2] + 3h [n− 1]− 4h [n− 3]

=

..., 0, 0,

n=−2
︷︸︸︷

1

2
, 5

4 , 2, 4, 25
4 , 13

2 , 5, 2, 0, 0, 0, ...

7.4. Introduction to Filtering 151

0 100 200 300 400 500 600
−8

−6

−4

−2

0

2

4

6

Figure 7.4: Noisy signal.

7.4 Introduction to Filtering

Filtering and filter design are the most fundamental topics in signal processing. We will
now introduce the key concepts related to filtering by means of two examples. In both
cases we are considering the following problem: we are given a sequence like the one in
Figure (7.4) and we want to smooth out the little wiggles in the plot, which are probably
due to noise, to improve the readability of the data.

7.4.1 FIR filtering

An intuitive, basic approach to remove noise from data is to replace each point of the
sequence x[n] by a local average, taking the point at n and, say, its N −1 predecessor into
account. The points for the new plot can therefore be computed as:

y[n] =
1

N

N−1∑

k=0

x[n− k]

This is easily recognized as a convolution sum, and we can obtain the impulse response of
the associated filter by letting x[n] = δ[n]; it is easy to see that

h[n] =
1

N

N−1∑

k=0

δ[n − k] =

{
(1/N) for 0 ≤ n < N
0 for n < 0 and n ≥ N

The impulse response, as it turns out, is a finite-support sequence so the filter we just built
is an FIR filter; this particular filter goes under the name of Moving Average (MA) filter.
The “smoothing power” of this filter is dependent on the number of samples we take into
account in the average or, in other words, on the length N of its impulse response. The

152 Chapter 7.

0 200 400 600
−8

−6

−4

−2

0

2

4

6

8
N=2

0 200 400 600
−8

−6

−4

−2

0

2

4

6

8
N=4

0 200 400 600
−8

−6

−4

−2

0

2

4

6

8
N=12

0 200 400 600
−8

−6

−4

−2

0

2

4

6

8
N=100

Figure 7.5: Moving averages for different values of N .

filtered version of the original sequence for increasing values of N is plotted in Figure 7.5.
Intuitively we can see that as N grows, more and more wiggles are removed. We will soon
see how to handle the “smoothing power” of a filter in a precise, quantitative way. One
thing to notice right away, and which is a general characteristic of FIR filters, is that the
value of the output does not depend on values of the input which are more than N steps
away; FIR filters are therefore called memoryless filters. Another remark we can mention
right away concerns the delay introduced by the filter: each output value is the average of
a window of N input values whose representative sample is the one falling in the middle;
there is therefore a delay of N/2 samples between input and output, and the delay grows
with N .

7.4.2 IIR filtering

The moving average filter we built in the previous section has an obvious drawback; the
more we want to smooth the signal, the more points we need to consider and, therefore,
the more computations we have to perform to obtained the filtered value. Consider now

7.4. Introduction to Filtering 153

the formula for the output of a length-M moving average filter:

yM [n] =
1

M

M−1∑

k=0

x[n− k]

We can easily see that:

yM [n] =
M − 1

M
yM−1[n− 1] +

1

M
x[n]

= λyM−1[n− 1] + (1− λ)x[n]

where we have defined λ = (M − 1)/M . Now, as M grows large, we can safely assume
that if we compute the average over M − 1 or over M points the result is basically the
same: in other words, for M large, we can say that yM−1[n] ≈ yM [n]. This suggests a new
way to compute the smoothed version of a sequence in a recursive fashion:

y[n] = λy[n− 1] + (1− λ)x[n] (7.18)

This does not look anymore like a convolution sum; it is, instead, an instance of a constant
coefficients difference equation. We might wonder whether the transformation realized
by (7.18) is still linear and time-invariant and, in this case, what its impulse response
is. The first problem that we face in addressing this question stems from the recursive
nature of (7.18): each new output value depends on the previous output value. We need
to somehow define a starting value for y[n] or, in system theory parlance, we need to set
the initial conditions. The choice which guarantees that the system defined by (7.18) is
linear and time-invariant corresponds to requiring that the system response to a sequence
identically zero be zero for all n; this requirement is also known as zero initial conditions,
since it corresponds to setting y[n] = 0 for n < N0 where N0 is some time in the past.

Linearity of (7.18) can now be proved this way. Assume that the output sequence for
the system defined by (7.18) is y[n] when the input is x[n]. It is immediate to see that
y1[n] = αy[n] satisfies (7.18) for an input equal to αx[n]. All we need to prove is that this
is the only solution. Assume this is not the case and call y2[n] the other solution; we have:

y1[n] = λy1[n− 1] + (1− λ)(αx[n])

y2[n] = λy2[n− 1] + (1− λ)(αx[n])

We can now subtract the second equation from the first. What we have is that the sequence
y1[n]− y2[n] is the system’s response to the zero sequence, and therefore is zero for all n.
Linearity with respect to the sum and time invariance can be proven in the exact same
way.

154 Chapter 7.

0 200 400 600
−8

−6

−4

−2

0

2

4

6

8
λ=0.2

0 200 400 600
−8

−6

−4

−2

0

2

4

6

8
λ=0.5

0 200 400 600
−8

−6

−4

−2

0

2

4

6

8
λ=0.8

0 200 400 600
−8

−6

−4

−2

0

2

4

6

8
λ=0.96

Figure 7.6: Outputs of the leaky integrator for different values of λ.

Now that we know that (7.18) defines an LTI system, we can try to compute its impulse
response. Assuming zero initial conditions and x[n] = δ[n] we have:

y[n] = 0 for n < 0

y[0] = 1− λ

y[1] = (1− λ)λ

y[2] = (1− λ)λ2

. . .

y[n] = (1− λ)λn

(7.19)

so that the impulse response is:

h[n] = (1− λ)λnu[n]. (7.20)

The impulse response clearly defines an IIR filter and therefore the immediate question
is whether the filter is stable. Since a sufficient condition for stability is that the impulse

7.5. Filtering in the Frequency Domain 155

response is absolutely summable; we have:

∞∑

n=−∞
|h[n]| = lim

n→∞
|1− λ|1− |λ|

n+1

1− |λ| (7.21)

We can see that the above limit is finite for |λ| < 1 and so the system is BIBO stable for
these values. The value of λ (which is, as we will see, the pole of the system) determines
the smoothing power of the filter. As λ → 1, the input is smoothed more and more as
can be seen in Figure (7.6), at a constant computational cost. The system implemented
by (7.18) is often called a leaky integrator, in the sense that it approximates the behavior
of an integrator with a leakage (or forgetting) factor λ. The delay introduced by the leaky
integrator is more difficult to analyze than for the moving average but, again, it grows
with the smoothing power of the filter; we will soon see how to proceed in order to quantify
the delay introduced by IIR filters.

As we can infer from this simple analysis, IIR filters are much more delicate entities
than FIR filters; in the next chapters we will also discover that their design is also much
less straightforward and offers less flexibility. This is why, in the practice, FIR filters are
the filters of choice. IIR filters, however, and especially the simplest ones such as the leaky
integrator, are extremely attractive when computational power is a scarce resource.

7.5 Filtering in the Frequency Domain

The above examples have introduced the notion of filtering in an operational and intuitive
way. In order to make more precise statements on the characteristics of a discrete-time
filter we need to move to the frequency domain. What does a filtering operation translate
to in the frequency domain? The fundamental result of this section is the convolution
theorem for discrete-time signals: a convolution in the discrete-time domain is equivalent
to a multiplication of Fourier transforms in the frequency domain. This result opens up a
very fruitful perspective on filtering and filter design, together with alternative approaches
to the implementation of filtering devices, as we will see.

7.5.1 Preliminaries

Before we proceed to stating the convolution theorem, let us consider what happens if the
input to a linear time-invariant system H is a complex exponential sequence of frequency

156 Chapter 7.

ω0; we have

H{ejω0n} =
∞∑

k=−∞
ejω0kh[n− k]

=

∞∑

k=−∞
h[k]ejω0(n−k)

= ejω0n
∞∑

k=−∞
h[k]e−jω0k

= H(ejω0)ejω0n (7.22)

where H(ejω0) (i.e. the DTFT of h[n] at ω = ω0) is called the frequency response of
the filter at frequency ω0. The above result states the fundamental fact that complex
exponentials are eigenfunctions of linear-time invariant systems. Some remarks:

• If move to polar form, H(ejω0) = A0e
jθ0 and we can write:

H{ejω0n} = A0e
j(ω0n+θ0)

i.e., the output oscillation is scaled in amplitude by A0 = |H(ejω0 |, the magnitude
of the DTFT, and it is shifted in phase by θ0 = ∡H(ejω0), the phase of the DTFT.

• If the input to a linear time-invariant system is a sinusoidal oscillation, the output
will always be a sinusoidal oscillation of the same frequency (or zero if H(ejω0) = 0).
In other words, linear time-invariant systems cannot shift or duplicate frequencies.
This strength is also a weakness in some applications and that is why sometimes in
the practice nonlinear transformations are used.

7.5.2 The Convolution and Modulation theorems

We are now ready to state the fundamental result of this section: consider two sequences
x[n] and h[n], both absolutely summable. The discrete-time Fourier transform of the
convolution y[n] = x[n] ∗ h[n] is:

Y (ejω) = X(ejω)H(ejω). (7.23)

The proof is as follows: if we take the DTFT of the convolution sum we have

Y (ejω) =

∞∑

n=−∞

∞∑

k=−∞
x[k]h[n − k]e−jωn

7.6. The Frequency Response 157

Time Domain Frequency Domain

x[n] ∗ y[n] X(ejω)Y (ejω)

x[n]y[n] X(ejω) ∗ Y (ejω)

Table 7.1: The Convolution and Modulation Theorems

by interchanging the order of summation (which can be done because of the absolute
summability of both sequences) and by splitting the complex exponential we obtain

Y (ejω) =

∞∑

k=−∞
x[k]e−jωk

∞∑

n=−∞
h[n− k]e−jω(n−k)

from which the result immediately follows after a change of variable. Before discussing
the implications of the theorem, we want to state and prove its dual, called the Mod-
ulation Theorem. Consider the discrete-time sequences x[n] and w[n], both absolutely
summable, with discrete-time Fourier transforms X(ejω) and W (ejω). The discrete-time
Fourier transform of the product y[n] = x[n]w[n] is:

Y (ejω) = X(ejω) ∗W (ejω) (7.24)

where the DTFT convolution is via the convolution operator for 2π-periodic functions
defined in (7.12). This is easily proven as follows: we start from the DTFT inversion
formula of the DTFT convolution:

1

2π

∫ π

−π
(X ∗ Y)(ejω)ejωndω =

1

2π

∫ π

−π

1

2π

∫ π

−π
X(ej(ω−σ))Y (ejσ)ejωndσdω =

and we split the last integral to obtain

=

(
1

2π

∫ π

−π
X(ej(ω−σ))ej(ω−σ)ndω

)(
1

2π

∫ π

−π
Y (ejσ)ejσndσ

)

= x[n]y[n].

These fundamental results are summarized in Table 7.1.

7.6 The Frequency Response

Just as the impulse response completely characterizes a filter in the discrete-time domain,
its Fourier transform, called the filter’s frequency response, completely characterizes the

158 Chapter 7.

filter in the frequency domain. The properties of LTI systems are described in terms
of their DTFT’s magnitude and phase, each of which controls different features of the
system’s behavior.

7.6.1 Magnitude

The most powerful intuition arising from the convolution theorem is obtained by consid-
ering the magnitude of the spectra involved in a filtering operation. Recall that a Fourier
spectrum represents the energy distribution of a signal in frequency; by appropriately
“shaping” the magnitude spectrum of a filter’s impulse response we can easily boost, at-
tenuate and even completely eliminate a given part of the frequency content in the filtered
input sequence. According to the way the magnitude spectrum is affected by the filter, we
can classify filters into three broad categories (here as before we assume that the impulse
response is real, and therefore the associated magnitude spectrum is symmetric; also, the
2π periodicity of the spectrum is implicitly understood):

• Lowpass filters, for which the magnitude of the transform is concentrated around
ω = 0; these filter preserve the low-frequency energy of the input signals and atten-
uate or eliminate the high-frequency components.

• Highpass filters, for which the magnitude of the transform is concentrated around
ω = ±π; these filter preserve the high-frequency energy of the input signals and
attenuate or eliminate the low-frequency components.

• Bandpass filters, for which the magnitude of the transform is concentrated around
ω = ±ωp; these filter preserve the energy of the input signals around the frequency
ωp and attenuate the signals elsewhere, notably around ω = 0 and ω = ±π.

• Allpass filters, for which the magnitude of the transform is a constant over the
entire [−π, π] interval. These filters do not affect their input’s spectral magnitude
(except for a constant gain factor) and they are designed entirely in terms of their
phase response (typically, to introduce or compensate for a delay).

The frequency interval (or intervals) for which the magnitude of the frequency response is
zero (or practically negligible) is called the stopband. Conversely, the frequency interval
(or intervals) for which the magnitude is non-negligible is called the passband.

7.6.2 Phase

The phase response of a filter has an equally important effect on the output signal, even
though it is less immediately perceivable.

7.6. The Frequency Response 159

Phase as a generalized delay. Consider equation (7.22); we can see that a single si-
nusoidal oscillation undergoes a phase shift equal to the phase of the impulse response’s
Fourier transform. A phase offset for a sinusoid is equivalent to a delay in the time domain.
This is immediate to see for a trigonometric function defined on the real line since we can
always write

cos(ωt + φ) = cos(ω(t− t0)), t0 = −φ/ω.

For discrete-time sinusoids it is not always possible to express the phase offset in terms
of an integer number of samples (exactly for the same reasons for which a discrete-time
sinusoid is not always periodic in its index n); yet the effect is the same, in that a phase
offset corresponds to an implicit delay of the sinusoid. When the phase offset for a complex
exponential is not an integer multiple of its frequency, we say we are in the presence of
a fractional delay. Now, since each sinusoidal component of the input signal may be
delayed by an arbitrary amount, the output signal will be composed of sinusoids whose
relative alignment may be very different than the original. Phase alignment determines
the shape of the signal in the time domain, as we have seen in section 6.2. A filter with
unit magnitude across the spectrum, which does not affect the amplitude of the sinusoidal
components, but whose phase response is not linear, will completely change the shape of
a filtered signal2.

Linear phase. A very important type of phase response is linear phase:

∡H(ejω) = e−jωd (7.25)

Consider a simple system which just delays its input, i.e. y[n] = x[n−D] with D ∈ Z; this
is obviously an LTI system with impulse response h[n] = δ[n−D] and frequency response
H(ejω) = e−jωD. This means that, if the value d in (7.25) is an integer, (7.25) defines a
pure delay system; since the magnitude is constant and equal to one, this is an example of
allpass filter. If d is not an integer, (7.25) still defines an allpass delay system for which the
delay is fractional, and we should interpret its effect as explained in the previous section. In
particular, if we think of the original signal in terms of its Fourier reconstruction formula,
the fractionally delayed output is obtained by stepping forward the initial phase of all
oscillators by a non-integer multiple of the frequency. In the discrete-time domain we
will then have a signal which takes values “between” the original samples but, since the
relative phase of any one oscillator with respect to the others has remained the same as
in the original signal, the shape of the signal in the time domain is unchanged.

2In all fairness, the phase response of a system is not very important in most audio applications, since
the human ear is largely insensitive to phase. Phase is however extremely important in data transmission
applications.

160 Chapter 7.

For a general filter with linear phase we can always write

H(ejω) = |H(ejω)|e−jωd

In other words, the net effect of the filter is that of a cascade of two systems: a zero-phase
filter which affects only the spectral magnitude of the input and therefore introduces no
phase distortion, followed by a (possibly fractional) delay system (which, again, introduces
just a delay but no phase distortion).

Group delay. When a filter does not have linear phase, it is important to quantify the
amount of phase distortion both in amount and in location. Nonlinear phase is not always
a problem; if a filter’s phase is nonlinear just in the stopband, for instance, the actual
phase distortion is negligible. The concept of group delay is a measure of nonlinearity in
the phase; the idea is to express the phase response around any given frequency ω0 using a
first order Taylor approximation. Define ϕ(ω) = ∡H(ejω) and approximate ϕ(ω) around
ω0 as ϕ(ω0 + τ) = ϕ(ω0) + τϕ′(ω0); we can write

H(ej(ω0+τ)) = |H(ej(ω0+τ))|ejϕ(ω0+τ)

≈
(

|H(ej(ω0+τ))|ejϕ(ω0)

)

ejϕ′(ω0)τ (7.26)

so that, approximately, the frequency response of the filter is linear phase for at least a
group of frequencies around a given ω0. The delay for this group of frequencies is the
negative of the derivative of the phase, from which the definition of group delay:

grd{H(ejω)} = −ϕ′(ω) = −d∡H(ejω)

dω
(7.27)

For truly linear phase systems, the group delay is a constant. Deviations from a con-
stant value quantify the amount of phase distortion introduced by a filter in terms of the
(possibly non-integer) number of samples a frequency component is delayed by.

7.7 Examples of Filters

7.7.1 Ideal Filters

The ideal filters are what the name suggests: ideal abstraction which capture the essence of
the basic filtering operation. While not realizable in practice, they are the “gold standard”
of filter design.

7.7. Examples of Filters 161

Ideal Lowpass. The ideal lowpass filter is a filter which kills all frequency content above
a cutoff frequency ωc and leaves all frequency content below ωc untouched; it is defined in
the frequency domain as

Hlp(e
jω) =

{
1 |ω| ≤ ωc

0 ωc < |ω| ≤ π
(7.28)

clearly, the filter has zero phase delay. The ideal lowpass can also be defined in terms of
its bandwidth ωb = 2ωc. The DTFT inversion formula gives the corresponding impulse
response:

hlp[n] =
sin(ωcn)

πn
. (7.29)

The impulse response turns out to be a symmetric infinite sequence and the filter is
therefore IIR; unfortunately, however, it can be proved that no realizable system (i.e. no
algorithm with a finite number of operations per output sample) can exactly implement
the above impulse response. More bad news: the decay of the impulse response is slow,
going to zero only as 1/n, and it is not absolutely summable; this means that any FIR
approximation of the ideal lowpass obtained by truncating h[n] will need a lot of samples to
achieve some accuracy; and that, in any case, convergence to the ideal frequency response
will only be in the mean square sense (see section 5). An immediate consequence of these
facts is that, when designing realizable filters, we will take an entirely different approach.

Despite these practical difficulties, the ideal lowpass and its associated DTFT pair are
so important as a theoretical paradigm that two special function names are used to denote
the above expressions. We define

rect(x) =

{
1 |x| ≤ 1/2
0 |x| > 1/2

(7.30)

sinc(x) =

sin(πx)

πx
x 6= 0

1 x = 0
(7.31)

Note that the sinc function is zero for all integer values of the argument except zero. With
this notation, and with respect to the bandwidth of the filter, the ideal lowpass filter’s
frequency response between −π and π becomes:

Hlp(e
jω) = rect

(
ω

ωb

)

(7.32)

(obviously 2π-periodized over all R). Its impulse response in terms of bandwidth becomes:

hlp[n] =
ωb

2π
sinc

(ωb

2π
n
)

(7.33)

162 Chapter 7.

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

ω
c

ω
b

−40 −30 −20 −10 0 10 20 30 40
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) (b)

Figure 7.7: Ideal lowpass filter, ωc = π/3. (a) Frequency response;

(b) Impulse response (portion).

or, in terms of cutoff frequency,

hlp[n] =
ωc

π
sinc

(ωc

π
n
)

. (7.34)

The DTFT pair:

ωb

2π
sinc

(ωb

2π
n
)

DTFT←→ rect

(
ω

ωb

)

(7.35)

constitutes one of the fundamental relationships of digital signal processing. Note that as
ωb → 2π, we re-obtain the well-known DTFT pair δ[n] ←→ 1, while as ωb → 0 we can
re-normalize by (2π/ωb) to obtain 1←→ δ̃(ω).

Ideal highpass. The ideal highpass filter with cutoff frequency ωc is the complementary
filter to the ideal lowpass, in the sense that it eliminates all frequency content below the
cutoff frequency. Its frequency response is

Hhp(e
jω) =

{
0 |ω| ≤ ωc

1 ωc < |ω| ≤ π
(7.36)

where the 2π-periodicity is as usual implicitly assumed. From the relation Hh(ejω) =
1− rect(ω/2ωc) the impulse response is easily obtained as

hhp[n] = δ[n]− ωc

π
sinc

(ωc

π
n
)

7.7. Examples of Filters 163

Ideal bandpass. The ideal bandpass filter with center frequency ω0 and bandwidth ωb,
ωb/2 < ω0 is defined in the frequency domain between −π and π as:

Hbp(e
jω) =

1 ω0 − ωb/2 ≤ ω ≤ ω0 + ωb/2
1 −ω0 − ωb/2 ≥ ω ≥ −ω0 + ωb/2
0 elsewhere

(7.37)

where the 2π-periodicity is as usual implicitly assumed. It is left as an exercise to prove
that the impulse response is

hbp[n] = 2 cos(ω0n)
ωb

2π
sinc

(ωb

2π
n
)

(7.38)

Hilbert Filter. The Hilbert filter is defined in the frequency domain as

H(ejω) =

{
−j 0 ≤ ω < π
+j −π ≤ ω < 0

(7.39)

where the 2π-periodicity is as usual implicitly assumed. Its impulse response is easily
computed as

h[n] =
2 sin2(πn/2)

πn
=

{
0 for n even
2

nπ for n odd
(7.40)

It is clearly |H(ejω)| = 1, so this filter is allpass. It introduces a phase shift of π/2 in the
input signal so that, for instance,

h[n] ∗ cos(ω0n) = − sin(ω0n). (7.41)

as one can verify from (5.26) and (5.27). More generally, the Hilbert filter is used in
communication systems to build efficient demodulation schemes, as we will see later. The
fundamental concept is the following: consider a real signal x[n] and its DTFT X(ejω);
consider also the signal processed by the Hilbert filter y[n] = h[n] ∗ x[n]. Define:

A(ejω) =

{
X(ejω) for 0 ≤ ω < π
0 for −π ≤ ω < 0

i.e. A(ejω) is the positive-frequency part of the spectrum of x[n]. Since x[n] is real, its
DTFT has symmetry X(ejω) = X∗(e−jω) and therefore we can write

X(ejω) = A∗(e−jω) + A(ejω).

By separating real and imaginary part we can always write A(ejω) = AR(ejω) + jAI(e
jω)

and so:

X(ejω) = AR(e−jω)− jAI(e
−jω) + AR(ejω) + jAI(e

jω)

164 Chapter 7.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Magnitude

ω = −π, π

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Phase

ω = −π, π

ra
di

an
s

Figure 7.8: Magnitude and phase response of the Moving Average filter for N = 12.

For the filtered signal we have Y (ejω) = H(ejω)X(ejω) and therefore

Y (ejω) = jAR(e−jω) + AI(e
−jω)− jAR(ejω) + AI(e

jω)

It is therefore easy to see that

x[n] + jy[n]
DTFT←→ 2A(ejω) (7.42)

i.e. the spectrum of the signal a[n] = x[n]+jy[n] contains only the positive-frequency com-
ponents of the original signal x[n]. The signal a[n] is called the analytic signal associated
to x[n].

7.7.2 Examples Revisited

The following is a frequency domain analysis of the two practical filters which we saw
earlier. These filters are realizable, in the sense that their operation can be implemented
with practical efficient algorithms as we will study in the next chapters. The frequency
domain analysis allows us to qualify and quantify precisely the smoothing properties which
we described in an intuitive fashion in section 7.4.

7.7. Examples of Filters 165

−3 −2 −1 0 1 2 3
0

0.5

1

Magnitude

−3 −2 −1 0 1 2 3

−1

0

1

Phase

ra
d

ia
n

s

−3 −2 −1 0 1 2 3

0

5

10
Group Delay

ω = −π, π

s
a

m
p

le
s

Figure 7.9: Magnitude and phase response of the leaky integrator for λ = 0.9.

Moving Average. The frequency response of the moving average filter in section 7.4.1
can be shown to be:

H(ejω) =
1

N

sin(ωN/2)

sin(ω/2)
e−j N−1

2
ω (7.43)

In the above expression it is immediate to recognize the magnitude and the phase of the
frequency response; they are plotted in Figure 7.8. Note that the phase is “wrapped” onto
the interval [−π, π], which is customary plotting practice. The group delay for the filter
is the constant (N − 1)/2, which means that the filters delays its output by (N − 1)/2
samples (i.e. there is a fractional delay for N even).

166 Chapter 7.

Leaky Integrator. The frequency response of the leaky integrator in section 7.4.2 is:

H(ejω) =
1− λ

1− λe−jω
(7.44)

Magnitude and phase are respectively:

|H(ejω)|2 =
(1− λ)2

1 + λ2 − 2λ cos(ω)
(7.45)

∡H(ejω) = arctan

[

− λ sin(ω)

1− λ cos(ω)

]

(7.46)

and they are plotted in Figure 7.9. The group delay, also plotted in Figure 7.9, is obtained
by differentiating the phase response:

grd{H(ejω)} =
λ cos(ω)− λ2

1 + λ2 − 2λ cos(ω)
(7.47)

Note that, according to the classification in section 7.6.1, both the moving average and
the leaky integrator are lowpass filters.

7.8 Filtering and Signal Classes

We have so far shown the main properties of filters as applied to generic (infinite) se-
quences. We will now consider the other two main classes of discrete-time signals, namely
finite-length signals and periodic sequences.

7.8.1 Filtering of Finite-Length Signals

The convolution sum in (7.3) is defined for infinite sequences. For a finite-length signal of
length N we may choose to write simply

y[n] = H{x[n]} =
N−1∑

k=0

x[k]h[n − k] (7.48)

i.e. we let the summation index span only the indices for which the signal is defined. It is
immediate to see, however, that in so doing we are actually computing y[n] = x̄[n] ∗ h[n],
where x̄[n] is the finite support extension of x[n] as in (2.23)); that is, by using (7.48), we
are implicitly assuming a finite support extension for the input signal.

Even when the input is finite-length, the output of an LTI system is not necessarily a
finite-support sequence. When the impulse response is FIR, however, the output has finite
support; specifically, if the input sequence has support N and the impulse response has

7.8. Filtering and Signal Classes 167

support L, the support of the output will be N + L− 1. While the convolution theorem
obviously still holds, and the DTFT of the input is as in (5.31), no special insight can be
gained from its analytical expression.

7.8.2 Filtering of Periodic Sequences

For periodic sequences, the convolution sum in (7.3) is well defined so there is no special
care to be taken. It is easy to see that, for any LTI system, an N -periodic input produces
an N -periodic output. A case of particular interest is the following: consider a length-
N signal x[n] and its N -periodic extension x̃[n]. Consider then a filter whose impulse
response is FIR with a length-N support; if we call h[n] the length-N signal obtained by
considering only the values of the impulse response over its finite support, we have that
the impulse response of the filter is h̄[n] (see (2.23)). In this case we can write:

ỹ[n] =
∞∑

k=−∞
x̃[k]h̄[n− k] =

N−1∑

k=0

h[k]x̃[(n − k) mod N] (7.49)

Note that in the last sum, only the first period of x̃[n] is used; we can therefore define the
sum just in terms of the two N -point signals x[n] and h[n]:

ỹ[n] =
N−1∑

k=0

h[k]x[(n − k) mod N] (7.50)

The above summation is called the circular convolution of x[n] and h[n] and is sometimes
indicated as

ỹ[n] = x[n]©N h[n]

Note that, for periodic sequences, the convolution as defined in (7.8) and the circular
convolution coincide. The circular convolution, just like the standard convolution operator,
is associative and commutative:

x[n]©N h[n] = h[n]©N x[n]

(h[n] + f [n])©N x[n] = h[n]©N x[n] + f [n]©N x[n]

as we will easily prove later on.
Consider now the output of the filter, expressed using the commutative property of

the circular convolution:

ỹ[n] =

N−1∑

k=0

x[k]h[(n − k) mod N];

168 Chapter 7.

since the output sequence ỹ[n] is itself N -periodic we can consider the finite-length signal
y[n] = ỹ[n], n = 0, . . . , N − 1, i.e. the first period of the output sequence. The circular
convolution can now be expressed in matrix form as

y = Hx (7.51)

where y,x are the usual vector notation for the finite-length signals y[n], x[n] and where

H =

h[0] h[N − 1] h[N − 2] · · · h[2] h[1]
h[1] h[0] h[N − 1] · · · h[3] h[2]
...

...
... · · · ...

...
h[N − 1] h[N − 2] h[N − 3] · · · h[1] h[0]

(7.52)

The above matrix is called a circulant matrix, since each row is obtained by a right circular
shift of the previous row. A fundamental result, whose proof is left as an exercise, is that
the length-N DFT basis vectors w(k) defined in (3.5) are left eigenvectors of N × N
circulant matrices:

(w(k))T H = H[k]w(k)

where H[k] is the k-th DFT coefficient of the length-N signal h[n], n = 0, . . . ,N − 1. If
we now take the DFT of (7.51) we have

Y = WHx = ΓWx = ΓX

with

Γ = diag(H[0],H[1], . . . ,H[N − 1])

or, in other words

Y [k] = H[k]X[k]. (7.53)

We have just proven a finite-length version of the convolution theorem; to repeat the main
points:

• the convolution of an N -periodic sequence with a N -tap FIR impulse response is
equal to the periodic convolution of two finite-length signals of length N , where
the first signal is one period of the input and the second signal is the values of the
impulse response over the support

• the periodic convolution can be expressed as a matrix-vector product in which the
matrix is circulant

7.9. Summary 169

• the DFT of the circular convolution is simply the product of the DFT’s of the two
finite-length signals; in particular, (7.53) can be used to easily prove the commuta-
tivity and distributivity of the circular convolution.

The importance of this particular case of filtering stems from the following fact: the matrix-
vector product in (7.51) requires O(N2) operations. The same product can however be
written as

y =
1

N
WHΓWx = DFT−1{Γ DFT{x}}

which, by using the FFT algorithm, requires approximately N +2N log2 N operations and
is therefore much more efficient even for moderate values of N . Practical applications of
this idea will be studied in detail later on; suffice it to say for now that, if you want to
filter a long signal with an N -tap FIR filter, a computationally attractive way to do it
is to break the signal up into consecutive length-N pieces and use the FFT to filter each
piece. Efficient methods to glue together the output pieces into the correct final results
are called overlap-save and overlap-add filtering methods.

Finally, we want to show that we could have quickly arrived at the same results only
by considering the formal DTFT’s of the sequences involved; this is an instance of the
power of the DTFT formalism. From (5.30) and (5.31) we have:

Y (ejω) = H̄(ejω)X̃(ejω)

=

(N−1∑

k=0

H[k]Λ(ω − 2π

N
k)

)(
1

N

N−1∑

k=0

X[k]δ̃(ω − 2π

N
k)

)

=
1

N

N−1∑

k=0

H[k]X[k]δ̃(ω − 2π

N
k) (7.54)

where in the last passage we have exploited the sifting property of the Dirac delta (see 5.18)
and the fact that Λ(0) = 1. It is immediate to recognize in the last expresion the DTFT
of a periodic sequence whose DFS coefficients are given by H[k]X[k], which is what we
wanted to show.

7.9 Summary

This chapter introduced the concept of discrete-time linear time-invariant systems, also
known as filters. The main points have been:

• Characterization of LTI systems in terms of their impulse response; IIR and FIR
impulse responses;

170 Chapter 7.

• The convolution operator and its properties;

• BIBO stability;

• Filtering in the frequency domain; the Convolution and Modulation theorems;

• Magnitude and phase responses; generalized delay and group delay; linear phase;

• Ideal filters: lowpass, highpass, bandpass; Hilbert filter;

• Realizable filters: moving average and leaky integrator;

• Filtering of periodic sequences; circular convolution.

7.10 Problems

Problem 7.1 (Filter Design: Parks-McClellan Algorithm) In this exercise, our
goal is to design an optimal lowpass filter minimizing the maximum error, with passband
0 ≤ ω ≤ ωp and stopband ωs ≤ ω ≤ π. Hence, the desired frequency response |Hdr(e

jω)| is
1 in the passband and 0 elsewhere. We would like the response of the designed filter to be
within δ1 of |Hdr(e

jω)| in the passband and within δ2 of |Hdr(e
jω)| in the stopband. Fig.

7.1 illustrates this idea.

1. Show that h [n] = he [n] + ho [n], where he [n] = 1
2(h [n]+ h [−n]) is an even sequence

and ho [n] = 1
2 (h [n]−h [−n]) is an odd sequence. Show that it is easy to recover h [n]

from its even part for 0 ≤ n ≤ ∞ if h [n] is causal. Finally, show that he [n]
DTFT↔

HR(ejω) if h [n] is real valued and causal (i.e., He(e
jω) is real).

2. Let h [n] be of length M . If h [n] = h [M − 1− n] (the unit sample response is
symmetric) and M is odd, we have:

HR(ejω) = h

[
M − 1

2

]

+ 2

(M−3)/2
∑

n=0

h [n] cos(ω(
M − 1

2
− n))

Further, by making an appropriate change of variable, we have:

P (ejω) = HR(ejω) =

(M−1)/2
∑

k=0

a [k] cos(ωk) ≡
L∑

k=0

a [k] cos(ωk)

7.10. Problems 171

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

ω

|H
(ω

)|

δ
2

1−δ
1

1+δ
1

stopband

passband

transition
band

ω
sω

p

Figure 7.10: Filter Design: We want the impulse response in the passband to
be within δ1 of the desired frequency response 1 and within δ2 of 0 in the

stopband

172 Chapter 7.

Let

W (ejω) =

{
δ2/δ1 ω in the passband
1 ω in the stopband

and the error function be

E(ejω) = W (ejω)(Hdr(e
jω)− P (ejω))

We seek the solution to the problem:

minover a [k](maxω∈S |E(ejω)|)

where S represents the disjoint union of frequency bands over which the optimization
is to be performed (in our case S is the union of the passband and the stopband fre-
quencies). The alternation theorem tells us that a necessary and sufficient condition
for P (ejω) to be the best weighted Chebyshev approximation to Hdr(e

jω) in S is that
the error function E(ejω) exhibit at least L + 2 extremal frequencies in S. That is,
there must be at least L+2 (L = (M − 1)/2 in our case) frequencies {ωi} in S such
that ω1 < ω2 < ... < ωL+2, E(ejωi) = −E(ejωi+1) and |E(ejωi))| = maxω∈S |E(ejω)|.
At the desired extremal frequencies, we have the set of equations:

W (ejωn)(Hdr(e
jωn)− P (ejωn)) = (−1)nδ2 for n = 0, 1, 2, ..., L + 1

Show that this set of equations can be written in matrix form as

1 cos(ω0) cos(2ω0) ... cos(Lω0)
1

W (ω0)

1 cos(ω1) cos(2ω1) ... cos(Lω1)
−1

W (ω1)

1 cos(ωL+1) cos(2ωL+1) ... cos(LωL+1)
(−1)L+1

W (ωL+1)

a [0]
a [1]
...
a [L]
δ2

=

Hdr(e
jω0)

Hdr(e
jω1)

...
Hdr(e

jωL+1)

3. The above set of equations can be solved iteratively by first guessing the extremal
frequencies and then solving the system for a and δ2. Subsequently, given E(ejω) we
find new extremal frequencies and repeat the process. In Matlab, the firpm command
(McClellan Algorithm) solves the problem efficiently. Plot the impulse response and
frequency response of a M = 21 taps filter, with ωp = 0.45 and ωs = 0.55 and
δ2/δ1 = 5 and give the error. (Hint: you can use the same set of arguments as for
the remez command presented in the course notes, so play around with this function
and see what happens; also take a look at the help). Finally, mark the extremal
frequencies on your plot (you can do it by hand).

7.10. Problems 173

Problem 7.2 An operator S is a transformation of a given signal and is indicated by the
notation:

y[n] = S{x[n]}.
For instance, the delay operator D is indicated as

D{x[n]} = x[n− 1],

and the differentiation operator is indicated as

∆{x[n]} = x[n]−D{x[n]} = x[n]− x[n− 1]. (7.55)

A linear operator is one for which the following holds:
{

S{αx[n]} = αS{x[n]}
S{x[n] + y[n]} = S{x[n]}+ S{y[n]}

1. Show that the delay operator D is linear.

2. Show that the differentiation operator ∆ is linear.

3. Show that the squaring operator S{x[n]} = x2[n] is not linear.

In CN , any linear operator on a vector x can be expressed as a matrix-vector multipli-
cation for a suitable matrix A. In CN , define the delay operator as the left circular shift
of a vector:

D{x} = [xN−1 x0 x1 . . . xN−2]
T .

Assume N = 4 for convenience; it is easy to see that

D{x} =

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

x = Dx

4. Using the same definition of differentiation operator as in (7.55), write out the matrix
form of the differentiation operator in C4.

5. Consider the following matrix:

A =

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

.

Which operator do you think it corresponds to?

174 Chapter 7.

Problem 7.3 Let x[n] be a signal. Consider the following systems with output y[n]. De-
termine if such systems are: linear, time invariant, stable (BIBO) and causal or anti-
causal. Characterize the systems by their impulse response.

1. y[n] = x[−n]

2. y[n] = e−jωnx[n]

3. y[n] =
∑n+n0

k=n−n0
x[k]

4. y[n] = ny[n− 1] + x[n], such that if x[n] = 0 for n < n0, then y[n] = 0 for n < n0.
(Hint: Since the system is causal and satisfies initial-rest conditions, we can recur-
sively find the response to any input as, for instance, δ[n].)

Problem 7.4 Consider an operator R which turns a sequence into its time-reversed ver-
sion:

R{x[n]} = x[−n].

1. The operator is clearly linear. Show that it is not time-invariant.

Suppose you have an LTI filter H with impulse response h[n] and you perform the
following sequence of operations in order:

1) s[n] = H{x[n]}

2) r[n] = R{s[n]}

3) w[n] = H{r[n]}

4) y[n] = R{w[n]}

2. Show that the input-output relation between x[n] and y[n] is an LTI transformation.

3. Give the frequency response of the equivalent filter realized by the series of transfor-
mations and show that it has zero phase.

Problem 7.5 Consider the system shown in Fig. 7.11,
where h[n] is the impulse response of the LTI system and H(z) exists for

0 < rmin < |z| < rmax <∞.

(a) Can the LTI system with impulse response h[n] be BIBO stable? If so, determine
constraints on rmin and rmax, otherwise explain why.

7.10. Problems 175

× ×

α−n
αn

v[n] w[n]
x[n] y[n]h[n]

Figure 7.11: System with multiplier.

(b) Is the system with input x[n] and output v[n] linear? Is it time-invariant?

(c) Is the overall system (with input x[n] and y[n]) LTI? If so, find the impulse response
of the system, otherwise give an example to show your claim.

(d) Can the overall system be BIBO stable? If so determine the constraints on α, rmin,
and rmax, otherwise explain why.

Problem 7.6 A simple model of multipath communication channel is hown in Fig. 7.12.
Assume that sc(t) is bandlimited such that Sc(jΩ) = 0 for |Ω| ≥ π/T and that xc(t) is
sampled with a sampling period T to obtain the sequence x [n] = xc(nT).

1. Determine the Fourier transform of xc(t) and the Fourier transform of x [n] in terms
of Sc(jΩ)

2. We want to simulate the multipath system with a discrete-time system by choosing
H(ejω) in Fig. 7.12, so that the output r [n] = xc(nT) when the input is s [n] =
sc(nT). Determine H(ejω) in terms of T and τd.

3. Determine the impulse response h [n] when (i) τd = T and (ii) τd = T/2

176 Chapter 7.

Figure 7.12: A simple multipath communication channel

Chapter 8

The Z-Transform

Consider an input x[n] = zn, n ∈ Z to an LTI system with impulse response h[n]. Then

y[n] =

+∞∑

k=−∞
h[k]zn−k = zn

+∞∑

k=−∞
h[k]z−k

︸ ︷︷ ︸

H(z)

= H(z)zn. (8.1)

Therefore, zn is an eigenfunction of an LTI system with eigenvalue H(z). As before,
a natural question to ask is whether the summation exists. In the case of the summation
defined as the Z-transform

X(z) =
+∞∑

n=−∞
x[n]z−n, (8.2)

the answer can be found by representing z = rejω, with r = |z|. Hence

X(z) = X
(
rejω

)
=

+∞∑

n=−∞

(
x[n]r−n

)
e−jωn =

+∞∑

n=−∞
x̆[n]e−jωn,

where x̆[n] = x[n]r−1. Therefore, we can see that the Z-transform is nothing but the
Fourier transform of a scaled sequence, i.e.

X(z) = X
(
rejω

)
= F

{
x[n]r−n

}
. (8.3)

177

178 Chapter 8.

Hence

X(z)

∣
∣
∣
∣
z=ejω

= X
(
ejω
)

= F {x[n]} . (8.4)

Now it is clear that for a Z-transform to exist, we would need

+∞∑

n=−∞

∣
∣x[n]r−n

∣
∣ <∞, (8.5)

which for appropriately chosen r would be possible. This already tells us that by choosing
r appropriately we can always properly define the Z-transform. The range of values of z
for which the Z-transform exists is called the region-of-convergence.

Example 8.1 Let x[n] = anu[n]. Now

X(z) =

+∞∑

n=−∞
anu[n]z−n =

∞∑

n=0

anz−n =

∞∑

n=0

(
az−1

)n
.

Therefore this needs
∣
∣az−1

∣
∣ < 1 or |z| > |a|, hence

X(z) =
1

1− az−1
for |z| > |a|. (8.6)

Thus the Z-transform is well defined for any a ∈ C.

Figure 8.1: Pole-zero plot and region of convergence for Example 8.1.

8.1. Region of convergence for the Z-transform 179

Example 8.2 Let x[n] = −anu[−n− 1]. Now

X(z) = −
+∞∑

n=−∞
anu[−n− 1]z−n =

−1∑

n=−∞
−anz−n = −

∞∑

n=1

(
a−1z

)n

= 1− 1

1− a−1z
=

1

1− az−1
for

∣
∣a−1z

∣
∣ < 1 or |z| < |a|. (8.7)

Figure 8.2: Pole-zero plot and region of convergence for Example 8.2.

Example 8.3 Let x[n] =
(

1
3

)n
u[n]− 2nu[−n− 1]. Now

X(z) =

∞∑

n=0

(
1

3
z−1

)n

−
∞∑

n=1

(
2−1z

)n

=
1

1− 1
3z−1

−
{

1− 1

1− 2−1z

}

for

∣
∣
∣
∣

1

3
z−1

∣
∣
∣
∣
< 1 and

∣
∣2−1z

∣
∣ < 1

=
1

1− 1
3z−1

−
{ −2−1z

1− 2−1z

}

for |z| > 1

3
and |z| < 2

=
1

1− 1
3z−1

− 1

1− 2z−1

1

3
< |z| < 2

8.1 Region of convergence for the Z-transform

The region of convergence of a Z-transform consists of a ring in the Z-plane centered about
the origin. This follows from the fact that the ROC consists of those values of z = rejω

for which x[n]r−n has a Fourier transform. Since the convergence is only dependent on
r = |z|, it is clear that if a specific value of z is in the ROC, then all values of z with the

180 Chapter 8.

Figure 8.3: Pole-zero plot and region of convergence for Example 8.3.

same magnitude are also in the ROC. Hence this guarantees that the ROC must be in
concentric rings. Clearly we have the following properties for the ROC.

Property 1 The ROC is a ring or disk in the Z-plane centered at the origin, i.e. 0 ≤
rR ≤ |z| < rL <∞.

Property 2 The DTFT exists if and only if the ROC includes the unit circle.

Property 3 The ROC cannot contain any poles.

Property 4 If x[n] is a finite-length sequence, then the ROC is the entire Z-plane with
the possible exception of z = 0 or z =∞.

Property 5 If x[n] is a right-sided sequence, i.e. x[n] = 0 for n < N1 < ∞, for some
N1 ∈ Z, then the ROC extends outwards from the outermost finite pole in X(z).

Property 6 If x[n] is a left-sided sequence, i.e. x[n] = 0 for n > N2 > −∞, for some
N2 ∈ Z, then the ROC extends inwards from the innermost finite pole in X(z).

Property 7 A two-sided sequence is an infinite-duration sequence that is neither right-
sided nor left-sided. If x[n] is a two-sided sequence, then the ROC will consist of
a ring in the Z-plane bounded on the interior and exterior by a pole and does not
contain any poles.

Property 8 The ROC must be a connected region.

8.2. The inverse Z-transform 181

8.2 The inverse Z-transform

By considering

X
(
rejω

)
= F

{
x[n]r−n

}
,

one can obtain

x[n]r−n = F−1
{
X
(
rejω

)}
,

or

x[n]r−n =
1

2π

∫ π

−π
X
(
rejω

)
ejωn dω,

or

x[n] =
1

2π

∫ π

−π
X
(
rejω

) (
rejω

)n
dω. (8.8)

That is, we can recover x[n] from integrating its Z-transform along a contour z = rejω

in its ROC, by fixing r and varying ω from −π to π. With z = rejω, for fixed r we see
that dz = jrejω dω = jz dω or dω = dz

jz .
Since the integral in (8.8) is over a 2π interval of ω, it corresponds to a traversal around
the circle |z| = r. Consequently

x[n] =
1

2πj

∮

X(z)zn−1 dz, (8.9)

where the symbol 	 denotes integration around a counter-clockwise closed circular contour
centered at the origin and with radius of r. The value of r can be chosen such that |z| = r
is in the ROC.

8.3 Partial fraction expansion

X(z) =

∑M−1
k=0 bkz

−k

∑N−1
k=0 akz−k

=
b0
∏M−1

k=1

(
1− ckz

−1
)

a0
∏N−1

k=1 (1− dkz−1)
. (8.10)

If M < N and all poles are simple, i.e. unique dk’s, we can do a partial fraction
expansion to get

X(z) =

N−1∑

k=0

Ak

1− dkz−1
, (8.11)

182 Chapter 8.

where

Ak =
(
1− dkz

−1
)
X(z)

∣
∣
∣
∣
z=dk

. (8.12)

If M > N , we can obtain the right form by first doing a long division of the numerator by
the denumerator. This gives gives a general form

X(z) =
M−N∑

r=0

Brz
−r +

N−1∑

k=0

Ak

1− dkz−1
, (8.13)

where the Br’s are obtained from the long division and the Ak’s are as before.

If X(Z) has a pole of order s at di and all other poles are simple we get

X(z) =
M−N∑

r=0

Brz
−r +

N−1∑

k=0,k 6=i

Ak

1− dkz−1
+

s∑

m=1

Cm

(1− diz−1)m
, (8.14)

where

Cm =
1

(s−m)!(−di)s−m

{
ds−m

dws−m

[
(1− diw)s X

(
w−1

)]
}

w=d−1
i

(8.15)

and the Ak’s and Br’s are obtained as before.

Using (8.14) and the ROC, we can invert the Z-transform using the inspection method,
i.e.

anu[n]
Z←→ 1

1− az−1
, |z| > |a|. (8.16)

−anu[−n− 1]
Z←→ 1

1− az−1
, |z| < |a|. (8.17)

Example 8.4 (Z-Transform) (a) Let W (z) =
1− 1

2
z−1

1−z−1+z−2 which is well-defined in its
region of convergence RW : |z| > 1. Find the inverse z-transform w[n] for this
function.

(b) Find the inverse z-transform for X(z) = ln(1 + z−2) with |z| > 1.
Hint: Differentiate X(z) with respect to z.

(c) Find the z-transform of y[n] = 2nnu[−n− 2]. Determine the region of convergence.

Solution:

8.3. Partial fraction expansion 183

(a) In order to find the inverse z-transform of W (z), we have to find its partial fraction
expansion. First, we need to find the roots of the polynomial in the denominator.

1− z−1 + z−2 = 0 or z2 − z + 1 = 0 =⇒ z =
1±
√

1− 4

2
=

1±
√

3i

2
= e±

π
3
i

So we have

W (z) =
1− 1

2z−1

(1− e
π
3
iz−1)(1− e−

π
3
iz−1)

=
α

1− e
π
3
iz−1

+
β

1− e−
π
3
iz−1

where

α = W (z)(1 − e
π
3
iz−1)

∣
∣
∣
z=e

π
3 i

=
1− 1

2
e−

π
3 i

1−e−
2π
3 i

= 1
2

β = W (z)(1− e−
π
3
iz−1)

∣
∣
∣
z=e−

π
3 i

=
1− 1

2
e

π
3 i

1−e
2π
3 i

= 1
2

Now for the ROC : |z| > 1, we have

w[n] = α(e
π
3
i)nu[n] + β(e−

π
3
i)nu[n]

=
e

π
3
i + e

−π
3

i

2
u[n] = cos(

π

3
n)u[n]

Remark: In general, if we have a transfer function H(z) = 1−az−1

1−bz−1+cz−2 , and a, b, c ∈
R where the discriminant of the denominator is negative, i.e., ∆ = b2 − 4c < 0 and
|z| > √c, we can use the same scheme to find the inverse z-transform. Let p = reiθ

and p∗ are the roots of the denominator polynomial. It is easy show that r2 = c and
θ = cos−1 b

2
√

c
. We have

H(z) =
α

1− pz−1
+

β

1− p∗z−1

where

α =
a− p

p∗ − p
=

1

2
+

(a− r cos θ)

2r sin θ
i

β =
a− p∗

p− p∗
=

1

2
+
−(a− r cos θ)

2r sin θ
i

184 Chapter 8.

and

h[n] = αpnu[n] + βp∗nu[n]

=

[
(reiθ)n + (re−iθ)n

2
+

(r cos θ − a)

r sin θ

(reiθ)n − (re−iθ)n

2i

]

u[n]

=

[

cos(θn) +
(r cos θ − a)

r sin θ
sin(θn)

]

u[n].

(b) Let x[n] be the inverse z-transform of X(z). Define y[n] = nx[n]. According to the
properties of the z-transform we have

Y (z) = Z{y[n]} = −z
d

dz
X(z) = −z

−2z−3

1 + z−2
=

2z−2

1 + z−2
= 2− 2

1 + z−2
= 2− 1

1 + iz−1
− 1

1− iz−1

Therefore,

y[n] = Z−1{Y (z)} = 2δ[n] − inu[n]− (−i)nu[n]

= 2δ[n]−
{
−2(−1)k if n = 2k, k ∈ Z≥0

0 otherwise

=

{
−2(−1)

n
2 u[n− 2] if n =even

0 if n =odd

(c) y[n] = 2nnu[−n− 2], we can define x[n] = 2nu[−n− 2]. Then,

X(z) =

∞∑

n=−∞
x[n]z−n =

∞∑

n=−∞
2nu[−n− 2]z−n

=

−2∑

n=−∞
2nz−n =

−2∑

n=−∞
(
z

2
)−n

=

∞∑

m=2

(
z

2
)m =

(z
2)2

1− z
2

where the summation is well-defined for |z| < 2. Now, we have

Y (z) = −z
d

dz
X(z) = −z

1
2z − 1

8z2

1− z + 1
4z2

=
1

2

1− 4z−1

z−1 − 4z−2 + 4z−3

8.3. Partial fraction expansion 185

where the ROC is the set of all z ∈ C in which X(z) is well-defined, which is |z| < 2.

hw4 pb4 2006

Example 8.5 (Region of Convergence) Consider

H(z) =
1− 4z−1 + 5z−2

(z + 2)(1 + 6z−1 + 13z−2)

as the transfer function of an LTI system.

(a) What are the poles and zeros of H(z)?

(b) How many different regions of convergence can be assigned to H(z)? Determine them.

(c) For each ROC you have found in part (b), take the inverse z-transform and find the
impulse response of the system in time domain.

(d) For each impulse response check the causality and stability of the system.

(e) In each case determine whether the impulse response is finite-length, right-sided, left-
sided, or two-sided?

Solution:

(a) The poles of the transfer function are the roots of (z−1 + 2)(1 + 6z−1 + 13z−2) = 0,
which can be computed as

• z−1 + 2 = 0 =⇒ p1 = −1
2

• 1 + 6z−1 + 13z−2 = 0 or z2 + 6z + 13 = 0 =⇒ p2,3 = −3±
√

9− 13 =
−3± 2i

We can also find the zeros of the transfer function by finding the roots of the nomi-
nator polynomial.

1− 4z−1 + 5z−2 = 0 or z2 − 4z + 5 = 0 =⇒ z1,2 = 2±
√

4− 5 = 2± i

(b) Region of convergence has to be a continuous subset of the point of the C-plane which
does not contain any pole. It is also known that a = reiω ∈ ROC, then all the
points with the same magnitude are also in the ROC. Therefore as it can be seen in
Fig. 8.4, there are three possible region of convergence for the transfer function.

A = {z : |z| < 1

2
}, B = {z :

1

2
< |z| <

√
13}, C = {z : |z| >

√
13}. (8.18)

186 Chapter 8.

z1 = 2 + i

z2 = 2− i

B

C

p1 = −1
2

p2 = −3 + 2i

p3 = −3− 2i

A

Figure 8.4: The zero-pole plot and three different regions of convergence.

8.3. Partial fraction expansion 187

(c) In order to find the inverse z-transform of H(z) we need to find the partial fraction
expansion for this.

H(z) =
1− 4z−1 + 5z−2

(z−1 + 2)(1 + 6z−1 + 13z−2)
=

α

z−1 + 2
+

β

1− (−3 + 2i)z−1
+

γ

1− (−3− 2i)z−1

There two ways for finding α, β and γ and we will consider both of the in the
following.

• First way: solving system of linear equations

1− 4z−1 + 5z−2

(z−1 + 2)(1 + 6z−1 + 13z−2)
=

α

z−1 + 2
+

β

1− (−3 + 2i)z−1
+

γ

1− (−3− 2i)z−1

=
(α + 2β + 2γ) + (6α + (7 + 4i)β + (7− 4i)γ)z−1 + (13α + (3 + 2i)β + (3 − 2i)γ)z−2

(z−1 + 2)(1 + 6z−1 + 13z−2)

Thus,

α + 2β + 2γ = 1
6α + (7 + 4i)β + (7− 4i)γ = −4
13α + (3 + 2i)β + (3− 2i)γ = 5

=⇒

α = 58/82
β = (6 + 95i)/82
γ = (6− 95i)/82.

• Second way: evaluating the function at its poles

α = H(z)(z−1 + 2)
∣
∣
∣
z=− 1

2

=
1− 4z−1 + 5z−2

1 + 6z−1 + 13z−2

∣
∣
∣
z=− 1

2

=
29

41

and

β = H(z)(1 − (−3 + 2i)z−1)
∣
∣
∣
z=−3+2i

=
1− 4z−1 + 5z−2

(z−1 + 2)(1 − (−3− 2i)z−1)

∣
∣
∣
z=−3+2i

=
6 + 95i

82

γ = H(z)(1 − (−3− 2i)z−1)
∣
∣
∣
z=−3−2i

=
1− 4z−1 + 5z−2

(z−1 + 2)(1 − (−3 + 2i)z−1)

∣
∣
∣
z=−3−2i

=
6− 95i

82

Therefore we have

H(z) =
29

82

1

1 + 1
2z−1

+
6 + 95i

82

1

1− (−3 + 2i)z−1
+

6− 95i

82

1

1− (−3− 2i)z−1

Now we are ready to compute the inverse z-transform for each ROC. In the following
computation we use φ = tan−1 −2

3

188 Chapter 8.

• A:

hA[n] = −29

82
(
1

2
)nu[−n− 1]− 6 + 95i

82
(−3 + 2i)nu[−n− 1]− 6− 95i

82
(−3− 2i)nu[−n− 1]

= −
[
29

82

1

2n
+

6 + 95i

82
(
√

13eiφ)n +
6− 95i

82
(
√

13e−iφ)n
]

u[−n− 1]

= −
[
29

82

1

2n
+

6

41

√
13

n eiφn + e−iφn

2
− 95

41

√
13

n eiφn − e−iφn

2i

]

u[−n− 1]

= −
[
29

82

1

2n
+

6

41

√
13

n
cos(φn)− 95

41

√
13

n
sin(φn)

]

u[−n− 1]

• B:

hB [n] =
29

82
(
1

2
)nu[n]− 6 + 95i

82
(−3 + 2i)nu[−n− 1]− 6− 95i

82
(−3− 2i)nu[−n− 1]

=
29

82

1

2n
u[n]−

[
6 + 95i

82
(
√

13eiφ)n +
6− 95i

82
(
√

13e−iφ)n
]

u[−n− 1]

=
29

82

1

2n
u[n]−

[
6

41

√
13

−n eiφn + e−iφn

2
− 95

41

√
13

−n eiφn − e−iφn

2i

]

u[−n− 1]

=
29

82

1

2n
u[n]−

[
6

41

√
13

n
cos(φn)− 95

41

√
13

n
sin(φn)

]

u[−n− 1]

• C:

hC [n] =
29

82
(
1

2
)nu[n] +

6 + 95i

82
(−3 + 2i)nu[n] +

6− 95i

82
(−3− 2i)nu[n]

=

[
29

82

1

2n
+

6 + 95i

82
(
√

13eiφ)n +
6− 95i

82
(
√

13e−iφ)n
]

u[n]

=

[
29

82

1

2n
+

6

41

√
13

n eiφn + e−iφn

2
− 95

41

√
13

n eiφn − e−iφn

2i

]

u[n]

=

[
29

82

1

2n
+

6

41

√
13

n
cos(φn)− 95

41

√
13

n
sin(φn)

]

u[n]

(d) Causality: Since hA[n] and hB [n] have some terms in form of u[−n− 1], clearly they
are not causal. All the terms in hC [n] are in the form u[n] and it just depend on the
future. So, hC [n] is a causal system.

Stability: We know that a sequence is stable if and only if the ROC of its z-transform
contains the unit circle. According to the region of convergences found in part (b),

8.4. Z-transform properties 189

the only stable system is hB [n]. We can also check it in time domain:

∞∑

n=−∞
|hB [n]| =

−1∑

n=−∞

∣
∣
∣
∣

6

41

√
13

n
cos(φn)− 95

41

√
13

n
sin(φn)

∣
∣
∣
∣
+

∞∑

n=0

∣
∣
∣
∣

29

82

1

2n

∣
∣
∣
∣

≤
−1∑

n=−∞

∣
∣
∣
∣

6

41

√
13

n
cos(φn)

∣
∣
∣
∣
+

−1∑

n=−∞

∣
∣
∣
∣

95

41

√
13

n
sin(φn)

∣
∣
∣
∣
+

∞∑

n=0

∣
∣
∣
∣

29

82

1

2n

∣
∣
∣
∣

≤ 6

41

−1∑

n=−∞

∣
∣
∣

√
13

n
∣
∣
∣+

95

41

−1∑

n=−∞

∣
∣
∣

√
13

n
∣
∣
∣+

29

82

∞∑

n=0

∣
∣
∣
∣

1

2n

∣
∣
∣
∣

=
101

41

1√
13− 1

+
29

41
<∞

We can also check that
∑∞

n=−∞ |hA[n]| = ∞ and
∑∞

n=−∞ |hC [n]| = ∞, but it is a
bit long and more complicated.

(e) We can determine this property either by looking at the impulse responce or by con-
sidering the ROC.

• Impulse response: All the terms in hA are in form u[−n − 1] and so it is left-
sided. hB [n] has both the terms of form u[−n− 1] and u[n] and it is two-sided
sequence. Finally, only terms of the form u[n] contribute in hC [n] and so it is
right-sided sequence.

• ROC: Region A is inside a circle, so the corresponding sequence should be left-
sided. B is a ring and therefore should correspond to a two-sided sequence.
Region C is outside of a circle and the inverse transform on this region would
be a right-sided sequence.

8.4 Z-transform properties

1. Linearity:

a1x1[n] + a2x2[n]
Z←→ a1X1(z) + a2X2(z), ROC contains Rx1 ∩Rx2

2. Time-shifting:

x[n− n0]
Z←→ z−n0X(z), ROC = Rx

(except for the possible addition or deletion of z = 0 or z =∞)

190 Chapter 8.

3. Multiplication by exponential sequence:

zn

0 x[n]
Z←→ X (z/z0) , ROC = |z0|Rx

4. Differentiation of X(z):

nx[n]
Z←→ −z

dX(z)

dz
, ROC = Rx

Example: Inverse of a non-rational Z-transform

X(z) = log
(
1 + az−1

)
, |z| > |a|.

dX(z)

dz
=

1

1 + az−1
.
(
−az−2

)
·

Hence

−z
dX(z)

dz
=

az−1

1 + az−1

Z
−1

←→ a(−a)n−1u[n− 1] |z| > |a|.

Hence nx[n] = a(−a)n−1u[n− 1], or x[n] = a

n
(−a)n−1u[n− 1]. Hence

(−1)n−1 an

n
u[n− 1]

Z←→ log
(
1 + az−1

)

5. Conjugation of a complex sequence:

x∗[n]
Z←→ X∗(z∗) ROC = Rx

6. Time-reversal:

x∗[−n]
Z←→ X∗

(
1

z∗

)

, ROC =
1

Rx

7. Convolution of sequences:

x1[n] ∗ x2[n]
Z←→ X1(z)X2(z), ROC contains Rx1

∩Rx2

8. Initial value theorem: If x[n] is zero for n < 0, (i.e. if x[n] is causal), then

x[0] = lim
z→∞

X(z)

8.4. Z-transform properties 191

Example 8.6 (Interleaving)

Let x[n] and y[n], n ∈ Z, be sequences with respective Z-transforms X(z) and Y (z).
Now consider a third sequence u[n] that is constructed by interleaving x[n] and y[n]. This
means that u[2l] = x[l] and u[2l + 1] = y[l], l ∈ Z.

(a) Express the Z-transform of u[n] in terms of X(z) and Y (z).

The ROC of X(z) is 0.64 ≤ |z| ≤ 4 and the ROC of Y (z) is 0.25 ≤ |z| ≤ 9.

(b) What is the ROC of U(z)?

Solution:

(a)

U(z) =

∞∑

n=−∞
u[n]z−n

=

∞∑

l=−∞
u[2l]z−2l +

∞∑

l=−∞
u[2l + 1]z−2l−1

=

∞∑

l=−∞
x[l](z2)−l + z−1

∞∑

l=−∞
y[l](z2)−l

= X(z2) + z−1Y (z2).

(b) If z0 is a pole of X(z), then ±√z0 will be poles of X(z2). This means we have

ROC{X(z2)} : 0.8 ≤ |z| ≤ 2,

ROC{Y (z2)} : 0.5 ≤ |z| ≤ 3.

Multiplying Y (z2) with z−1 might add a pole at 0, which is outside the region of
convergence of Y (z2), so ROC{z−1Y (z2)} = ROC{Y (z2)}.
For U(z) to exist we need both terms in the sum to exist, so we take the intersection
of the ROC of the individual terms. This gives

ROC{U(z)} : 0.8 < |z| < 2.

192 Chapter 8.

8.5 Analysis and characterization of LTI systems using Z-transform

The Z-transform plays a particularly important role in the analysis and representation of
discrete-time LTI systems. From the convolution property, for an LTI system with impulse

response h[n]
Z←→ H(z) and an input x[n]

Z←→ X(z), we have,

y[n] = (h ∗ x)[n] = h[n] ∗ x[n]
Z←→ H(z)X(z), (8.19)

where X(z), Y(z) and H(z) are the Z-transforms and the ROC of Y (z) is

Ry = Rx ∩Rh. (8.20)

H(z) is referred to as the system function or transfer function of the system.

8.5.1 Causality

A causal LTI system has an impulse response that is h[n] = 0 for n < 0 and therefore is
right-sided. Hence the ROC of H(z) is the exterior of a circle on the Z-plane.

Since for a causal LTI system

H(z) =
∞∑

n=0

h[n]z−n (8.21)

does not include any positive powers of z, the ROC includes infinity. Hence a discrete LTI
system is causal if and only if the ROC of its system function is exterior of a circle and
includes infinity.

8.5.2 Stability

We know that an LTI system is BIBO stable if and only if it is absolutely summable. This
implies that its DTFT exists, which in turn means that the unit circle is in the ROC of
the system function. Therefore, we have the following:

An LTI system is stable if and only if the ROC of its system function H(z) includes
the unit circle.

Combining causality and stability, we see that a causal LTI system with rational system
function H(z) is stable if and only if all its poles of H(z) lie inside the unit circle.

8.5. Analysis and characterization of LTI systems using Z-transform 193

8.5.3 LTI systems and linear constant-coefficient difference equations

If

y[n] =
N−1∑

k=1

aky[n− k] +
M−1∑

k=0

bkx[n− k],

then

Y (z) =

N−1∑

k=1

akz
−kY (z) +

M−1∑

k=0

bkz
−kX(z).

Hence

Y (z)

[

1−
N−1∑

k=1

akz
−k

]

= X(z)

M−1∑

k=0

bkz
−k

or

Y (z)

X(z)
=

∑M−1
k=0 bkz

−k

1−∑N−1
k=1 akz−k

= H(z).

Therefore the system function for such systems are easy to write. This form of H(z) =
Y (z)
X(z) is also called the transfer function of a linear constant-coefficient difference equation
system.

194 Chapter 8.

8.6 Problems

Problem 8.1 (DFT and Z-transform) Let us consider a sequence x(n) having z-transform
X(z). If the sequence has finite duration of length N or less, it can be recovered from its
N-point DFT. Hence its z-transform is uniquely determined by its N-point DFT. Show
that:

X(z) =

N−1∑

n=0

x(n)z−n =
1− z−N

N

N−1∑

k=0

X(k)

1− ej2πk/Nz−1

Problem 8.2 We consider a causal system with transfer function

H(z) =
1− cz−1

1− dz−1
, |z| > 1

2
, (8.22)

where c = 1
2ej(φ+π) and d = 1

2ejφ. The variable φ is a parameter to the system. In this
exercise we will analyze the behavior of this system as a function of φ.

We start with an analysis in the Z-domain.

(a) Give the poles and zeros of H(z) as a function of φ. Give a pole-zero plot of H(z)
for φ = 0 and φ = π.

In the Fourier domain we will consider the magnitude response only. In the analysis of
LTI systems it is often convenient to consider the log-magnitude response 20 log10

∣
∣H(ejω)

∣
∣.

(b) Let y[n] be the output of the system at input x[n]. Express 20 log10

∣
∣Y (ejω)

∣
∣ in terms

of 20 log10

∣
∣X(ejω)

∣
∣ and 20 log10

∣
∣H(ejω)

∣
∣.

(c) Show that for a generic r and θ the following holds:

20 log10

∣
∣
∣1− rejθ

∣
∣
∣ = 10 log10

(
1 + r2 − 2r cos(θ)

)
. (8.23)

(d) Derive the general expression for 20 log10

∣
∣H(ejω)

∣
∣ for H(z) given in (8.22). How

does the system behave at ω = φ and ω = φ + π?

(e) Let φ = 0. In MATLAB, create a plot of 20 log10

∣
∣H(ejω

∣
∣. Is this system all-pass,

low-pass, high-pass or band-pass?

(f) Let φ = π. In MATLAB, create a plot of 20 log10

∣
∣H(ejω

∣
∣. Is this system all-pass,

low-pass, high-pass or band-pass?

8.6. Problems 195

Finally an analysis in the time-domain.

(g) For arbitrary φ, determine the impulse repsonse of the system.

(h) Let φ = 0. Based on the impulse response only, what can you say about the behaviour
of the system at a unit step input? (You can think of the unit step function as a low
frequency signal)

(i) Let φ = π. Based on the impulse response only, what can you say about the behaviour
of the system at a unit step input.

Problem 8.3 (Minimum Phase System) A system is called minimum phase if the
system and its inverse are causal and stable. A rational transfer function will be minimum
phase if and only if all its zeros and poles are inside the unit circle. For example H1(z) =
1−az−1

1−bz−1 , where a = 1
3e

3π
4

i and b = 1
2e

π
3
i, is a minimum phase system.

However, there exist other transfer functions such as

H2(z) =
z−1 − a∗

1− bz−1
, H2(z) =

1− az−1

z−1 − b∗
, and H3(z) =

z−1 − a∗

z−1 − b∗

which have the same magnitude as H1(z) on the unit circle. In this problem we investigate
two of important properties of minimum phase systems which identify .the minimum phase
system among all systems with the same magnitude.

(a) [minimum group-delay] Let H(z) = (1−cz−1)
(1−dz−1)

where c = |c|eiθ, d = |d|eiφ, |c| > 1

and |d| < 1. Rewrite H(z) = Hmin(z)Hap(z) where

• All zeros and poles of Hmin(z) are inside the unit circle,

• Hap(z) be a causal all-pass filter.

(i) Replace z in Hap(z) by eiω and find the group-delay expression for Hap(z) in
terms of |c|, |d|, θ, φ, ω and show that it is positive for any ω.

(ii) Write the group-delay expression for H(z) in terms of the group-delay of Hmin(z)
and Hap(z). Compare the group-delay of H(z) and Hmin(z).

(b) [minimum energy delay] Let Hmin(z) be a minimum phase system which has a
zero at α. We can write Hmin(z) = Q(z)(1 − αz−1), where Q(z) is also minimum
phase. Now consider another system with transfer function H(z) such that |H(z)| =
|Hmin(z)| and H(z) has a zero at 1/α∗ instead of α.

(i) Compare
∑∞

n=0 |hmin[n]|2 to
∑∞

n=0 |h[n]|2.

196 Chapter 8.

(ii) Express H(z) in terms of Q(z).

(iii) Express hmin[n] and h[n] in terms of q[n] and α.

(iv) Write the expression for

m∑

n=0

|hmin[n]|2 −
m∑

n=0

|h[n]|2

and simplify it to find an expression in terms of q[m] and α.

(v) Compare
∑m

n=0 |hmin[n]|2 to
∑m

n=0 |h[n]|2 and conclude that the minimum phase
system has the minimum energy-delay among all the systems with the same
magnitude response.

Problem 8.4 For this exercise, you first need to download the file santa corrupt.wav

from the course website. Load the file into matlab [data, fs] = wavread(′santa corrupt.wav′).
Listen to the file using soundsc(data, fs).

(a) Using matlab, provide a plot of the amplitude of the DFT of the sound sequence.
After having listened to the sound sequence and looked at the frequency response,
you should realize that the sequence was corrupted by high frequency noise!

(b) It is now up to you to design a 101 tap filter to de-noise the sequence. You are free
to use either the windowing method or the Parks-McLellan algorithm. At the end,
you should provide us a plot of the frequency response of the de-noised sequence, as
well as a plot of the frequency and time response of the de-noising filter you designed.
Further, provide a short explanation of the procedure you followed. (Hint: do not
try to recover the original sequence exactly, rather try to get rid of high frequencies).

Problem 8.5 Let x[n] be a discrete-time sequence and X(z) its corresponding z-transform
with appropriate ROC.

1. Prove that the following relation holds:

nx[n]
Z←→ −z

d

dz
X(z).

2. Using (a), show that

(n + 1)αnu[n]
Z←→ 1

(1− αz−1)2
, |z| > |α|.

8.6. Problems 197

3. Suppose that the above expression corresponds to the impulse response of an LTI
system. What can you say about the causality of such a system? About its stability?

4. Let α = 0.8, what is the spectral behavior of the corresponding filter? What if
α = −0.8?

Problem 8.6 Consider a causal discrete system represented by the following difference
equation:

y[n]− 3.25y[n − 1] + 0.75y[n − 2] = x[n− 1] + 3x[n − 2].

1. Compute the transfer function and check the stability of this system both analytically
and graphically.

2. If the input signal is x[n] = δ[n]− 3δ[n − 1], compute the z-transform of the output
signal and discuss the stability.

3. Take an arbitrary input signal that does not cancel the unstable pole of the transfer
function and repeat b).

Problem 8.7 Consider two two-sided sequences h[n] and g[n] and consider a third se-
quence x[n] which is built by interleaving the values of h[n] and g[n]:

x[n] = . . . , h[−3], g[−3], h[−2], g[−2], h[−1], g[−1], h[0], g[0], h[1], g[1], h[2], g[2], h[3], g[3], . . .

with x[0] = h[0].

(a) Express the z-transform of x[n] in terms of the z-transforms of h[n] and g[n].

(b) Assume that the ROC of H(z) is 0.64 < |z| < 4 and that the ROC of G(z) is 0.25 <
|z| < 9. What is the ROC of X(z)?

198 Chapter 8.

Chapter 9

Filters and Filter Design

We have already shown that, from a mathematical point of view, a linear time-invariant
system is completely characterized by its impulse response. While any absolutely summable
impulse response defines a stable LTI system, the computation of an output sample for the
system might require an infinite number of operations; this is for instance the case of the
ideal filters in section 7.7.1. In practice, of course, we are interest in realizable systems, i.e.
systems which can be implemented with a finite number of operations. It is immediate
to see that any FIR filter belongs to this category, but we have also seen in 7.4.2 that
there exist IIR systems (whose impulse response is an infinite sequence) which can still be
implemented with a finite amount of computation and storage. It turns out that the most
general class of such realizable discrete-time systems is described by constant-coefficient
difference equations. The general concept of filter design usually starts with a given set
of specifications, which in all but a handful of cases are expressed in terms of a desired
frequency response; the design problem is solved by finding the appropriate coefficients for
a suitable difference equation which implements the filter. We will show that realizable
filters possess a transfer function which is a ratio of polynomials in the complex variable
z−1; as a consequence, filter design can be cast in terms of a polynomial optimization pro-
cedure for a given error measure. Finally, the structure of difference equation defines an
explicit operational procedure for computing the filter’s output values; by arranging the
terms of the equation in different ways, we can arrive at different algorithmic structures
for the implementation of digital filters.

9.1 Realizable Filters: General Properties

We will start our discussion with a general analysis of constant-coefficient difference equa-
tions and associated transfer functions, from which the essential properties of linear filters

199

200 Chapter 9.

(including stability) are easily derived.

9.1.1 Difference Equations & Initial Conditions

In its most general form, a constant-coefficient difference equation defines a relationship
between an input signal x[n] and an output signal y[n] as

N−1∑

k=0

aky[n− k] =

M−1∑

k=0

bkx[n− k]; (9.1)

in the rest of these notes we will restrict ourselves to the case in which all the coefficients ak

and bk are real. Usually, it is a0 = 1, so that the above equation can easily be rearranged
as:

y[n] =
M−1∑

k=0

bkx[n− k]−
N−1∑

k=1

aky[n− k]; (9.2)

Clearly, the above relation defines each output sample y[n] as a linear combination of
past and present input values and past output values. However, it is easy to see that if
aN−1 6= 0 we can for instance rearrange (9.1) as

y[n−N + 1] =
M−1∑

k=0

b′kx[n− k]−
N−2∑

k=0

a′ky[n− k];

where a′k = ak/aN−1 and b′k = bk/aN−1. With the change of variable m = n−N + 1, this
becomes

y[m] =

N−1∑

k=N−M

b′kx[m + k]−
N−1∑

k=1

a′ky[m + k]; (9.3)

which shows that the difference equation can be computed in the other way as well, namely
by expressing y[m] as a linear combination of future values of input and output. It is rather
intuitive that the first approach defines a causal behavior, while the second approach is
anticausal. The main point is that, contrary to the differential equations used in the
characterization of continuous-time systems, difference equation can be used directly to
translate the transformation operated by the system into an explicit algorithmic form. To
see this, and to gain a lot of insight on the properties of difference equations, it may be
useful to consider a possible implementation of the system in (9.2), here written in C:

9.1. Realizable Filters: General Properties 201

extern double a[N]; // The a’s coefficients

extern double b[M]; // The b’s coefficients

static double x[M]; // Delay line for x

static double y[N]; // Delay line for y

double GetOutput(double input)

{

int k;

for (k = N-1; k > 0; k--) // Shift delay line for x

x[k] = x[k-1];

x[0] = input; // new input value x[n]

for (k = M-1; k > 0; k--) // Shift delay line for x

y[k] = y[k-1];

double y = 0;

for (k = 0; k < M; k++)

y += b[k] * x[k];

for (k = 1; k < M; k++)

y -= a[k] * y[k]; // New value for y[n];

y[0] = y; // Store in delay line

return y;

}

It is immediate to verify that

1. the above routine realizes the difference equation in (9.2)

2. the storage required is (N + M)

3. each output sample is obtained via (N + M − 1) multiplications and additions

4. the transformation is causal

If we try to compile and run the above routine, however, we immediately run into an
initialization problem: the first time (actually, the first max(N,M − 1) times) we call the
function, the delay lines which hold past values of x[n] and y[n] will contain undefined
values. Most likely, the compiler will notice this condition and will print a warning message
signaling that the static arrays have not been properly initialized. We are back to the
problem of setting the initial conditions of the system. The choice which guarantees
linearity and time invariance is called the zero initial conditions and corresponds to setting
the delay lines to zero before starting the algorithm. This choice implies that the system

202 Chapter 9.

response to the zero sequence is the zero sequence and, in this way, linearity and time
invariance can be proven as in section 7.4.2.

9.1.2 Transfer Functions

The best way to analyze the properties of the system implemented by (9.1) is to apply
the z-transform to both sides of the equation; we obtain:

Y (z) = X(z)

M−1∑

n=0

bnz−n − Y (z)

N−1∑

n=1

anz−n (9.4)

The above equation can be rearranged as

Y (z) = H(z)X(z) (9.5)

where H(z) is the transfer function of the system and is given by

H(z) =
b0 + b1z

−1 + . . . + bM−1z
−(M−1)

1 + a1z−1 + . . . + aN−1z−(N−1)
(9.6)

Such a transfer function is called a rational transfer function and is the ratio of two
polynomials in z−1; note that the degree of the polynomial at the numerator is M −1 and
that of the denumerator is N − 1. As such, it can be written in factored form as

H(z) = b0

M−1∏

n=1

(1− znz−1)

N−1∏

n=1

(1− pnz−1)

(9.7)

where the zn are called the zeros of the filter and pn are called the poles; the zeros are
the roots of the numerator of the transfer function while the poles are the roots of the
denominator. Clearly, if zi = pk for some i and k (i.e. if a pole and a zero coincide) the
corresponding first-order factors will cancel each other out and the degrees of numerator
and denominator are both decreased by one. In the following, we will assume that such
factors have been already removed and that the numerator and denominator polynomials
of a given rational transfer function are coprime.

Recall that the roots of a polynomial with real-valued coefficients are either real or
they occur in complex-conjugate pairs; a pair of complex-conjugate roots translates to a
second-order term with real coefficients:

(1− az−1)(1 − a∗z−1) = 1− 2Re{a}z−1 + |a|2z−2 (9.8)

9.2. Filter Design - Introduction 203

As a consequence, the transfer function can be factored in the product of first- and second-
order terms in which the coefficients are all strictly real; namely:

H(z) = b0

Mr∏

n=1

(1− znz−1)

Mc∏

n=1

(1− 2Re{zn}z−1 + |zn|2z−2)

Nr∏

n=1

(1− pnz−1)

Nc∏

n=1

(1− 2Re{pn}z−1 + |pn|2z−2)

(9.9)

where Mr is the number of real zeros, Mc is the number of complex-conjugate zeros and
Mr + 2Mc = M (with the same holding for the poles representation, i.e. Nr + 2Nc = N).

9.1.3 Stability Analysis

If we consider equation (9.5), Y (z) = H(z)X(z), it is clear that H(z) is the z-transform of
the filter’s impulse response. Therefore, the BIBO stability of a digital filter as described
by (9.1) is easily inferred from the properties of the z-transform: for a filter to be stable the
ROC of H(z) must contain the unit circle because this guarantees the absolute summa-
bility of h[n]. Since the ROC is determined by the location of the poles of the transform,
the above condition translates to the following:

• For causal filters the ROC of H(z) is a region on the complex plane extending
outwards, and therefore a necessary and sufficient condition for stability is that all
the poles of H(z) are inside the unit circle.

• For anticausal filters the ROC of H(z) is a region on the complex plane extending
inwards, and therefore a necessary and sufficient condition for stability is that all
the poles of H(z) are outside the unit circle.

9.2 Filter Design - Introduction

As we have seen, a realizable filter is completely described by its rational transfer function;
designing a filter corresponds to determining the coefficients of the transfer function with
respect to the desired filter characteristics. For an FIR filter of length M , there are
M coefficients that have to be determined, and they correspond directly to the filter’s
impulse response. In a similar way, an IIR filter with a numerator of degree M − 1 and a
denominator of degree N − 1, has M + N − 1 coefficients to determine (since we always
assume a0 = 1). The main questions are the following:

• How do we choose the filter’s coefficients in order to obtain the desired filtering
characteristics?

204 Chapter 9.

• What are the criteria to measure the quality of the obtained filter?

• What is the best algorithmic structure (software or hardware) to implement a given
digital filter?

The first two questions are optimization problems in a parameter space of dimension
M + N − 1 with a given optimality criterion (for instance, minimum square error or
minimax). The last question is an algorithmic design problem subject to constraints of
computational speed, storage and precision, which we will analyze in detail at the end of
the chapter.

9.2.1 FIR versus IIR

Filter design has a long and noble history in the analog domain: a linear electronic network
can be described in terms of a differential equation linking, for instance, the voltage as a
function of time at the input of the network to the voltage at the output. The arrangement
of the capacitors, inductances and resistors in the network determine the form of the
differential equation, while their values determine its coefficients. A fundamental difference
between an analog filter and a digital filter is that the transformation from input to output
is almost always considered instantaneous (i.e. the propagation effects along the circuit
are neglected). In digital filters, on the other hand, the delay is always explicit and is
actually the fundamental building block in a processing system. Because of the physical
properties of capacitors, which are ubiquitous in analog filters, the transfer function of
an analog filter (expressed in terms of its Laplace transform) is “similar” to the transfer
function of an IIR filter, in the sense that it contains both poles and zeros. In a sense, IIR
filters can be considered the discrete-time counterpart of classic analog filters. FIR filters,
on the other hand, are the flagship of digital signal processing; while one could conceive
of an analog equivalent to an FIR, its realization would require the use of analog delay
lines, which are costly and impractical components to manufacture. In a digital signal
processing scenario, on the other hand, the designer can freely choose between two lines
of attack with respect to a filtering problem, IIR or FIR, and therefore it is important to
highlight advantages and disadvantages of each.

FIR Filters. The main advantages of FIR filters can be summarized as follows:

X Unconditional stability;

X Precise control of the phase response and, in particular, exact linear phase;

X Optimal algorithmic design procedures;

X Robustness with respect to finite numerical precision hardware

9.2. Filter Design - Introduction 205

while their disadvantages are mainly:

× Longer input-output delay

× Higher computational cost with respect to IIR solutions

IIR Filters. IIR filters are often an afterthought in the context of digital signal pro-
cessing in the sense that they are designed by mimicking established design procedures
in the analog domain; their appeal lies mostly in their compact formulation: for a given
computational cost, i.e for a given number of operations per input sample, they can offer
a much better magnitude response than an equivalent FIR filter. Furthermore, there are
a few fundamental processing tasks (such as DC removal, as we will see later) which are
the natural domain of IIR filters. The drawbacks of IIR filter, however, mirror in the
negative the advantages of FIR’s. The main advantages of FIR filters can be summarized
as follows:

X Lower computational cost with respect to an FIR with similar behavior

X Shorter input-output delay

X Compact representation

while their disadvantages are mainly:

× Stability is not guaranteed;

× Phase response is difficult to control;

× Design is complex in the general case;

× Sensitive to numerical precision.

For these reasons, in these notes and in the course we will concentrate mostly on the
FIR design problem and we will tackle the design of IIR filters mostly for some specific
processing tasks which are often encountered in the practice.

9.2.2 Filter Specifications & Tradeoffs

A set of filter specifications represents the guidelines for an application-oriented filter de-
sign. Real-world filters are designed with a variety of practical requirements in mind, most
of which are conflicting. One such requirement, for instance, is to obtain a low “computa-
tional price” for the filtering operation; this cost is obviously proportional to the number of
coefficients in the filters, as we have seen in the introduction, but it also depends heavily on

206 Chapter 9.

2
0.4 0.6

−0.01

0.01

0.9
1

1.1

w

Figure 9.1: Filter specifications

the underlying hardware architecture. The tradeoffs between disparate requirements such
as cost, precision or numerical stability are very subtle and not altogether obvious; the
art of the digital filter designer, although probably less dazzling than the art of the analog
filter designer, is to determine the best design strategy for a given practical problem.

In this chapter we won’t certainly consider all the variables which enter a filter design
scenario; the starting point, however, is almost always a set of filter specifications in the
frequency domain. These are best illustrated by example: suppose our goal is to design
a half-band lowpass filter, i.e. a lowpass filter with cutoff frequency π/2. The practical
contraints to consider are the following:

• Filter Type. Whether we design an FIR or an IIR, is dependent on a variety of
factors which are specific to the practical application. This decision, however, is the
first to be made since the specifications are dependent on it. A closely related design
choice determines the maximum filter order which we can afford.

• Transition band. We should know by now (and we shall see again shortly) that we
cannot obtain an arbitrarily sharp transition band in a realizable filter. Therefore,
we must be willing to allow for the existence of a transition band from passband
to stopband; suppose we estimate that its width can be up to 20% of the total
bandwidth: since the cutoff is supposed to be at 0.5π, the transition band will thus
extend from 0.4π to 0.6π.

• Tolerances. Similarly, we cannot simply impose a strict value of 1 for the passband
and a value of 0 for the stopband but we must allow for tolerances; after exam-
ining the problem we are designing the filter for, suppose we decide we can afford
a 10% error in the passband and a 1% error in the stopband. Note that, in filter

9.3. FIR Filter Design 207

design parlance, the attenuation in the stopband is frequently expressed on a decibel
logarithmic scale:

AdB = 20 log10(δs),

where δs is the maximum tolerated error in the stopband. In the previous example,
we are thus requiring an attenuation of 40 dB.

These specifications can be represented graphically as in Figure 9.1; the filter design
problem consists now in finding the minimum size FIR or IIR filter which fulfills the
required specifications.

9.3 FIR Filter Design

In this section we will explore two fundamental strategies for FIR filter design, the window
method and the minimax (or Parks-McClellan) method. Both methods seek to minimize
the error between a desired (and often ideal) filter transfer function and the transfer
function of the designed filter; they differ in the error measure which is used in the mini-
mization. The window method is completely straightforward and it is often used for quick
designs. The minimax method, on the other hand, is the procedure of choice for accurate,
optimal filters. Both methods will be illustrated with respect to the design of a lowpass
filter.

9.3.1 FIR Filter Design by Windowing

Consider the problem of designing a lowpass filter with cutoff frequency wc: with no
further specifications (i.e. with no declared tolerance or approximations) the only solution
is simply the inverse Fourier transform of the desired transfer function. The resulting
impulse response h[n] is of course the usual sinc function which we saw in section 7.7.1:

h[n] =
1

2π

∫ π

−π
H(ejω)ejωndω

=
1

2π

∫ wc

−wc

ejωndω

=
1

2πjn

[
ejωcn − e−jωcn

]

=
sin(ωcn)

πn

=
ωc

π
sinc(

ωc

π
n)

208 Chapter 9.

H(e)jw

ow

h[n]

n

F.T.

W−wo

(a)

H(e)jw

−wo wo

h[n]

n

F.T.

W

(b)

Figure 9.2: a) Ideal filter. b) Approximated filter.

The resulting filter, however, is an ideal filter and it cannot be represented by a rational
transfer function with a finite number of coefficients. Our only hope is that, by somehow
relaxing the design constraints, we can arrive at a realizable approximation Ĥ(ejω) of the
ideal filter H(ejω). Let us start by considering an approximated FIR filter obtained by
simply truncating the original impulse response:

ĥ[n] =

{
h[n] −N ≤ n ≤ N
0 otherwise

(9.10)

This is a (2N + 1)-tap FIR; Figure 9.2(a) shows the ideal filter and Figure 9.2(b) shows
the approximated filter, with their corresponding Fourier transforms (the reasons for their
shapes will be clear later). The approximation we just created was obtained in a sort
of “intuitive” way; we will now show, however, that it actually satisfies a very precise
approximation criterion, namely the minimization of the mean square error (MSE) between
the original and approximated filters. Let’s denote by E2 such error, that is:

E2 =

∫ π

−π
|H(ejω)− Ĥ(ejω)|2dw.

Therefore one optimization problem for a FIR filter of length M (where M = 2N + 1)
could be

minimize
∥
∥
∥H

(
ejω
)
− Ĥ

(
ejω
)
∥
∥
∥

2

2

s.t. (9.11)

Ĥ
(
ejω
)

=
∑N

n=−N ĥ[n]e−jωn.

9.3. FIR Filter Design 209

We can apply Parseval’s theorem (see (5.46)) to obtain the equivalent expression in
the discrete-time domain:

E2 = 2π
∑

n∈Z
|h[n]− ĥ[n]|2

If we now recall that ĥ[n] = 0 for |n| > N , we have

E2 = 2π

[
N∑

n=−N

|h[n]− ĥ[n]|2 +

∞∑

n=N+1

|h[n]|2 +

−N−1∑

n=−∞
|h[n]|2

]

.

Obviously the last two terms are nonnegative and independent of ĥ[n]. Therefore, the
minimization of E2 with respect to ĥ[n] is equivalent to the minimization of the first term
only, and this is easily obtained by letting

ĥ[n] = h[n] for n = −N, . . . ,N

If we look at what we are doing, it is apparent that we are trying to approximate a Fourier
sum with a finite number of terms (we are actually working backwards, since the Fourier
coefficients are the discrete-time filter values and the approximated function is a frequency
response). Since the approximated function is discontinuous in ω0 we will incur the Gibbs
phenomenon, which explains the non-negligible ripples around the transition point. Also,
because of the finite number of terms, the transition from passband to stopband will be
less sharp; this is clearly apparent in Figure 9.2.

The Window Concept. Another way to look at the resulting approximation is to express
ĥ[n] as:

h[n] = h[n]w[n], (9.12)

where w[n] is a rectangular window of length (2N + 1) taps centered at index zero:

w[n] = rect(n/N) =

{
1 −N ≤ n ≤ N
0 otherwise

. (9.13)

We know from the modulation theorem in (7.24) that the Fourier transform of (9.12) is

Ĥ(ejω) =
1

2π

∫ π

−π
H(ejω)W (ej(ω−θ)dθ

where W (ej(ω) is the Fourier transform of the window w[n]:

W (ejω) =
N∑

n=−N

e−jωn =
sin
(
ω
(
N + 1

2

))

sin(ω/2)
(9.14)

210 Chapter 9.

20

(2N+1)

2

4

(2N+1)
=

Figure 9.3: Approximated filter Fourier transform

An example of W (ejω) for N = 6 is shown in Figure 9.3. By visual inspection, we can
determine the following facts:

• The first zero crossing of W (ejω) occurs at ω = 2π/(2N + 1)

• The width of the main lobe of the magnitude response is ∆ = 4π(2N + 1)

• The magnitude response shows the presence of sidelobes, an oscillatory effect around
the main lobe.

Therefore, the windowing operation on the ideal impulse response, i.e. the circular con-
volution of the ideal frequency response with W (ejw) produces two main effects:

1. The sharp transition from passband to stopband is smoothed by the convolution
with the main lobe of width ∆.

2. Ripples appear both in the stopband and the passband due to the convolution with
the sidelobes.

These effects are shown in Figure 9.4. It appears that the sharpness of the transition
band and the size of the ripples are dependent on the shape of the window’s Fourier
transform; indeed, by carefully designing the shape of the windowing sequence we can

ww 0 w

* =

w

Figure 9.4: Convolution of the ideal filter with the window.

9.3. FIR Filter Design 211

w

1

0

�����������
���
���

���
���
���

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
������

���
���
���

���
���
���

���
���
�������

����
����

����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��������������������

������������������������

������������������������

maxE

(a)

1

w
0

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����
����

����
����
����

����
����
��������

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

������������������

����������������������
maxE

(b)

Figure 9.5: a) Minimum square error solution. b) Minimax solution.

trade mainlobe width for sidelobe amplitude and obtain a more controlled behavior in the
frequency response of the approximation filter.

Although the MSE minimization procedure can lead to perfectly usable filters, its
drawback is the lack of control of the maximum error in the frequency response with
respect to the ideal filter. A more suitable approximation criterion may therefore be the
minimax criterion, where we aim to explicitly minimize the maximum approximation error
over the entire frequency support; this will be explained in detail in the next section. We
can already say, however, that while the minimum square error is an integral criterion,
the minimax is a pointwise criterion; or, more mathematically, that the MSE and the
minimax are respectively L2([−π, π])- and L∞([−π, π])-norm minimizations for the error
function E(ω) = Ĥ(ejω) − H(ejω). Figure 9.5 illustrates the typical result of applying
both criteria to the ideal lowpass problem. As it can be seen, the minimum square and
minimax solutions are very different.

More General Windows. We have seen in the previous discussion the fundamental
principles of FIR filter design by windowing. The starting point is the desired frequency
response H(ejω), from which the ideal impulse response h[n] is obtained by the usual
DTFT inversion formula

h[n] =
1

2π

∫ π

−π
H(ejω)ejωndω.

While the analytical evaluation of the above integral may be difficult or impossible in the
general case, for frequency responses H(ejω) which are piecewise linear, the computation
of h[n] can be carried out in an exact (albeit not trivial) way; the result will be a linear
combination of modulated sinc and sinc-squared sequences1. The FIR approximation is

1For more details one can analyze the Matlab fir1 function.

212 Chapter 9.

−150 −100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

Rectangular

−150 −100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

Triangular

−150 −100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

Hamming

−150 −100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

Blackman

Figure 9.6: Some common windows in the time domain for N = 127 (total

support 256 samples).

then obtained by applying a finite-length window w[n] to the ideal impulse response:

ĥ[n] = w[n]h[n]

Since the frequency response of the FIR approximation is the circular convolution (in the
frequency domain) of the desired response with the Fourier transform of the window, the
window itself should be designed with the following goals in mind:

1. the window should be short, as to minimize the length of the FIR and therefore its
computational cost

2. the spectrum of the window should be concentrated in frequency around zero as
to minimize the “smearing” of the original frequency response; in other words, the
window’s main lobe should be as narrow as possible (it is clear that for W (ejω) =
δ(ω) the resulting frequency response is identical to the original)

3. the unavoidable sidelobes of the window’s spectrum should be small as to minimize
the rippling effect in the resulting frequency response

It is clear that the first two requirements are openly in conflict; indeed, the width of the
main lobe ∆ is inversely proportional to the length of the window (we have seen, for
instance, that for the rectangular window ∆ = 4π/M , with M the length of the filter).
The second and third requirements are also in conflict, although the relationship between

9.3. FIR Filter Design 213

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

[0, π]

20
log

10|W
(ejω)|

Rectangular

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

[0, π]

Triangular

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

[0, π]

20
log

10|W
(ejω)|

Hamming

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

[0, π]

Blackman

Figure 9.7: Some common windows in the frequency domain (magnitude in dBs).

mainlobe width and sidelobe amplitude is not straightforward and can be considered a
design parameter. In the frequency response, reduction of the sidelobe amplitude implies
that the Gibbs phenomenon is decreased, but at the price of an enlargement of the filter’s
transition band. For example, using a triangular window instead of a rectangular window
strongly attenuates the ripples but, as a consequence, the transition band almost doubles.

There is a large body of literature concerning the design of windows; the most com-
monly used windows are those which admit a simple representation in closed form; amongst
those we can name the triangular window, the Hamming window, and the Blackman win-
dow, which are plotted in Figure 9.6. For example, the zero-centered (2N + 1)-point
Hamming window is defined as:

w(n) = 0.54 − 0.46 cos(2π(n + N)/2N), |n| ≤ N − 1

while the Blackman window is defined as:

w(n) = 0.42 − 0.5 cos(2π(n + N)/2N) + 0.08 cos(4π(n + N)/2N), |n| ≤ N − 1

Finally, it is worth mentioning the existence of the Kaiser window, in which a user definable
parameter β is used to “tune” the mainlobe-sidelobe tradeoff independently of the window
length.

214 Chapter 9.

9.3.2 Minimax FIR Filter Design

As we saw in the opening example, FIR filter design by windowing minimizes the overall
mean square error between the desired frequency response and the actual response of the
filter. Since this might lead to a very large error at frequencies near the transition band, we
will now consider a different approach, namely the design by minimax optimization. This
techniques minimizes the maximum allowable error in the filter’s magnitude response, both
in the passband and in the stopband. Optimality in the minimax sense requires therefore
the explicit stating of a set of tolerances in the prototypical frequency response, in the
form of design specifications as seen in section 9.2.2. Before tackling the design procedure
itself, we will need a series of intermediate results.

Generalized Linear Phase. In section 7.6.2 we introduced the concept of linear phase; a
filter with linear phase response is particularly desirable since the phase response trans-
lates to just a time delay (possibly fractional) and we can concentrate on the magnitude
response only. We also introduced the notion of group delay and showed that linear phase
corresponds to constant group delay. Clearly the converse is not true: a frequency response
of the type

H(ejω) = |H(ejω)|e−jωd+jα

has constant group delay but differs from a linear phase system by a constant phase factor
ejα. We will call this type of phase response generalized linear phase. Important cases are
those for which α = 0 (strictly linear phase) and α = π/2 (generalized linear phase used
in differentiators).

FIR Filter Types. Consider a causal, M -tap FIR filter with impulse response h[n],
n = 0, 1, . . . ,M −1; in the following we will be interested in filters whose impulse response
is symmetric or antisymmetric around its “midpoint”. If the number of taps is odd, the
midpoint of the impulse response coincides with the center tap h[(M−1)/2]; if the number
of taps is even, on the other hand, the midpoint is still at (M − 1)/2 but this value does
not coincide with a tap since it is located “right in between” taps h[M/2− 1] and h[M/2].
Symmetric and antisymmetric FIR filters are important since their frequency response
has generalized linear phase. The delay introduced by these filters is equal to (M − 1)/2
samples; clearly this is an integer delay if M is odd, and it is fractional (half a sample
more) if M is even. There are clearly four different possibilities for linear phase FIR
impulse responses, which are listed here with their corresponding generalized linear phase
parameters :

The generalized linear phase of (anti)symmetric FIR’s is easily shown. Consider for
instance a Type I filter, and define C = (M − 1)/2, the location of the center tap; we can

9.3. FIR Filter Design 215

Filter Type Number of Taps Symmetry Delay Phase Factor

Type I odd symmetric integer α = 0
Type II even symmetric fractional α = 0
Type III odd antisymmetric integer α = π/2
Type IV even antisymmetric fractional α = π/2

compute the transfer function of the shifted impulse response hd[n] = h[n + C], which is
now symmetric around zero. i.e. hd[−n] = hd[n]:

Hd(z) =

C∑

n=−C

hd[n]z−n

= hd[0] +

−1∑

n=−C

hd[n]z−n +

C∑

n=1

hd[n]z−n

= hd[0] +

C∑

n=1

hd[n](zn + z−n) (9.15)

By undoing the time shift we obtain the original Type I transfer function:

H(z) = z−
M−1

2 Hd(z). (9.16)

On the unit circle we have

Hd(e
jω) = hd[0] +

C∑

n=1

hd[n](ejωn + e−jωn)

= hd[0] + 2

C∑

n=1

hd[n] cos nω (9.17)

which is a real function; the original Type I frequency response is obtained from (9.16)

H(ejω) =

h[(M − 1)/2] + 2

M−1∑

n=(M+1)/2

h[n] cos nω

 e−jω M−1
2

which is clearly linear phase with delay d = (M − 1)/2 and α = 0. The generalized linear
phase of the other three FIR types can be shown in exactly the same way.

216 Chapter 9.

Zero Locations. The symmetric structures of the four types of FIR filters impose some
constraints on the locations of the zeros of the transfer function. Consider again a Type I
filter; from (9.15) it is easy to see that Hd(z

−1) = Hd(z); by using (9.16) we therefore have
{

H(z) = z−
M−1

2 Hd(z)

H(z−1) = z
M−1

2 Hd(z)

which leads to:

H(z−1) = zM−1H(z). (9.18)

It is easy to show that the above relation is also valid for Type II filters, while for Type III
and Type IV (antisymmetric filters) we have:

H(z−1) = −zM−1H(z). (9.19)

These relations mean that if z0 is a zero of a linear phase FIR, then so is z−1
0 . This result,

coupled with the usual fact that all complex zeros come in conjugate pairs, implies that if
z0 is a zero of H(z) then:

• If z0 = ρ ∈ R then (ρ, 1/ρ) are zeros.

• If z0 = ρejθ then (ρejθ, (1/ρ)ejθ, ρe−jθ, (1/ρ)e−jθ) are zeros.

Consider now equation (9.18) again; if we set z = −1 we have

H(−1) = (−1)M−1H(−1); (9.20)

for Type II filters, M − 1 is an odd number, which leads to the conclusion that H(−1) =
0; in other words, Type II filters must have a zero at ω = π. Similar results can be
demonstrated for the other filter types, and they are summarized as such:

Filter Type Relation Constraint on Zeros

Type I H(z−1) = zM−1H(z) No constraints
Type II H(z−1) = zM−1H(z) Zero at z = −1 (i.e. ω = π)
Type III H(z−1) = −zM−1H(z) Zeros at z = ±1 (i.e. at ω = π , ω = 0)
Type IV H(z−1) = −zM−1H(z) Zero at z = 1 (i.e. ω = 0)

These constraints are important in the choice of the filter type for a given set of
specifications. Type II and Type III filters are not suitable in the design of highpass
filters, for instance; similarly, Type III and Type IV filters are not suitable in in the design
of lowpass filters.

9.3. FIR Filter Design 217

Chebyshev Polynomials. Chebyshev polynomials are a family of orthogonal polynomials
{Tk(x)}k∈N which have, amongst others, the following interesting property:

cos nω = Tn(cos ω); (9.21)

in other words, the cosine of an integer multiple of an angle ω can be expressed as a
polynomial in the variable cos ω. The first few Chebyshev polynomials are:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

and, in general, they can be derived from the recursion formula

Tk+1(x) = 2xTk(x)− Tk−1(x). (9.22)

From the above table it is easy to see that we can write, for instance

cos(3ω) = 4 cos3 ω − 3 cos ω

The interest in Chebyshev polynomials comes from the fact that the zero-centered
frequency response of a linear phase FIR can be expressed as a linear combination of
cosine functions, as we have seen in detail for Type I filters in (9.17). By using Chebyshev
polynomials we can rewrite such a response as just one big polynomial in the variable cos ω.
Let us consider an explicit example for a length-7, Type I filter with nonzero coefficients
h[n] = [d c b a b c d]; we have:

Hd(e
jω) = a + 2b cos ω + 2c cos 2ω + 2d cos 3ω

and by using the first four Chebyshev polynomials we can write:

Hd(e
jω) = a + 2b cos ω + 2c(2 cos2 ω − 1) + 2d(4 cos3 ω − 3 cos ω)

= (a− 2c) + (2b− 6d) cos ω + 4c cos2 ω + 8d cos3 ω. (9.23)

In this case, Hd(e
jω) turns out to be a third degree polynomial in the variable cosω. This

is the case for any Type I filter, for which we can always write

Hd(e
jω) =

(M−1)/2
∑

k=0

ck cosk ω (9.24)

= P (x)|x=cos ω. (9.25)

218 Chapter 9.

where P (x) is a polynomial of degree (M − 1)/2 whose coefficients ck are derived as linear
combinations of the original filter coefficients ak; we showed an example of this in (9.23).
For the other types of linear phase FIR, a similar representation can be obtained after a
few trigonometric manipulations. The general expression is:

Hd(e
jω) = f(ω)

L∑

k=0

ck cosk ω

= f(ω)P (x)|x=cos ω;

where the ck’s are still linear combinations of the original filter coefficients and where f(ω)
is a weighting trigonometric function. Both f(ω) and the polynomial degree K vary as a
function of the filter type2. In the following sections, however, we will concentrate only
on the design of Type I filters, so these details will be overlooked; in practice, since the
design is always carried out using numerical packages, the appropriate formulation for the
filter expression is taken care of automatically.

Polynomial Optimization. Back to the filter design problem, we know that the FIR
filters are (generalized) linear phase, so we can concentrate on the real frequency response
of the zero-centered filter, which is represented by the trigonometric polynomial (9.25).
Also, since the impulse response is real and symmetric, the aforementioned real frequency
response is also symmetric around ω = 0. Therefore the filter design procedure can be
carried out only for values of ω over the interval [0, π], with the other half of the spectrum
obtained by symmetry. For these values of ω, the variable x = cos ω is mapped onto the
interval [1,−1] and the mapping is invertible. Therefore, the filter design problem becomes
a problem of polynomial approximation over an interval.

To illustrate the procedure by example, consider once more the set of filter specifica-
tions in Figure 9.1 and suppose we decide to use a Type I filter. Recall that we required
the prototype filter to be lowpass, with a transition band from ωp = 0.4π to ωs = 0.6π;
we further stated that the tolerances for the realized filter’s magnitude must not exceed
10% in the passband and 1% in the stopband. This implies that the maximum magnitude
error between the prototype filter and the FIR filter response H(ejω) must not exceed
δp = 0.1 in the interval [0, ωp] and must not exceed δs = 0.01 in the interval [ωs, π]. We

2For the sake of completeness, here is a summary of the details:

Filter Type L f(ω)

Type I (M − 1)/2 1
Type II (M − 2)/2 cos(ω/2)
Type III (M − 3)/2 sin(ω)
Type IV (M − 2)/2 sin(ω/2)

9.3. FIR Filter Design 219

can formulate this as follows: the frequency response of the desired filter is:

HD(ejω) =

{
1 ω ∈ [0, ωp]
0 ω ∈ [ωs, π]

(9.26)

(note that HD(ejω) is not specified in the transition band). Since the tolerances on pass-
band and stopband are different, they can be expressed in terms of a weighting function
HW (ω) such that the tolerance on the error is constant over the two bands:

HW (ω) =

{
1 ω ∈ [0, ωp]
δp/δs ω ∈ [ωs, π]

(9.27)

The design problem can now be reformulated as follows by defining an error function

E(ω) = HW (ω)
[
Hd

(
ejω
)
−HD

(
ejω
)]

. (9.28)

Then the optimization problem becomes

min
ĥ

{

max
ω∈F
|E(ω)|

}

, (9.29)

where F is the closed subset of 0 ≤ ω ≤ π such that

F = {[0, ωp] ∪ [ωs, π]} = Ip ∪ Is with Ip = [0, ωp], Is = [ωs, π], (9.30)

and the question now is to find the coefficients for h[n] (their number M and their values)
which minimize the above error. If we have a feasible solution to (9.29) such that

max
ω∈F
|E(ω)| ≤ δp, (9.31)

then we know that for ω ∈ Ip = [0, ωp],
∣
∣
∣Hdes

(
ejω
)
− Ĥ

(
ejω
)
∣
∣
∣ ≤ δp, (9.32)

and for ω ∈ Is = [ωs, π], we have
∣
∣
∣Hdes

(
ejω
)
− Ĥ

(
ejω
)
∣
∣
∣ ≤ δs. (9.33)

Hence a feasible solution satisfying (9.31) is what is needed for a design. This optimization
framework allows us to check if we can meet the desired specification. Note that we leave
the transition band unconstrained (i.e. it doesn’t affect the minimization of the error).
Thus we can define

W̃ (ω) =

1 ω ∈ [0, ωp]
δp/δs ω ∈ [ωs, π]
0 ω ∈ (ωp, ωs),

(9.34)

220 Chapter 9.

and write

Ẽ(ω) = W̃ (ω)
[
Hd

(
ejω
)
−HD

(
ejω
)]

, (9.35)

with the feasibility check of

‖Ẽ(ω)‖∞ , max
ω
|Ẽ(ω)| ≤ δp. (9.36)

Since

‖Ẽ(ω)‖∞ = max
ω
|Ẽ(ω)| = max

ω∈Ip∪Is

|Ẽ(ω)|,

this gives the same conditions as (9.32) and (9.33).

Therefore, the optimization problem we have is a ‖ · ‖∞ norm minimization instead of
‖ · ‖2 norm minimization we had from before in (9.11). This philosophy of viewing the
different filter design criteria as just optimization problems is a useful viewpoint which
can be generalized to other design criteria. That is (9.29) is just

min
Ĥ(ejω)

‖Ẽ(ω)‖∞.

The next step is to use (9.25) to reformulate the above expression as a polynomial opti-
mization problem. To do so we replace the frequency response Hd(e

jω) with its polynomial
equivalent and set x = cos ω; the passband interval [0, ωp] and the stopband interval [ωs, π]
are mapped into the intervals for x:

Ip = [cos ωp, 1]

Is = [−1, cos ωs];

respectively; similarly, the desired response becomes:

D(x) =

{
1 ω ∈ Ip

0 ω ∈ Is
(9.37)

and the weighting function becomes:

W (x) =

{
1 ω ∈ Ip

δp/δs ω ∈ Is
(9.38)

The new set of specifications are shown in Figure 9.8. Within this polynomial formulation,
the optimization problem becomes:

max
x∈Ip∪Is

{W (x)|P (x) −D(x)|} = max{|E(x)|} ≤ δp (9.39)

9.3. FIR Filter Design 221

x

1

1.1

0.9

cos(0.4π) 1
−1 −cos(0.6 π)

0

Figure 9.8: The filter specifications as in Figure 9.1 formulated here in terms
of polynomial approximation, i.e. x = cos ω for ω ∈ [0, π].

where P (x) is the polynomial representation of the FIR frequency response as in (9.25).

Alternation Theorem:

The optimization problem stated by (9.39) can be solved by using the following theo-
rem:

Theorem 9.1 Consider a set {Ik} of closed, disjoint intervals on the real axis and their
union I = ∪kIk. Consider further:

• a polynomial P (x) of degree L, P (x) =

L∑

n=0

anxn

• a desired function D(x), continuous over I

• a positive weighting function W (x)

x

1x6

x5

x4

x3

x2

x1−1

Figure 9.9: Equiripple error in passband and stopband

222 Chapter 9.

Consider now the approximation error function

E(x) = W (x)[D(x)− P (x)]

and the associated maximum approximation error over the set of closed intervals

Emax = max
x∈I
{|E(x)|}

Then P (x) is the unique order-L polynomial which minimizes Emax if and only if there
exist at least L + 2 successive values xi in I such that |E(xi)| = Emax and

E(xi) = −E(xi+1).

In other words, the error function must have at least L + 2 alternations between its maxi-
mum and minimum values. Such a function is called equiripple.

Back to our lowpass filter example, assume we are trying to design a 9-tap optimal
filter. This theorem tells us that if we found a polynomial P (x) of degree 4 such that
the error function (9.39) over Ip and Is looks as in Figure 9.9 (6 alternations), then the
polynomial would be the optimal and unique solution. Note that the extremal points (i.e.
the values of the error function at the edges of the optimization intervals) do count in the
number of alternations since the intervals Ik are closed.

The above theorem may seem a bit far-fetched since it does not tell us how to find the
coefficients but it only gives us a test to verify their optimality. This test, however, is at
the core of an iterative algorithm which refines the polynomial from an initial guess until
the optimality condition is met. Before considering the optimization procedure more in
detail, we will state without formal proof three consequences of the alternation theorem
as it applies to the design of Type I lowpass filters:

• The minimum number of alternations for an optimal M -tap lowpass filter is L + 2,
with L = (M − 1)/2; this is the result of the alternation theorem. The maximum
number of alternation, however, is L + 3; filters with L + 3 alternation are called
extraripple filters.

• Alternations always take place at x = cos ωp and x = cos ωs (i.e. at ω = ωp and
ω = ωs.

• If the error function has a local maximum or minimum, its absolute value at the
extremum must be equal to Emax except possibly in x = 0 or x = 1. In other words,
all local maxima and minima of the frequency response must be alternation except
in ω = 0 or ω = π.

• If the filter is extraripple, the extra alternation occurs at either ω = 0 or ω = π.

9.3. FIR Filter Design 223

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency response H
d
(ejω)

Figure 9.10: An optimal 13-tap Type I filter which does not meet the error specifications.

0 0.1 0.2 0.3 0.4 0.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Passband

0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Stopband

Figure 9.11: Details of passband and stopband of the frequency response in Figure 9.10.

Optimization Procedure. Finally, by putting all the elements together, we are ready
to state an algorithmic optimization procedure for the design of optimal minimax FIR
filters; this procedure is usually called the Parks-McClellan algorithm. Remember, we
are trying to determine a polynomial P (x) such that the approximation error in (9.39)
is equiripple; for this, we need to determine both the degree of the polynomial and its
coefficients. For a given degree L, for which the resulting filter will have 2L + 1 taps,
the L coefficients are found by an iterative procedure which successively refines an initial
guess for the L + 2 alternation points xi until the error is equiripple3. After the iteration
has converged, we need to check that the corresponding Emax satisfies the upper bound

3Details about this crucial optimization step can be found in the bibliographic references. While a
thorough discussion of the algorithm is beyond the scope of these notes, suffice it to say that at each
iteration the new set of candidate extremal points is obtained by exchanging the old set with the ordinates
of the current local maxima. This trick is also known as the Remez exchange algorithm and that is why,
in Matlab, the Parks-McClellan algorithm is named remez.

224 Chapter 9.

imposed by the specifications; when this is not the case, the degree of the polynomial (and
therefore the length of the filter) must be increased and the procedure must be restarted.
Once the conditions on the error are satisfied, the filter coefficients can be obtained by
inverting the Chebyshev expansion.

As a final note, an initial guess for the number of taps can be obtained using the
empirical formula by Kaiser; for an M -tap FIR h[n], n = 0, . . . ,M − 1:

M ≃ −10 log10(δpδs)− 13

2.324Ω
+ 1

where δp is the passband tolerance, δs is the stopband tolerance and Ω = ωs − ωp is the
width of the transition band.

The final design. We will now summarize the design steps for the specifications in
Figure 9.1. We will use a Type I FIR. We start by using Kaiser’s formula to obtain an
estimate of the number of taps: since δpδs = 10−3 and Ω = 0.2π, we obtain M = 12.6
which we will round up to 13 taps. At this point we can use any numerical package for
filter design to run the Parks-McClellan algorithm. In Matlab this would be

[h, err] = remez(12, [0 0.4 0.6 1], [1 1 0 0], [1 10]);

The resulting frequency response is plotted in Figure 9.10; please note that we are plotting
the frequency responses of the zero-centered filter hd[n], which is a real function of ω. We
can verify that the filter has indeed (M − 1)/2 = 6 alternation by looking at a blowup
picture of the passband and the stopband, as in Figure 9.11. The maximum error as
returned by Matlab is however 0.102 which is larger than what our specifications called
for, i.e. 0.1. We are thus forced to increase the number of taps; since we are using a Type I
filter, the next choice is M = 15. Again, the error turns out to be larger than 0.1, since
in this case we have Emax = 0.1006. The next choice, M = 17, finally yields an error
Emax = 0.05, which exceeds the specifications by a factor of 2. It’s the designer’s choice
to decide whether the computational gains of a shorter filter (M = 15) outweigh the small
excess error. The impulse response and the frequency response of the 17-tap filter are
plotted in Figure 9.12.

Other Types of Filters. The Parks-McClellan optimal FIR design procedure can be made
to work for arbitrary filter types as well, such as highpass and passband of course but also
for more sophisticated frequency responses. The constraints imposed by the zero locations
as we saw on page 216 determine the type of filter to use; once the desired response HD(ejω)
is expressed as a trigonometric function, the optimization algorithm can take its course.
For arbitrary frequency responses, however, the fact that the transition bands are left
unconstrained may lead to unacceptable peaks which render the filter useless. In these

9.3. FIR Filter Design 225

−8 −6 −4 −2 0 2 4 6 8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Impulse response h[n]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency response H
d
(ejω)

Figure 9.12: The 17-tap filter meeting the specifications.

cases, visual inspection of the obtained response is mandatory and experimentation with
different filter lengths and tolerance may improve the final result.

Example 9.1
In the window method for filter design, one multiplies the desired impulse response

h [n] (potentially of infinite length) with a window w [n] of finite length M to obtain an
approximation of the desired response i.e., happrox [n] = h

[
n− M−1

2

]
w [n]. The Hamming

window is defined as

w [n] =

{
0.54 − 0.46 cos 2πn

M−1 for 0 ≤ n ≤M − 1

0 otherwise

where M is the number of taps (see Fig. 9.13).

(a) We will use the window method with a Hamming window to design a M = 21-tap
differentiator. The frequency response of a differentiator is H(ejω) = jω for −π ≤

226 Chapter 9.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Taps

M
ag

ni
tu

de

Figure 9.13: A Hamming window of length M = 101

ω ≤ π. Give an expression for the impulse response happrox [n]. Provide a single
plot with happrox [n], w [n] and h [n] (Hint: you can superimpose plots using the hold

on command in matlab e.g. plot([1 2 3],[3 2 1],’r:’);hold on;plot([1 2

3],[3 3 3],’g-’);plot([1 2 3],[4 5 29],’b*’))

(b) Provide matlab plots of the phase and amplitude of the frequency response Happrox(e
jω),

as well as plots of the phase and amplitude of the desired frequency response H(ejω),
if possible combine the amplitude plots on one figure and the phase plots on one fig-
ure (Use matlab to compute the DFT Happrox(e

jω), plot H(ejω) for a large number
of values of ω). Comment the result.

Solution:

(a) We first need to compute h [n] for n 6= 0:

h[n] =
1

2π

∫ π

−π
H(ejω)ejωndω =

1

2π

∫ π

−π
jωejωndω =

cos πn

n

For n = 0,

h[0] =
1

2π

∫ π

−π
H(ejω)e0dω =

1

2π

∫ π

−π
jωdω = 0

9.3. FIR Filter Design 227

Hence,

happrox[n] = h[n− M−1
2]w[n]

= (0.54 − 0.46 cos 2πn
M−1)(

cos(π(n−M−1
2

))

n−M−1
2

)

= 0.54
cos(π(n−M−1

2
))

n−M−1
2

− 0.46
cos 2πn

M−1
cos(π(n−M−1

2
))

n−M−1
2

In Fig. 9.14 we show h[n − M−1
2], w[n] and happrox[n].

0 5 10 15 20
−1

−0.5

0

0.5

1

n

w[n]

h[n]

h
approx

[n]

Figure 9.14: h[n− M−1
2], w[n] and happrox[n]

(b) In Fig. 9.15, we show the amplitude and frequency responses of Happrox(e
jω) and

H(ejω).

Example 9.2 (Gibbs Phenomenon) In this exercise we will demonstrate the Gibbs
phenomenon through rectangular windowing.

Suppose we want to design a lowpass filter with a cut-off frequency of π/2, ie.e we have
a desired frequency response

Hdes

(
ejω
)

=

{

1 −1
2 ≤ ω ≤ 1

2

0 elsewhere.

Let hdes[n] be the corresponding impulse response.

228 Chapter 9.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

ω

H(ejω)

H
approx

(ejω)

(a) Amplitude response

0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

ω

∠(H
approx

(ejω))

∠(H(ejω))

(b) Phase response

Figure 9.15: Amplitude and phase responses of Happrox(e
jω) and H(ejω)

We want to create a 2N + 1 taps filter that represents the desired response as close as
possible. We do this by applying a rectangular window w[n] that is defined by

w[n] =

{

1 −N ≤ n ≤ N

0 elsewhere.

The resulting filter is given by

ĥ[n] = hdes[n]w[n]. (9.40)

The goal of this exercise is to see the difference between
∣
∣
∣Ĥ
(
ejω
)
∣
∣
∣ and

∣
∣Hdes

(
ejω
)∣
∣.

(a) Give the desired impulse response hdes[n].

(b) Let N = 10. Use the fft function in MATLAB to plot 1000 points of
∣
∣
∣Ĥdes

(
ejω
)
∣
∣
∣

in the interval 0.4π ≤ ω ≤ 0.6π. Make sure that the axes of your plot are labeled
and have the right values. You can plot the points as a continuous line. Hand in
your code (printout or handwritten) and a printout of the plot. Hint: Have a look
at problem 5 of Homework 2.

(c) Repeat Part (b) for N = 100 and N = 200. Give a printout of the plot only.

(d) How does the maximum of
∣
∣
∣Ĥ
(
ejω
)
∣
∣
∣ depend on N?

9.3. FIR Filter Design 229

(e) We have seen in class that applying a rectangular window corresponds to the optimal
solution according to some optimization criteria/constraints. Formulate the complete
optimization problem that has Equation (9.40) as a solution.

Solution:

(a) As seen in class

hdes[n] =
1

2
sinc

(n

2

)

.

(b) We want 103 points in the interval 0.4π ≤ ω ≤ 0.6π. This interval has length 0.2π.
This means that we need 104 points in the entire interval. We take a DFT with 104

points.

>> N = 10;

>> h_des = .5*sinc([-N:N]/2);

>> H_des = fft(h_des,1e4);

The interval 0.4π ≤ ω ≤ 0.6π corresponds to elements 2001 . . . 3000 of the DFT.

>> w = linspace(0.4*pi,0.6*pi,1e3);

>> plot(w,abs(H_des(2001:3000)));

>> xlabel(’\omega’);

>> ylabel(’|H(e^{j\omega})|’);

>> legend(’N=10’)

This gives us

230 Chapter 9.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω

|H
(e

jω
)|

N=10

(c) For N = 100 we have

>> N = 100;

>> h_des = .5*sinc([-N:N]/2);

>> H_des = fft(h_des,1e4);

>> w = linspace(0.4*pi,0.6*pi,1e3);

>> plot(w,abs(H_des(2001:3000)));

>> xlabel(’\omega’);

>> ylabel(’|H(e^{j\omega})|’);

>> legend(’N=100’)

which gives

9.3. FIR Filter Design 231

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω

|H
(e

jω
)|

N=100

For N = 200 we give the plot only:

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω

|H
(e

jω
)|

N=200

(d) The maximum does not depend on N , it is always around 1.09.

232 Chapter 9.

(e)

minimize
∥
∥
∥Ĥ

(
ejω
)
−H

(
ejω
)
∥
∥
∥

2

2
,

subject to Ĥ
(
ejω
)

=

N∑

n=−N

ĥ[n]e−jωn,

where ‖ · ‖22 is the L2[−π, π] norm as defined in class.

We see from part (d) that for increasing N the approximation gets better in the
mean-square sense, but that the maximum error remains about 9%.

9.4. IIR Filter Design 233

9.4 IIR Filter Design

As we mentioned in the introductory remarks, no optimal procedure exists for the design
of IIR filters. The fundamental reason is that the optimization of the coefficients of a
rational transfer function is a highly nonlinear problem and no satisfactory algorithm has
yet been developed for the task. This, coupled with the impossibility of obtaining a linear
phase response with an IIR4 makes the design of IIR filter a much less formal art. Here we
will concentrate on some basic IIR filters which are very simple and which are commonly
used in the practice and we will briefly illustrate the basic principles behind more general
IIR design techniques.

9.4.1 All-Time Classics

There are a few tried-and-true applications in which simple IIR structures are the design
of choice. These filters are so simple and so well behaved that they are a fundamental tool
in the arsenal of any signal processing engineer.

DC Removal and Mean Estimation. The DC component of a signal is its mean value; a
signal with zero mean is also called an AC signal. This nomenclature comes from electrical
circuit parlance: DC is shorthand for direct current, while AC stands for alternating
current ; you might be familiar with these terms in relation to the current provided by a
battery (constant and hence DC) and the current available from a mains socket (alternating
at 50 or 60 Hz and therefore AC).

For a given sequence x[n], one can always write

x[n] = xAC[n] + xDC

where xDC is the mean of the sequence values. Please note that:

• The DC value of a finite-support signal is the value of its Fourier transform at ω = 0
times the length of the signal’s support

• The DC value of an infinite-support signal must be zero for the signal to be absolutely
summable.

In most signal processing applications, where the input signal comes from an acquisition
device (such as a sampler, a soundcard and so on), it is important to remove the DC
component; this is because the DC offset is often a random offset caused by ground
mismatches between the acquisition device and the associated hardware.

4There actually is a theorem which states that an infinite impulse response with linear phase is not
realizable.

234 Chapter 9.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

Leaky Integrator

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

Resonator

2

Figure 9.16: Pole-zero plots for the leaky integrator and the simple resonator.

For finite-length signals, computation of the mean is straightforward since it involves a
finite number of operations. In most cases, however, we do not want to wait until the end
of the signal before we try to remove its mean; what we need is some way to perform DC
removal on line. The approach is therefore to obtain at each instant an estimate of the DC
component from the past signal values, with the assumption that the estimate converges
to the real mean of the signal. In order to obtain such an estimate, i.e. in order to obtain
the average value of the past input samples, both approaches detailed in section 7.4 are
of course valid (i.e. the Moving Average and the Leaky Integrator filters) . We have seen,
however, that the leaky integrator provides a superior cost/benefit tradeoff and therefore
the output of a leaky integrator with λ very close to one (usually 10−3) is the estimate of
choice for the DC component of a signal. The closer λ is to one, the more accurate the
estimation; the speed of convergence of the estimate however becomes slower and slower
as λ→ 1. This can be easily seen from the group delay at ω = 0, which is

grd{H(1)} =
λ

1− λ

Resonator and Notch Filter Let’s look again at how the leaky integrator works. Consider
its Z-transform

H(z) =
1− λ

1− λz−1

and notice that what we really want the filter to do is to extract the zero-frequency
component (i.e. the frequency component that does not oscillate, i.e. the DC component).
To do so, we placed a pole near z = 1, which of course corresponds to z = ejω for ω = 0.
Since the magnitude response of the filter will exhibit a peak near a pole, and since the
peak will be higher the closer the pole is to the unit circle, we are in fact amplifying the
zero-frequency component; this is apparent from the plot of the filter’s frequency response

9.4. IIR Filter Design 235

in Figure 7.9. The numerator, 1 − λ, is chosen such that the magnitude of the filter at
ω = 0 is one; the net result is that the zero-frequency component will pass unmodified
while all the other frequencies will be attenuated. The value of a filter’s magnitude at a
given frequency is often called the gain.

The very same approach can now be used to extract a signal component at any fre-
quency. We will use a pole whose magnitude is still close to one (i.e. a pole near the unit
circle) but whose phase is that of the frequency we want to extract. We will then choose
a numerator so that the magnitude is unity at the frequency of interest. The one extra
detail is that, since we want a real-valued filter, we will have to place a complex conjugate
pole as well. The resulting filter is called a resonator and a typical pole-zero plot is shown
in Figure 9.16. The Z-transform of a resonator at frequency ω0 is therefore determined by
the pole p = λejω0 and by its conjugate:

H(z) =
G0

(1− pz−1)(1− p∗z−1)
=

G0

1− (2λ cos ω0)z−1 + λ2z−2
(9.41)

The numerator value G0 is computed so that the filter’s gain at ±ω0 is one; since in this
case |H(ejω0)| = |H(e−jω0)|, we have

G0 = (1− λ)
√

1 + λ2 − 2λ cos 2ω0

The magnitude and phase of a resonator with λ = 0.9 and ω0 = π/3 are shown in
Figure 9.17.

A simple variant on the basic resonator can be obtained by considering the fact that the
resonator is just a bandpass filter with a very narrow passband. As for all passband filters,
we can therefore place a zero at z = ±1 and sharpen its midband frequency response. The
corresponding Z-transform is now

H(z) = G1
1− z−2

1− (2λ cos ω0)z−1 + λ2z−2

with

G1 =
G0

√

2(1 − cos 2ω0)

The corresponding magnitude response is shown in Figure 9.18.

9.4.2 IIR Design by Bilinear Transformation

As we mentioned in the introduction, analog filter design techniques give rise to analog fil-
ters whose transfer function (i.e. the Laplace transform of the continuous-time impulse re-
sponse) is formally similar to the rational Z-transforms obtained from a constant-coefficient

236 Chapter 9.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Magnitude

ω = −π, π

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Phase

ω = −π, π

ra
di

an
s

Figure 9.17: Frequency response of the simple resonator.

difference equation. This suggests associating a discrete-time IIR filter to the filter proto-
types obtained in the continuous-time. While the details of analog filter design are outside
the scope of these notes, it is important to mention that the techniques involved have an
established and proven tradition; tabulated coefficients are readily available to determine
the exact characteristics of an analog filter and the values of the electronic components
which need to be employed. This is in stark contrast with the lack of an optimized IIR
design procedure in the discrete-time domain.

The Analog Prototype. We will illustrate the design procedure by example. There are
three fundamental families of (passive) analog lowpass filters: Butterworth, Chebyshev
and Elliptic filters with the simplest type being Butterworth filters. Since we are going to
illustrate the IIR design procedure by example, we will concentrate on this filter family.

9.4. IIR Filter Design 237

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Magnitude

ω = −π, π

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Phase

ω = −π, π

ra
di

an
s

Figure 9.18: Frequency response of the modified resonator.

A normalized Butterworth filter of order N has an all-pole transfer function of the form

H(s) =
1

(s− s0)(s − s1) . . . (s− sN−1)

=

[N−1∏

k=0

(s− sk)

]−1

(9.42)

=

[

1 +
N∑

k=1

aks
k

]−1

(9.43)

The values of the poles are derived by imposing that the square magnitude of the frequency
response (i.e the magnitude of the continuous-time Fourier transform) must be of the form

|H(jΩ)|2 =
1

1 + Ω2N
(9.44)

which is plotted in Figure 9.19 for different values of N . The most important feature of
this magnitude function is that it is monotonic. It is immediate to see that the squared
magnitude response is equal to 1/2 at Ω = 1, which is the cutoff frequency of the normalized

238 Chapter 9.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

N = 2N = 3
N = 4N = 5

N = 6

Figure 9.19: Magnitude of H(jΩ) for Butterworth filters of increasing order.

Butterworth. Since the impulse response must be real (we are designing an analog filter
after all) we have that H(−s) = H∗(s) and therefore (9.44) for s = jΩ translates to

|H(s)|2 = H(s)H(−s) =
1

1 + (s/j)2N

which, in turn, gives the implicit locations of the poles as s2N = −j2N = (−1)N−1. By
solving for s, we have finally

sk = ej π
N

(k+ N−1
2

), k = 0, 1, . . . , 2N − 1

The poles, as it appears, are regularly distributed around the unit circle in the s-plane
and their angular spacing is π/N ; to obtain a stable and causal filter of order N , we just
need to select the N poles in the left half of the s-plane (this is of course a standard result
of System Theory). At this point we could plug these values back in (9.42) and obtain the
transfer function coefficients in (9.43); in reality this is not how it’s done, since tables exist
which directly provide not only the ak’s for all practical values of N , but also the values
of the electronic components necessary to build the filter. Clearly, Butterworth design is
extremely straightforward from a practical point of view. As a last comment, note that
if a different cutoff frequency Ωc is desired, one needs just replace sk by Ωcsk which, in
turn, corresponds to scaling each ak by Ωk

c .

9.4. IIR Filter Design 239

Bilinear Transformation. The analog design part of a Butterworth filter is just a simple
table lookup and we now want to transfer the properties of the filter to the discrete-time
domain. The idea is to transform the transfer function of a continuous time filter into a
transfer function for a discrete-time filter; this can be achieved by replacing the variable
s in H(s) by a suitable function of the variable z. The function in question has to satisfy
certain properties and, above all, it has to preserve the stability of the resulting filter. A
common mapping function is the bilinear transformation:

s = 2

(
1− z−1

1 + z−1

)

which is invertible via:

z =
1 + s/2

1− s/2

It can be verified that:

• The “frequency” axis jΩ in the s-plane is mapped onto the unit circle in the z-plane.
This preserves the overall characteristic of the frequency response

• The left half of the s-plane is mapped inside the unit circle in the z-plane. This
preserves the filter’s stability.

The mapping linking the continuous frequency axis jΩ in the s plane to the periodic
frequency axis ejω in the z-plane is given by:

ω = 2arctan(Ω/2) (9.45)

and conversely:

Ω = 2 tan(ω/2) (9.46)

This represents a non-linear compression of the frequency axis, and therefore care must
be taken in designing the filter specifications. An example of bilinear transformation is
represented graphically in Figure 9.20.

A Design Example. Given a set of discrete-time specifications such as those in Figure 9.1,
the design of a Butterworth digital filter involves the following steps: the starting point is
the square-magnitude expression for the non-normalized filter

|Hc(jΩ)|2 =
1

1 + (Ω/Ωc)2N

from which

240 Chapter 9.

ω =2arctan(Ω)

Ω

ω

π

Ω

Hc(Ω)

ω

H(e
j ω

)

Figure 9.20: The mapping between Ω and ω operated by the bilinear transformation.

• Translate of the specifications in ω to specifications in Ω via (9.46):

Ωp = 2 tan ωp

Ωs = 2 tan ωs

• Set the value of the square magnitude equal to the tolerance values (the monotonicity
of the magnitude guarantees that the tolerance are satisfied if the conditions are
imposed at the band edges)

|Hc(jΩp)|2 = δ2
p

|Hc(jΩs)|2 = δ2
s

• Solve the above system of equations for N (the filter order) and Ωc

• Find the normalized filter coefficients for the order N from a table

• Scale the coefficients by Ωk
c

• Build the transfer function H(s)

• Apply the bilinear transformation to obtain H(z)

Numerical examples can be found in the bibliography. As a last remark, note that the
Matlab command butter can be used to design digital Butterworth filters.

9.5. Filter Structures 241

9.5 Filter Structures

We have seen in Section 9.1.1 a practical implementation of a rational transfer function.
That was just one particular way of translating equation (9.1) into a working structure; it
served well as an illustration but the design choices one can make are many, and we will
now approach the design problem from a more general point of view.

It is easy to see, from inspection, that the basic building block which enter the recipe
for a real-world filter are:

1. An addition operator for sequence values,
implementing y[n] = x1[n] + x2[n] (Fig. 9.21(a)).

2. A scalar multiplication operator,
implementing y[n] = ax[n] (Fig. 9.21(b)).

3. A unit delay operator,
implementing y[n] = x[n− 1] (Fig. 9.21(c)).

By properly combining these elements and by exploiting the different possible factorization
of a filter’s rational transfer function, we can arrive at a variety of different working
implementations of a filter.

9.5.1 FIR Filter Structures

In the Z-transform representation of an FIR transfer function as in (9.5), all the denomi-
nator coefficients an are zero; we have therefore

H(z) = b0 + b1z
−1 + . . . + bM−1z

−(M−1)

where, of course, the coefficients correspond to the nonzero values of the impulse response
h[n], i.e. bn = h[n]. Using the constitutive elements outlined above, we can immediately
draw a block diagram of an FIR filter as in Figure 9.22. In practice, however, additions will
be distributed as shown in Figure 9.23; this kind of implementation is called a transversal
filter. If the filter taps are all real, we can also consider the factored form of H(z) as

+

2

x (n) + x (n)1 21x (n)

x (n)

(a)

��
��
��
��x(n)

a
ax(n)

(b)

Z −1 x(n−1)x(n)

(c)

Figure 9.21: Constitutive elements for a filter: (a) Addition, (b) Multiplication, (c) Delay.

242 Chapter 9.

0g 1g 2g L−1g3g

��x(n)

y(n)

+

−1Z−1Z−1Z−1Z �� ������

Figure 9.22: Direct FIR implementation.

in (9.9), i.e.

H(z) = b0

Mr∏

n=1

(1− znz−1)

Mc∏

n=1

(1− Re{zn}z−1 + |zn|2z−2)

where Mr + 2Mc = M . From this representation of the transfer function we can ob-
tain an alternative structure for the FIR called cascade, which is shown in Figure 9.24.
This cascade form is very important for IIR filters as well, as we will see later. Special
optimizations of the FIR structures can be obtained in the the case of symmetric and
antisymmetric filters; these are considered in the exercises.

9.5.2 IIR filters structures

For IIR filter, both the an’s and the bn’s in (9.5) are nonzero. One possible implementation
based on the direct form of the transfer function is given in Figure 9.25. This implemen-
tation is called Direct Form I and it is immediate to see that the C-code implementation
at the beginning of the chapter realizes a Direct Form I algorithm.

+ + + +

0g 1g 2g L−1

y(n)

x(n)

g

��
−1Z−1Z−1Z−1Z ��

3g

�� ����

Figure 9.23: Transversal FIR implementation

9.5. Filter Structures 243

x(n) 0 1 y(n)−1
L2−1

−2 2
1 − z 2Re[z] + z | z |L2−1

−1−11−z z 1−z z

Figure 9.24: Cascade form of a filter.

2

N−1a

a

M−1

2

b

b

x(n) y(n)

−1Z −1Z

+

−1Z

+

++

Z

1a1b

0b

−1Z−1Z

++

−1

Figure 9.25: Direct Form implementation of an IIR filter.

By the commutative properties of the Z-transform, we can invert the order of compu-
tation to turn the Direct Form I structure into the structure shown in Figure 9.26(a); we
can then combine the parallel delays together to obtain the structure in Figure 9.26(b).
Here, for simplicity, we have assumed N = M but obviously we can set some an’s or bn’s
to zero if this is not the case. This implementation is called Direct Form II ; its obvious ad-
vantage is the reduced number of the required delay elements (hence of memory storage).
A particular case, important for what follows, is the second order filter:

H(z) =
1 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2

which gives rise to the second order section displayed in Figure 9.27.
Again, for a real valued filter, we can consider the factored form of H(z) as in (9.9). If

we combine the complex conjugate poles and zeros, and group the real poles and zeros in
twos, we can create a modular structure composed of second order sections. For instance,
Figure 9.28 represents a 6th order system.

There are still more possible implementations. For example, if we consider the partial
fraction expansion of H(z), we can rewrite the transfer function as the sum

H(z) =
∑

n

Dnz−n +
∑

n

An

1− pnz−1
+
∑

n

Bn + Cnz−1

(1− pnz−1)(1 − p∗nz−1)
. (9.47)

244 Chapter 9.

N−1a

2a

1a

0b

+

+

+

b

y(n)x(n)

bM−1

2b

1

+

−1Z

−1Z

−1Z

+

−1Z

−1Z

−1Z

+

(a)

bM−1

2b

1b

N−1a

2a

1

y(n)x(n)

a

−1Z

−1Z

+

+

+
0b

+

+

+

−1Z

(b)

Figure 9.26: IIR filter structures: (a) Direct form I with inverted order. (b) Direct form II.

This generates a parallel structure of filters, whose outputs are summed together. The
first branch corresponds to the first sum and it is an FIR filter; a further set of branches
are associated to each term in the second sum, each one of them a first order IIR; the last
set of branches is a collection of second order sections, one for each term of the third sum.

9.5. Filter Structures 245

+

x(n) y(n)

Z −1

Z −1

a1

a2

b1

b2

+

+

+

Figure 9.27: Direct Form II implementation for a 2nd order filter with b0 = 1

+

+

−1
Z

−1
Z

12

+x(n) y(n)

+ a21

a22

b 21

b 22b02b

01b

02a

01a

Z
−1

Z
−1

+

+

+

+

+

+

+

+ a11

12a

b11

Z −1

Z −1

Figure 9.28: 6th order filter implementation.

9.5.3 Some Remarks on Numerical Stability

A very important issue with digital filters is their numerical behavior for a given imple-
mentations. Two key questions are:

• Assume the computations are made with (basically) infinite precision but that the
filter coefficients are represented internally with finite precision. How good is the
resulting filter? Is it still stable?

• If computations are also made with finite precision arithmetic (which implies round-
ing and truncation error), what is the resulting numerical behavior of the system?

One important difference is that, in the first case, the system is at least guaranteed to be
linear; in the second case, however, we can have non-linear effects such as overflows and
limit cycles.

Precision and computational issues are very hard to analyze. Here, we will just note
that the direct from implementation is more sensible to precision errors than the cascade
form, which is why the cascade form is usually preferred in practice. Also, alternative

246 Chapter 9.

filter structures such as the lattice are designed to provide robustness for systems with low
numerical precision, albeit at a higher computational cost.

9.6 Problems

Problem 9.1 Consider the following set of complex numbers

zk = ejπ(1−2−k) k = 1, 2, . . . ,M

For M = 4,

1. Plot zk, k = 1, 2, 3, 4, on the complex plane.

2. Consider an FIR whose transfer function H(z) has the following zeros:

{z1, z2, z
∗
1 , z∗2 ,−1}

and write out explicitly the expression for H(z).

3. How many nonzero taps will the impulse response h[n] have at most?

4. Sketch the magnitude of H(ejω).

5. What can you say about this filter:

(a) What FIR type is it? (I, II, etc.)

(b) Is it lowpass, bandpass, highpass?

(c) Is it equiripple?

(d) Is this a “good” filter? (By “good” we mean a filter which is close to 1 in the
passband, close to zero in the stopband and which has a narrow transition band).

Problem 9.2 Transfer functions, zeros and poles Figure 9.29 shows the zeros and poles
of three different filters with the unit circle for reference. Each zero is represented with
a ’o’ and each pole with a ’x’ on the plot. Multiple zeros and poles are indicated by the
multiplicity number shown to the upper right of the zero or pole.

Sketch the magnitude of each frequency response and determine the type of filter.

9.6. Problems 247

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

3

Real Part

Im
ag

in
ar

y
P

ar
t

(a) Diagram 1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

3

Real Part

Im
ag

in
ar

y
P

ar
t

(b) Diagram 2

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 3

3

Real Part

Im
ag

in
ar

y
P

ar
t

(c) Diagram 3

Figure 9.29: Zeros and Poles Diagrams

248 Chapter 9.

Chapter 10

Interpolation and Sampling

In the introduction to these notes we remarked that discrete-time signals are the mathe-
matical model of choice in two signal processing situations: the first, which encompasses
the long-established tradition of observing physical phenomena, captures the process of
repeatedly measuring the value of a physical quantity at successive instants in time for
analysis purposes. The second, which is much more recent and dates back to the first
digital processors, is the ability to synthesize discrete-time signal by means of iterative
numerical algorithms.

The repeated measurement of a “natural” signal is called sampling ; at the base of the
notion is a view of the world in which physical phenomena have a potentially infinitely
small granularity, in the sense that measurements can be achieved with arbitrary denseness.
For this reason, it is customary to model real-world phenomena as functions of a real
variable (the variable being time or space); defining a quantity over the real line allows
for infinitely small subdivisions of the function’s domain and therefore infinitely precise
localization of its values. We will refer to this model of the world as to the continuous-
time paradigm. Whether philosophically valid1 or physically valid2, the continuous-time
paradigm is a model of immense usefulness in the description of analog signal processing
systems. So useful, in fact, that even in the completely discrete-time synthesis scenario,
we will often find ourselves in the need of converting a sequence to a well defined function
of a continuous variable in order to interface our digital world to the analog world outside.
The process, which can be seen as the dual of sampling, is called interpolation.

1Remember Zeno’s paradoxes...
2The shortest unit of time at which the usual laws of gravitational physics still hold is called Planck

time and is estimated at 10−43 seconds. Apparently, therefore, the universe works in discrete-time...

249

250 Chapter 10.

10.1 Preliminaries and Notation

Interpolation. Interpolation comes into play when discrete-time signals need to be con-
verted to continuous-time signals. The need arises at the interface between the digital
world and the analog world; as an example, consider a discrete-time waveform synthesizer
which is used to drive an analog amplifier and loudspeaker. In this case, it is useful to ex-
press the input to the amplifier as a function of a real variable, defined over the entire real
line; this is because the behavior of analog circuitry is best modeled by continuous-time
functions. We will see that at the core of the interpolation process is the association of a
physical time duration Ts to the intervals between samples of the discrete-time sequence.
The fundamental questions concerning interpolation involve the spectral properties of the
interpolated function with respect to those of the original sequence.

Sampling.
A typical method to obtain a discrete-time representation of a continuous-time signal

is through periodic sampling (uniform sampling) where a sequence of samples x[n] are
obtained from a continuous-time signal xc(t) as,

x[n] = xc(nTs), −∞ < n <∞ (10.1)

where Ts is the sampling period and Fs = 1
Ts

is the sampling frequency.
A natural question we asked is whether such a sampling process extends a loss of

information, i.e. given {x[n]}, can we reconstruct xc(t) for any t?
This would mean that we can interpolate between values of {xc(nTs)} to reconstruct

xc(t). If the answer is in the negative (at least for a given class of signals), this means
that all the processing tools developed in the discrete-time domain can be applied to
continuous-time signals as well, after sampling. The fundamental question is whether this
is possible, and if so what are the interpolating functions.

Notation. In the rest of this chapter we will encounter a series of variables which are all
interrelated and whose different forms will be used interchangeably according to conve-
nience. They are summarized here for a quick reference:

Name Description Units Relations

Ts Sampling period seconds Ts = 1/Fs

Fs Sampling frequency Hertz Fs = 1/Ts

Ωs Sampling frequency (angular) rad/sec Ωs = 2πFs = 2π/Ts

ΩN Nyquist frequency (angular) rad/sec ΩN = Ωs/2 = π/Ts

10.2. Continuous-Time signals 251

10.2 Continuous-Time signals

Interpolation and sampling constitute the bridges between the discrete- and continuous-
time worlds. Before we proceed to the core of the matter, it is useful to take a quick
tour of the main properties of continuous-time signals, which we will simply state without
formal proofs.

Continuous-time signals are modeled by complex functions of a real variable t which
usually represents time (in seconds) but which can represent other physical coordinates of
interest. For maximum generality, no special requirement is imposed on functions modeling
signals; just as in the discrete-time case, the functions can be periodic or aperiodic, or they
can have a finite support (in the sense that they are nonzero over a finite interval only). A
common condition on an aperiodic signal is that its modeling function be square integrable;
this corresponds to the reasonable requirement that the signal have finite energy.

Inner product and convolution. We have already encountered some examples of continuous-
time signals in conjunction with Hilbert spaces; in section 4.2.2, for instance, we introduced
the space of square integrable functions over an interval and, in a short while, we will in-
troduce the space of bandlimited signals. For inner product spaces whose elements are
functions on the real line, we will use the following inner product definition:

〈f(t), g(t)〉 =

∫ ∞

−∞
f∗(t)g(t)dt (10.2)

The convolution of two real continuous-time signals is defined as usual from the definition
of the inner product; in particular

(f ∗ g)(t) = 〈f(t− τ), g(τ)〉 (10.3)

=

∫ ∞

−∞
f(t− τ)g(τ)dτ (10.4)

The convolution operator in continuous time is linear and time invariant, as can be easily
verified. Note that, just like in discrete-time, convolution represents the operation of
filtering a signal with a continuous-time LTI filter, whose impulse response is of course a
continuous-time function.

252 Chapter 10.

Frequency-Domain Representation of Continuous-Time Signals. The Fourier trans-
form of a continuous-time signal x(t) and its inversion formula are defined as3:

X(jΩ) =

∫ ∞

−∞
x(t)e−jΩtdt (10.5)

x(t) =
1

2π

∫ ∞

−∞
X(jΩ)ejΩtdΩ (10.6)

the convergence of the above integrals is assured for functions which satisfy the so-called
Dirichlet conditions. In particular, the FT is always well defined for square integrable
(finite energy) continuous-time signals. The Fourier transform in continuous time is a
linear operator; for a list of its properties, which mirror those we saw for the DTFT, we
refer to the bibliography. Suffice here to recall the conservation of energy, also known as
Parseval’s theorem:

∫ ∞

−∞
|x(t)|2dt =

1

2π

∫ ∞

−∞
|X(jΩ)|2dΩ.

The FT representation can be formally extended to signals which are not square summable
by means of the Dirac delta notation as we saw in Section 5.2. In particular we have

CTFT{ejΩ0t} = δ(Ω − Ω0) (10.7)

from which the Fourier transforms of sine, cosine, and constant functions can be easily
derived. Please note that, in continuous-time, the FT of a complex sinusoid is not a train
of impulses but just a single impulse.

The Convolution Theorem. The convolution theorem for continuous-time signal exactly
mirrors the theorem in section 7.5.2; it states that if h(t) = (f ∗ g)(t) then the Fourier
transforms of the three signals are related by H(jΩ) = F (jΩ)G(jΩ). In particular we can
use the convolution theorem to compute

(f ∗ g)(t) =
1

2π

∫ ∞

−∞
F (jΩ)G(jΩ)ejΩtdΩ (10.8)

10.3 Bandlimited Signals

A signal whose Fourier transform is nonzero only over a finite frequency interval is called
bandlimited. In other words, the signal x(t) is bandlimited if there exists a frequency ΩN

3The notation X(jΩ) mirrors the specialized notation we used for the DTFT; in this case, by writing
X(jΩ) we indicate that the Fourier transform is just the (two-sided) Laplace transform X(s) =

R

x(t)e−stdt
computed on the imaginary axis.

10.3. Bandlimited Signals 253

such that4

X(jΩ) = 0 for |Ω| ≥ ΩN .

Such a signal will be called ΩN -bandlimited and ΩN is often called the Nyquist frequency.
It may be useful to mention that, symmetrically, a continuous-time signal which is nonzero
over a finite time interval only is called a time-limited signal (or finite-support signal). A
fundamental theorem states that a bandlimited signal cannot be time-limited, and vice
versa. While this can be proved formally without too much effort, here we simply give the
intuition behind the statement. The time-scaling property of the Fourier transform states
that

CTFT{f(at)} =
1

a
F (j

Ω

a
)

so that the more “compact” in time a signal is, the wider it frequency support becomes.

The Sinc Function. Let us now consider a prototypical ΩN -bandlimited signal ϕ(t) whose
Fourier transform is constant over the interval [−ΩN ,ΩN] and zero everywhere else. If we
define the rect function as (see also section 7.7.1):

rect(x) =

{
1 |x| ≤ 1/2
0 |x| > 1/2

we can express the Fourier transform of the prototypical ΩN -bandlimited signal as

Φ(jΩ) =
π

Ωs
rect

(
Ω

2ΩN

)

(10.9)

where the leading factor is just a normalization term. The time-domain expression for the
signal is easily obtained from the inverse Fourier transform as

ϕ(t) =
sin ΩN t

ΩN t
= sinc

(
t

Ts

)

(10.10)

where we have used Ts = π/ΩN and defined the sinc function as

sinc(x) =

sin(πx)

πx
x 6= 0

1 x = 0

The sinc function is plotted in Figure 10.1.
Note the following:

4The use of ≥ instead of > is a technicality which will be useful in conjunction with the sampling
theorem below.

254 Chapter 10.

Figure 10.1: The sinc function in Frequency (X(jΩ)) and Time (x(t)) domains.

• The function is symmetric, sinc(x) = sinc(−x)

• The sinc function is zero for all integer values of its argument, except in zero. This
feature is called the interpolation property of the sinc, as we will see more in detail
later.

• The sinc function is square integrable (it has finite energy) but it is not absolutely
integrable (hence the discontinuity of its Fourier transform).

• The decay is slow, asymptotic to 1/x.

• The scaled sinc function represents the impulse response of an ideal, continuous-time
lowpass filter with cutoff frequency ΩN .

10.4. The Sampling Theorem 255

10.4 The Sampling Theorem

We have seen in the previous section that the “natural” polynomial interpolation scheme
leads to the so-called sinc interpolation for infinite discrete time sequences. Another way
to look at the previous result is that any square summable discrete-time signal can be
interpolated into a continuous-time signal which is smooth in time and strictly bandlimited
in frequency. This suggests that the class of bandlimited functions must play a special
role in bridging the gap between discrete and continuous time and this deserves further
investigation. In particular, since any discrete-time signal can be interpolated exactly
into a bandlimited function, we now ask ourselves whether the converse is true: can any
bandlimited signal be transformed into a discrete-time signal with no loss of information?

10.4.1 Frequency-domain representation of sampling

Given a continuous-time signal xc(t), we do periodic sampling by producing

x[n] = xc(nTs) = xc(t)
∣
∣
t=nTs

. (10.11)

Let us define a new continuous-time signal which places Dirac delta impulses at the sam-
pling locations, i.e.

xs(t) =
∑

n

x[n]δ(t− nTs) =
∑

n

xc(nTs)δ(t − nTs), (10.12)

which is a fictitious signal serving as an intermediate step between the continuous and
discrete-time worlds.

We can also write

xs(t) =
∑

n

xc(nTs)δ(t− nTs) = xc(t)
∑

n

δ(t− nTs)
︸ ︷︷ ︸

s(t)

, (10.13)

i.e.

xs(t) = xc(t)s(t). (10.14)

Hence we see that from the modulation property of continuous-time Fourier transforms,

Xs(jΩ) =
1

2π

∫ +∞

−∞
Xc(jθ)S (j(Ω − θ)) dθ

︸ ︷︷ ︸

Xc(jΩ)∗S(jΩ)

. (10.15)

Now

∑

n

δ(t− nTs)
CTFT⇐⇒ 2π

Ts

+∞∑

k=−∞
δ(Ω − kΩs), (10.16)

256 Chapter 10.

where Ωs = 2π
Ts

. Using this in (10.15) we see that

Xs(jΩ) =
1

2π
Xc(jΩ) ∗ S(jΩ) =

1

Ts

+∞∑

k=−∞
Xc (j(Ω − kΩs)) . (10.17)

Therefore, we see that the sampled sequence has a Fourier transform which consists of
periodically repeated copies of the original CTFT of xc(t), shifted by integer multiples
and superimposed.

To observe its effects, see Figure 10.2 representing a bandlimited Fourier transform
with bandwidth ΩN , Figure 10.3 is the periodic impulse train S(jΩ) and finally Figure
10.4 is Xs(jΩ) along with X

(
ejω
)

in Figure 10.5. From Figure 10.4 it is clear that to
retain information through sampling we need

Ωs − ΩN > ΩN or Ωs > 2ΩN , (10.18)

so that the replicas of Xc(jΩ) do not overlap when they are added together in (10.17).
If this condition is satisfied, it is clear that one can recover xc(t) from x[n] (or Xc(jΩ)
from X

(
ejω
)
) by taking the inverse CTFT of one of the replicas, i.e by taking

Xr(jΩ) = Hr(jΩ)Xs(jΩ), (10.19)

where

Hr(jΩ) =

{
Ts |Ω| ≤ Ωc

0 else,
(10.20)

ΩN ≤ Ωc ≤ Ωs − ΩN .

This leads us to the sampling theorem:

If xc(t) is a bandlimited signal with Xc(jΩ) = 0, |Ω| > ΩN , then xc(t) is uniquely
determined by its samples x[n] = xc(nTs), if Ωs = 2π

Ts
≥ 2ΩN .

This gives us an idea on how to reconstruct the original signal from the samples using
(10.19). We use (10.19) to see that

xr(t) = hr(t) ∗ xs(t) =

∫

τ
hr(t− τ)xs(τ) dτ

=

∫

τ

∑

n

δ(τ − nTs)xc(nTs)hr(t− τ) dτ

=
∑

n

xc(nTs)

∫

τ
hr(t− τ)δ(τ − nTs) dτ

10.4. The Sampling Theorem 257

Figure 10.2: Xc(jΩ)

Figure 10.3: S(jΩ)

Figure 10.4: Xs(jΩ)

Figure 10.5: X(ejω)

258 Chapter 10.

−→ xr(t) =
∑

n

xc(nTs)hr(t− nTs), (10.21)

where hr(t) is the inverse CTFT of Hr(jΩ). The form of (10.21) shows the underlying
operation as one of interpolating between the sampled values. This point-of-view will
be developed next in an alternate proof of the sampling theorem in terms of Hilbert
spaces and bases functions. Finally note that since we choose Ωs ≥ 2ΩN , we have perfect
reconstruction, i.e.

xr(t) = xc(t).

10.5 The Space of Bandlimited Signals.

The class of ΩN -bandlimited functions of finite energy forms a Hilbert space, with the
inner product defined in (10.2). An orthogonal basis for the space of ΩN -bandlimited
functions can be obtained easily from the prototypical bandlimited function, the sinc;
indeed, consider the family

ϕ(n)(t) = sinc

(
t− nTs

Ts

)

, n ∈ Z (10.22)

where, once again, Ts = π/ΩN . Note that we have ϕ(n)(t) = ϕ(0)(t−nTs) so that each basis
function is simply a translated version of the prototype basis function ϕ(0). Orthogonality
can be easily proved as follows: first of all, because of the symmetry of the sinc function
and the time-invariance of the convolution, we can write

〈ϕ(n)(t), ϕ(m)(t)〉 = 〈ϕ(0)(t− nTs), ϕ
(0)(t−mTs)〉

= 〈ϕ(0)(nTs − t), ϕ(0)(mTs − t)〉
= (ϕ(0) ∗ ϕ(0))((n−m)Ts)

We can now apply the convolution theorem and (10.9) to obtain

〈ϕ(n)(t), ϕ(m)(t)〉 =
1

2π

∫ ∞

−∞

(
π

ΩN
rect

(
Ω

ΩN

))2

ejΩ(n−m)TsdΩ

=
π

2Ω2
N

∫ ΩN

−ΩN

ejΩ(n−m)TsdΩ

=

π

ΩN
= Ts if n = m

0 if n 6= m

10.5. The Space of Bandlimited Signals. 259

so that {ϕ(n)(t)}n∈Z is orthogonal with normalization factor ΩN/π (or, equivalently, 1/Ts).

In order to show that the space of ΩN -bandlimited functions is indeed a Hilbert space,
we should also prove that the space is complete. This is a more delicate notion to show5

and here it will simply be assumed.

10.5.1 Sampling as a Basis Expansion.

Now that we have an orthogonal basis, we can compute coefficients in the basis expansion
of an arbitrary ΩN -bandlimited function x(t). We have

〈ϕ(n)(t), x(t)〉 = 〈ϕ(0)(t− nTs), x(t)〉 (10.23)

= (ϕ(0) ∗ x)(nTs) (10.24)

=
1

2π

∫ ∞

−∞

π

ΩN
rect

(
Ω

ΩN

)

X(jΩ)ejΩnTsdΩ (10.25)

=
π

ΩN

1

2π

∫ ΩN

−ΩN

X(jΩ)ejΩnTsdΩ (10.26)

= Ts x(nTs) (10.27)

in the derivation we have first rewritten the inner product as a convolution operation, then
we have applied the convolution theorem, and recognized the penultimate line as simply
the inverse CTFT of X(jΩ) calculated in t = nTs. We therefore have the remarkable
result that the n-th basis expansion coefficient is proportional to the sampled value of x(t)
at t = nTs. For this reason, the sinc basis expansion is also called sinc sampling.

Reconstruction of x(t) from its projections can now be achieved via the orthonormal
basis reconstruction formula (4.40); since the sinc basis is just orthogonal rather than
orthonormal, (4.40) needs to take into account the normalization factor and we have:

x(t) =
1

Ts

∞∑

n=−∞
〈ϕ(n)(t), x(t)〉ϕ(n)(t)

=
∞∑

n=−∞
x(nTs)sinc

(
t− nTs

Ts

)

(10.28)

which corresponds to the interpolation formula (10.37).

The Sampling Theorem. If x(t) is a ΩN -bandlimited continuous-time signal, a sufficient
representation of x(t) is given by the discrete-time signal x[n] = x(nTs), with Ts = π/ΩN .

5Completeness of the sinc basis can be proven as a consequence of the completeness of the Fourier basis
in the continuous-time domain.

260 Chapter 10.

The continuous time signal x(t) can be exactly reconstructed from the discrete-time signal
x[n] as:

x(t) =
∞∑

n=−∞
x[n]sinc

(
t− nTs

Ts

)

.

A few notes:

• The proof of the theorem is inherent to the properties of the Hilbert space of ban-
dlimited functions, and it is trivial after having proved the existence of an orthogonal
basis.

• Clearly, if a signal is ΩN -bandlimited, then it is also Ω-bandlimited for all Ω ≥ ΩN .
Therefore, an ΩN -bandlimited signal x(t) is uniquely represented by all sequences
x[n] = x(nT) for which T ≤ Ts = π/ΩN ; Ts is the largest sampling period which
guarantees perfect reconstruction (i.e. we cannot take fewer than 1/Ts samples per
second).

• Another way to state the above point is to say that the minimum sampling fre-
quency Ωs for perfect reconstruction is exactly twice the Nyquist frequency, where
the Nyquist frequency is the highest frequency of the bandlimited signal; the sam-
pling frequency Ω must therefore satisfy the relationship:

Ω ≥ Ωs = 2ΩN

or, in Hertz,

F ≥ Fs = 2FN

10.5.2 Examples for the sampling theorem

We have seen that if a signal has a maximum frequency of fmax, then sampling at a rate
fs ≥ 2fmax is sufficient to retain all the information in the samples. Moreover, we can
recover the original continuous-time signal from its samples using sinc interpolation.

Example 10.1 Let xc(t) = cos(4000πt) = cos [2π(2000)] t, which is shown in Fig. 10.6.

Xc(jΩ) = πδ(Ω − 4000π) + πδ(Ω + 4000π).

Thus fmax = 2000 for this case and we need fs ≥ 4000 as the sampling rate. Let fs =
1
Ts

= 6000, Ωs = 2πfs.

x[n] = xc(nTs) = cos (2π2000nTs) = cos

(

2π
2000

6000
n

)

= cos

(
2π

3
n

)

.

10.5. The Space of Bandlimited Signals. 261

Figure 10.6: Xc(jΩ)

Now for reconstruction we get

x̂c(t) =

+∞∑

n=−∞
x[n]sinc

(
t− nTs

Ts

)

=

+∞∑

n=−∞
cos

(
2π

3
n

)
sin π(6000t − n)

π(6000t − n)
.

Let us look at this pictorially (Fig. 10.7).

X̂c(jΩ) = Hr(jΩ)Xs(jΩ) = Xc(jΩ).

262 Chapter 10.

Figure 10.7: Pictorial representation of sampling of xc(t) = cos(4000πt)

Now, if fs = 1500 < 4000, then Ωs = 2πfs = 3000π.
But x̂c(t) = cos(1000πt) 6= cos(4000πt) = xc(t). x[n] = cos 2π

3 n, same as before! Fig. 10.8
shows the sampling and reconstruction in this case.

10.5. The Space of Bandlimited Signals. 263

Figure 10.8: Xc(jΩ), Xs(jΩ), and X
(
ejω
)
.

Example 10.2 Fig. 10.9 shows signal Xc (jΩ) and its sampled version.

264 Chapter 10.

Figure 10.9: Example. 10.2

10.6 Interpolation

Interpolation is a procedure whereby we convert a discrete-time sequence x[n] to a continuous-
time function x(t). Since this can be done in an arbitrary number of ways, we have to start

10.6. Interpolation 265

by formulating some requirements on the resulting signal. At the heart of the interpolating
procedure, as we have mentioned, is the association of a physical time duration Ts to the
interval between the samples in the discrete-time sequence. An intuitive requirement on
the interpolated function is that its values at multiples of Ts be equal to the corresponding
points of the discrete-time sequence, i.e.

x(t)|t=nTs = x[n];

the interpolation problem now reduces to “filling the gaps” between these instants.

10.6.1 Local Interpolation

The simplest interpolation schemes create a continuous-time function x(t) from a discrete-
time sequence x[n] by setting x(t) to be equal to x[n] for t = nTs and by setting x(t)
to be some linear combination of neighboring sequence values when t lies in between
interpolation instants. In general, the local interpolation schemes can be expressed by the
following formula:

x(t) =

∞∑

n=−∞
x[n]I(

t− nTs

Ts
) (10.29)

where I(t) is called the interpolation function (for linear functions the notation IN (t) is
used and the subscript N indicates how many discrete-time samples besides the current one
enter in the computation of the interpolated values for x(t)). The interpolation function
must satisfy the fundamental interpolation properties:

{
I(0) = 1
I(k) = 0 for k ∈ Z \ {0} (10.30)

where the second requirement implies that, no matter what the support of I(t) is, its
values should not affect other interpolation instants. By changing the function I(t), we
can change the type of interpolation and the properties of the interpolated signal x(t).

Note that (10.29) can be interpreted either simply as a linear combination of shifted
interpolation functions or, more interestingly, as a “mixed domain” convolution prod-
uct, where we are convolving a discrete-time signal x[n] with a continuous-time “impulse
response” I(t) scaled in time by the interpolation period Ts.

Zero-Order Hold. The simplest approach for the interpolating function is the piecewise-
constant interpolation; here the continuous-time signal is kept constant between discrete
sample values, yielding:

x(t) = x[n] for (n− 1

2
)Ts ≤ t < (n +

1

2
)Ts

266 Chapter 10.

−3 −2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

x(t)
x(nT)
y(t)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)

(a) (b)

Figure 10.10: Interpolation with zero-order hold. (a) Interpolation of the
samples of a sinusoid. Note the discontinuities introduced by this simple

scheme. (b) The rect function can be used to describe mathematically the
zero-order hold.

and an example is shown in Figure 10.10(a); it is apparent that the resulting function is far
from smooth since the interpolated function is discontinuous. The interpolation function
is simply:

I0(t) = rect(t)

and the values of x(t) depend only on the current discrete-time sample value.

First-Order Hold. A linear interpolator (sometimes called a first-order hold) simply
connects the points corresponding to the samples with straight lines. An example is
shown in Figure 10.11(a); note that now x(t) depends on two consecutive discrete-time
samples, across which a connecting straight line is drawn. From the point of view of
smoothness, this interpolator already represents a good improvement over the zero-order
hold: indeed the interpolated function is now continuous, although its first derivative is
not. The first-order hold can be expressed in the same notation as in (10.29) by defining
the following triangular function

I1(t) =

{
1− |t| if |t| < 1
0 otherwise

10.6. Interpolation 267

−3 −2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

x(t)
x(nT)
y(t)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

(b)

(a) (b)

Figure 10.11: Linear interpolation (also called first-order hold). (a)
Interpolation of the samples of a sinusoid using linear interpolation. (b) The
triangular function is the interpolating function corresponding to the linear

interpolation.

which is shown in Figure 10.11(b)6. It is immediate to verify that I1(t) satisfies the
interpolation properties (10.30).

Higher-Order Interpolators. The zero- and first-order interpolators are widely used in
practical circuits due to their extreme simplicity. These schemes can be extended to higher
order interpolation functions and, in general, IN (t) will be a N -th order polynomial in
t. The advantage of the local interpolation schemes is that, for small N , they can be
easily implemented in practice as causal interpolation schemes (locality is akin to FIR
filtering); their disadvantage is that, because of the locality, their N -th derivative will
be discontinuous. This discontinuity represents a lack of smoothness in the interpolated
function; from a spectral point of view this corresponds to a high frequency energy content,
which is usually undesirable.

10.6.2 Polynomial Interpolation

The lack of smoothness of local interpolations is easily eliminated when we need to inter-
polate just a finite number of discrete-time samples. In fact, in this case the task becomes
a classic polynomial interpolation problem for which the optimal solution has been known

6Note that I1(t) = (I0 ∗ I0)(t).

268 Chapter 10.

for a long time under the name of Lagrange interpolation. Note that a polynomial in-
terpolating a finite set of samples is a maximally smooth function in the sense that it is
continuous together with all its derivatives.

Consider a length (2N +1) discrete-time signal x[n], with n= −N, . . . ,N . Associate to
each sample an abscissa tn = nTs; we know from basic algebra that there is one and only
one polynomial P (t) of degree 2N which passes through all the 2N +1 pairs (tn, x[n]) and
this polynomial is the Lagrange interpolator. The coefficients of the polynomial could be
found by solving the set of 2N + 1 equations:

{P (tn) = x[n]}n=−N,...,N (10.31)

but a simpler way to determine the expression for P (t) is to use the set of 2N +1 Lagrange
polynomials of degree 2N :

L(N)
n (t) =

N∏

k=−N
k 6=n

(t− tk)

(tn − tk)

=

N∏

k=−N
k 6=n

t/Ts − k

n− k
n = −N, . . . ,N (10.32)

The polynomials L
(N)
n (t) for Ts = 1 and N = 2 (i.e. interpolation of 5 points) are plotted

in Figure 10.12-(a). By using this notation, the global Lagrange interpolator for a given set
of abscissa/ordinate pairs can now be written as a simple linear combination of Lagrange
polynomials:

P (t) =
N∑

n=−N

x[n]L(N)
n (t) (10.33)

and it is easy to verify that this is the unique interpolating polynomial of degree 2N in the

sense of (10.31). Note that each of the L
(N)
n (t) satisfies the interpolation properties (10.30)

or, concisely (for Ts = 1):

L(N)
n (m) = δ[n −m];

the interpolation formula, however, cannot be written in the form of (10.29) since the
Lagrange polynomials are not simply shifts of a single prototype function. The continuous
time signal x(t) = P (t) is now a global interpolating function for the finite-length discrete-
time signal x[n], in the sense that it depends on all samples in the signal; as a consequence,
x(t) is maximally smooth (x(t) ∈ C∞). An example of Lagrange interpolation for N = 2
is plotted in Figure 10.12-(b).

10.6. Interpolation 269

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L
−2

(t)
L

−1
(t)

L
0
(t)

L
1
(t)

L
2
(t)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

(a)

Interpolated points
Lagrange interpolation

(a) (b)

Figure 10.12: Lagrange interpolation. (a) The polynomials L
(N)
n (t) used to

compute the interpolation for N = 2 and T = 1. Note that L
(N)
n (m) is zero

except for m = n, where it is 1. (b) Interpolation using 5 points.

10.6.3 Sinc Interpolation

The beauty of local interpolation schemes lies in the fact that the interpolated function is
simply a linear combination of shifted versions of the same prototype interpolation function
I(t); this unfortunately has the disadvantage of creating a continuous-time function which
lacks smoothness. Polynomial interpolation, on the other hand, is perfectly smooth but it
only works in the finite-length case and it requires different interpolation functions with
different signal lengths. Yet, both approaches can come together in a nice mathematical
way and we are now ready to introduce the maximally smooth interpolation scheme for
infinite discrete-time signals.

Let us take the expression for the Lagrange polynomial of degree N in (10.32) and

270 Chapter 10.

consider its limit for N going to infinity. We have:

lim
N→∞

L(N)
n (t) =

∞∏

k=−∞
k 6=n

t/Ts − k

n− k

=

∞∏

m=−∞
m6=0

t/Ts − n + m

m

=

∞∏

m=−∞
m6=0

(

1 +
t/Ts − n

m

)

=

∞∏

m=1

(

1−
(

t/Ts − n

m

)2
)

(10.34)

(10.35)

where we have used the change of variable m = n− k. We can now invoke Euler’s infinite
product expansion for the sine function

sin(πτ) = (πτ)
∞∏

k=1

(

1− τ2

k2

)

(whose derivation is in the appendix) to finally obtain

lim
N→∞

L(N)
n (t) = sinc

(
t− nTs

Ts

)

(10.36)

The convergence of the Lagrange polynomial L
(N)
0 (t) to the sinc function is illustrated

in Figure 10.13. Note that now, as the number of points becomes infinite, the Lagrange
polynomials converge to shifts of the same prototype function, i.e. the sinc; therefore the
interpolation formula can be expressed as in (10.29) with I(t) = sinc(t); indeed, if we
consider an infinite sequence x[n] and apply the Lagrange interpolation formula (10.33)
we obtain:

x(t) =

∞∑

n=−∞
x[n]sinc

(
t− nTs

Ts

)

(10.37)

Spectral Properties of the Sinc Interpolation. The sinc interpolation of a discrete-time
sequence gives rise to a strictly bandlimited continuous-time function. If the DTFT X(ejω)

10.7. Aliasing 271

of the discrete-time sequence exists, the spectrum of the interpolated function X(jΩ) can
be obtained as follows:

X(jΩ) =

∫ ∞

−∞

∞∑

n=−∞
x[n]sinc

(
t− nTs

Ts

)

e−jΩtdt

=
∞∑

n=−∞
x[n]

∫ ∞

−∞
sinc

(
t− nTs

Ts

)

e−jΩtdt

now we use (10.9) to get the Fourier Transform of the scaled and shifted sinc

=
∞∑

n=−∞
x[n]

(
π

ΩN

)

rect

(
Ω

2ΩN

)

e−jnTsΩ

and use the fact that, as usual, Ts = π/ΩN

=

(
π

ΩN

)

rect

(
Ω

2ΩN

) ∞∑

n=−∞
x[n]e−jπ(Ω/ΩN)n

=

{
(π/ΩN)X(ejπΩ/ΩN) for |Ω| ≤ ΩN

0 otherwise

In other words, the continuous-time spectrum is just a scaled and stretched version of the
DTFT of the discrete-time sequence between −π and π. The duration of the interpolation
interval Ts is inversely proportional to the resulting bandwidth of the interpolated signal.
Intuitively, a slow interpolation (Ts large) will result in a spectrum concentrated around
the low frequencies; conversely, a fast interpolation (Ts small) will result in a spread-out
spectrum (more high frequencies are present)7.

10.7 Aliasing

The “naive” notion of sampling, as we have seen, is associated to the very practical
idea of measuring the instantaneous value of a continuous-time signal at uniformly spaced
instants in time. For bandlimited signals, we have seen that this is actually equivalent to an
orthogonal decomposition in the space of bandlimited functions, which guarantees that the
set of samples x(nTs) uniquely determines the signal and allows its perfect reconstruction.
We now want to address the following question: what happens if we simply sample an
arbitrary time signal in the “naive” sense (i.e. in the sense of simply taking x[n] = x(nTs))
and what can we reconstruct from the set of samples thus obtained?

7To find a simple everyday analogy, think of a 45rpm vinyl record played at either 33rpm (slow inter-
polation) or at 78rmp (fast interpolation) and remember the acoustic effect on the sounds.

272 Chapter 10.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 10.13: The sinc function (solid) and its Lagrange approximation

(dashed) as in (10.34) for 100 factors in the product.

10.7.1 Non-Bandlimited Signals

Given a sampling period of Ts seconds, the sampling theorem ensures that there is no loss
of information by sampling the class of ΩN -bandlimited signals, where as usual ΩN = π/Ts.
If a signal x(t) is not ΩN -bandlimited (i.e. its spectrum is nonzero at least somewhere
outside of [−ΩN ,ΩN]) then the approximation properties of orthogonal bases state that its
best approximation in terms of uniform samples Ts seconds apart is given by the samples
of its projection over the space of ΩN -bandlimited signals. This is easily seen in (10.26),
where the projection is easily recognizable as an ideal lowpass filtering operation on x(t)
(with gain Ts) which truncates its spectrum outside of the [−ΩN ,ΩN] interval.

Sampling as the result of a sinc basis expansion automatically includes this lowpass
filtering operation; for a ΩN -bandlimited signal, obviously, the filtering is just a scaling
by Ts. For an arbitrary signal, however, we can now decompose the sinc sampling as in
Figure 10.14, where the first block is a continuous-time lowpass filter with cutoff frequency
ΩN and gain Ts = π/ΩN . The discrete time sequence x[n] thus obtained is the best
discrete-time approximation of the original signal when the sampling is uniform.

10.7.2 Aliasing: Intuition

Now let’s go back to the naive sampling scheme in which simply x[n] = x(nTs), with
Fs = 1/Ts the sampling frequency of the system; what is the error we incur if x(t) is

10.7. Aliasing 273

x(t) x[n]x (t)LP

Figure 10.14: Bandlimited sampling (sinc basis expansion) as a combination
of lowpass filtering (in the continuous-time domain) and sampling; xLP (t) is

the projection of x(t) over the space of ΩN -bandlimited functions.

not bandlimited or, equivalently, if the sampling frequency is less than twice the Nyquist
frequency? We will develop the intuition by starting with the simple case of a single
sinusoid and we will move on to a formal demonstration of the aliasing phenomenon. In
the following examples we will work with frequencies in Hertz, both out of practicality
and to give an example of a different form of notation.

Sampling of Sinusoids. Consider a simple continuous-time signal such as x(t) = ej2πf0t

and its sampled version x[n] = ej2π(f0/Fs)n = ejω0n with

ω0 = 2π
f0

Fs
. (10.38)

Clearly, since x(t) contains only one frequency, it is Ω-bandlimited for all Ω > 2π|f0|.
If the frequency of the sinusoid satisfies |f0| < Fs/2 = FN , then ω0 ∈ (−π, π) and the
frequency of the original sinusoid can be univocally determined from the sampled signal.
Now assume that f0 = FN = Fs/2; we have

x[n] = ejπn = e−jπn

In other words, we encounter a first ambiguity with respect to the direction of rotation
of the complex exponential: from the sampled signal we cannot determine whether the
original frequency was f0 = FN or f0 = −FN . If we increase the frequency further, say
f0 = (1 + α)FN , we have

x[n] = ej(1+α)πn = e−jαπn

Now the ambiguity is both on the direction and on the frequency value: if we try to infer
the original frequency from the sampled sinusoid from (10.38) we cannot discriminate
between f0 = (1 + α)FN or f0 = −αFN . Matters get even worse if f0 > Fs. Suppose we
can write f0 = Fs + fb with fb < Fs/2; we have

x[n] = ej(2πFsTs+2πfbTs)n = ej(2π+ωb)n = ejωbn

274 Chapter 10.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

x(t)
x[n]

Figure 10.15: Example of aliasing: complex sinusoid at 8400 Hz,
x(t) = ej(2π·8400)t; sampling frequency Fs = 8000 Hz. The sampled signal is

indistinguishable from a sinusoid at 400 Hz sampled at Fs (in the plot, only the
real part is shown).

so that the sinusoid is completely undistinguishable from a sinusoid of frequency fb sampled
at Fs; the fact that two continuous-time frequencies are mapped to the same discrete-time
frequency is called aliasing. An example of aliasing is depicted in Figure 10.15.

In general, because of the 2π-periodicity of the discrete-time complex exponential, we
can always write

ωb = (2πf0Ts) + 2kπ

and choose k ∈ Z so that ωb falls in the [−π, π] interval. Seen the other way, all continuous-
time frequencies of the form

f = fb + kFs

with fb < FN are aliased to the same discrete-time frequency ωb.
Consider now the signal y(t) = Aej2πfbt + Bej2π(fb+Fs)t, with fb < FN . If we sample

this signal with sampling frequency Fs we obtain

x[n] = Aej2π(fb/Fs)n + Bej2π(fb/Fs+1)nTs

= Aejωbn + Bejωbnej2πn

= (A + B)ejωbn

10.7. Aliasing 275

In other words, two continuous-time exponential which are Fs Hz apart will give rise to
a single discrete-time complex exponential, whose amplitude is equal to the sum of the
amplitudes of both the original sinusoids.

Energy Folding of the Fourier Transform. To understands what happens to a general
signal, consider the interpretation of the Fourier transform as a bank of (infinitely many)
complex oscillators initialized with phase and amplitude, each contributing to the energy
content of the signal at their respective frequency. Since in the sampled version any
two frequencies Fs apart are undistinguishable, their contributions to the discrete-time
Fourier transform of the sampled signal will add up. This aliasing can be represented as
a spectral superposition: the continuous-time spectrum above FN is cut, shifted back to
−FN , summed over [−FN , FN], and the process is repeated again and again; the same
for the spectrum below −FN . This process is nothing but the familiar periodization of a
signal:

∞∑

k=−∞
X(j2πf + j2kπFs)

as we will prove formally in the next section.

10.7.3 Aliasing: Proof

In the following we will consider the relationship between the DTFT of a sampled signal
x[n] and the CTFT of the originating continuous-time signal xc(t). For clarity, we will
add the subscript (·)c to all continuous-time quantities so that, for instance, we will write
x[n] = xc(nTs).

Consider X(ejω), the DTFT of the sampled sequence (with, as usual, Ts = (1/Fs) =
(π/ΩN)). The inversion formula states:

x[n] =
1

2π

∫ π

−π
X(ejω)ejωndω (10.39)

We can arrive at an expression for x[n] also from Xc(jΩ), the Fourier transform of the
continuous-time function xc(t); indeed:

x[n] = xc(nTs) =
1

2π

∫ ∞

−∞
Xc(jΩ)ejΩ nTsdΩ (10.40)

The idea is to split the integration interval in the above expression as the sum of non
overlapping intervals whose width is equal to the sampling bandwidth Ωs = 2ΩN ; this

276 Chapter 10.

stems from the realization that, in the inversion process, all frequencies Ωs apart will give
undistinguishable contribution to the discrete-time spectrum. We have:

x[n] =
1

2π

∞∑

k=−∞

∫ (2k+1)ΩN

(2k−1)ΩN

Xc(jΩ)ejΩ nTsdΩ

=
1

2π

∞∑

k=−∞

∫ ΩN

−ΩN

Xc(jΩ − jkΩs)e
jΩ nTsdΩ (10.41)

=
1

2π

∫ ΩN

−ΩN

{ ∞∑

k=−∞
Xc(jΩ− jkΩs)

}

ejΩ nTsdΩ (10.42)

=
1

2π

∫ ΩN

−ΩN

X̃c(jΩ)ejΩ nTsdΩ (10.43)

=
1

2π

∫ π

−π

1

Ts
X̃c(j

θ

Ts
)ejθndθ (10.44)

A few notes on the above derivation:

(a) In (10.41) we have exploited the Ωs-periodicity of ejΩ nTs (i.e. ej(Ω+kΩs)nTs = ejΩnTs).

(b) In (10.42) we have interchanged the order of integration and summation. This can be
done under fairly broad conditions on xc(t), for which we refer to the bibliography.

(c) In (10.43) we have defined

X̃c(jΩ) =
∞∑

k=−∞
Xc(jΩ − jkΩs)

which is just the periodized version of Xc(jΩ).

(d) In (10.44) we have operated the change of variable θ = ΩTs. It is immediate to verify
that X̃c(j(θ/Ts)) is now 2π-periodic in θ.

If we now compare (10.44) to (10.39) we can easily see that (10.44) is nothing but the
DTFT inversion formula for the 2π-periodic function (1/Ts)X̃(jθ/Ts); since the inversion
formulas (10.44) and (10.39) yield the same result (namely, x[n]) we can conclude that

X(ejω) =
1

Ts

∞∑

k=−∞
Xc(j

ω

Ts
− j

2πk

Ts
) (10.45)

which is the relationship between the Fourier transform of a continuous-time function
and the DTFT of its sampled version, with Ts being the sampling period. The above

10.7. Aliasing 277

result is a particular version of a more general result in Fourier theory called the Poisson
sum formula. In particular, when xc(t) is ΩN -bandlimited, the copies in the periodized
spectrum do not overlap and the (periodic) discrete-time spectrum between −π and π is
simply

X(ejω) =
1

Ts
Xc(j

ω

Ts
)

10.7.4 Examples

Figures 10.16 to 10.19 illustrate several examples of the relationship between the continuous-
time spectrum and the discrete-time spectrum. For all figures, the top panel shows the
continuous-time spectrum, with labels indicating the Nyquist frequency (where applicable)
and the sampling frequency. In particular:

• Figure 10.16 shows the result of sampling a bandlimited signal with a sampling
frequency in excess of the minimum (twice the Nyquist frequency); in this case
we say that the signal has been oversampled. The result is that in the periodized
spectrum the copies do not overlap and the discrete-time spectrum is just a scaled
version of the original spectrum (with even a narrower support than the full [−π, π]
range because of the oversampling).

• Figure 10.17 shows the result of sampling a bandlimited signal with a sampling
frequency exactly equal to twice the Nyquist frequency; in this case we say that
the signal has been critically sampled. In the periodized spectrum the copies again
do not overlap and the discrete-time spectrum is a scaled version of the original
spectrum.

• Figure 10.18 shows the result of sampling a bandlimited signal with a sampling fre-
quency less than the minimum sampling frequency. Now in the periodized spectrum
the copies do overlap and the resulting discrete-time spectrum is an aliased version of
the original; the original spectrum cannot be reconstructed from the sampled signal.

• Finally, Figure 10.19 shows the result of sampling a non-bandlimited signal with a
sampling frequency which is chosen as a tradeoff between alias and number of samples
per second. The idea is to disregard the low-energy “tails” of the original spectrum
so that their alias does not corrupt too much the discrete-time spectrum. In the
periodized spectrum the copies do overlap and the resulting discrete-time spectrum
is an aliased version of the original, which is similar to the original; the original
spectrum, however, cannot be reconstructed from the sampled signal. In a practical
sampling scenario, the correct design choice would have been to lowpass filter (in

278 Chapter 10.

the continuous-time domain) the original signal so as to eliminate the spectral tails
beyond ±Ωs/2.

10.7. Aliasing 279

0

1

X
(j

Ω
)

(a)

0

0.5

1

X
∼ c
(j

Ω
)

(b)

−1 1
0

ω/π

X
(e

jω
)

(c)

Ω
s

Ω
N

1/T
s

Ω
N

/Ω
s

Figure 10.16: Sampling of a bandlimited signal – Case 1: Ωs > 2ΩN .
(a) Original continuous-time spectrum Xc(jΩ); (b) Periodized spectrum (thick

line) X̃c(jΩ); (c) Discrete-time spectrum X(ejω) in the interval [−π, π].

280 Chapter 10.

0

1
X

(j
Ω

)

(a)

0

0.5

1

X
∼ c
(j

Ω
)

(b)

−1 1
0

ω/π

X
(e

jω
)

(c)

Ω
s

Ω
N

1/T
s

Figure 10.17: Sampling of a bandlimited signal – Case 2: Ωs = 2ΩN .

10.7. Aliasing 281

0

1

X
(j

Ω
)

(a)

0

0.5

1

1.5

X
∼ c
(j

Ω
)

(b)

−1 1
0

ω/π

X
(e

jω
)

(c)

Ω
s

Ω
N

1/T
s

Figure 10.18: Sampling of a bandlimited signal – Case 3: Ωs < 2ΩN (aliasing).

282 Chapter 10.

0

1
X

(j
Ω

)

(a)

0

0.5

1

1.5

X
∼ c
(j

Ω
)

(b)

−1 1
0

ω/π

X
(e

jω
)

(c)

Ω
s

1/T
s

Figure 10.19: Sampling of a non-bandlimited signal.

10.7. Aliasing 283

Example 10.3 Consider

xc(t) = ej2πf0t

with corresponding sampled version

x[n] = xc(nTs) = ej2πf0
n
fs = e

j2π
“

f0
fs

”

n
= ejω0n,

where

ω0 = 2π

(
f0

fs

)

.

Let f0 = fs

2 , then ω0 = π and

x[n] = ejπn = (−1)n = e−jπn.

Hence we have an ambiguity and from sampled signal we cannot tell if the original signal
was ej2πf0t or e−j2πf0t (Fig. 10.20).

Example 10.4 Consider the continuous-time signal

xa(t) = cos(2πF0t)

(a) Compute analytically the spectrum Xa(F) of xa(t). (Hint:ejat F↔ δ(f − a
2π))

(b) Compute analytically the spectrum of the signal x [n] = xa [nT], T = 1
Fs

.

(c) Plot the magnitude spectrum |Xa(F)| for F0 = 10 Hz.

(d) Plot the magnitude spectrum |X(F)| for Fs = 10, 20, 40 and 100 Hz.

(e) Explain the results obtained in the previous part in terms of aliasing effects.

Solution:

(a) It can easily be seen that Xa(F) = 1
2(δ(F − F0) + δ(F + F0)). Indeed,

Xa(F) =
∫

cos(2πF0t)e
−j2πF tdt

= 1
2

[∫
ej2πF0te−j2πF tdt +

∫
e−j2πF0te−j2πF tdt

]

= 1
2(δ(F − F0) + δ(F + F0))

using the hint.

284 Chapter 10.

02 f

Getting all zero samples of imaginary part

Figure 10.20: Example. 10.3

(b) We know that X(ejω) = 1
T

∑∞
k=−∞ Xa(e

j ω
T
−j 2πk

T). Further, we know that ω = 2π F
Fs

.

Hence, X(F) = Fs
∑∞

k=−∞ Xa(F−kFs) = Fs

2

∑∞
k=−∞ [δ(F − F0 − kFs) + δ(F + F0 − kFs)].

This means that the spectrum of the continuous time signal is repeated every Fs when
we sample it!

(c) See Fig. 10.21.

(d) See Fig. 10.22.

(e) When the sampling frequency is below or equal to 2 times F0 i.e., when Fs ≤ 2F0,

10.8. Problems 285

Figure 10.21: Spectrum of Xa(F)

we can see that the signal gets aliased.

10.8 Problems

Problem 10.1 Consider a real function f(t) for which the Fourier transform is well
defined:

F (jΩ) =

∫ ∞

−∞
f(t)e−jΩtdt . (10.46)

Suppose that we only possess a discrete-time version of f(t), that is, we only know the
value of f(t) at times t = n∆, n ∈ Z for a fixed interval ∆. We want to approximate
F (jΩ) with the following expression:

F̂ (jΩ) =
∞∑

n=−∞
∆ · f(n∆)e−j∆nΩ . (10.47)

Remark that F (jΩ) in (10.46) is computed using the values of f(t) for all t, while the ap-
proximation in (10.47) uses only the values of f(t) for a countable number of t: . . . ,−2∆,−∆, 0,∆, 2∆,

Consider now the periodic repetition of F (jΩ):

F̃ (jΩ) =

∞∑

n=−∞
F (j(Ω +

2π

∆
n)) . (10.48)

That is, F (jΩ) is repeated (with possible overlapping) with period 2π/∆ (same ∆ as in the
approximation (10.47)).

(a) Show that the approximation F̂ (jΩ) is equal to the periodic repetition of F (jΩ), i.e.

F̂ (jΩ) = F̃ (jΩ)

286 Chapter 10.

Figure 10.22: Spectrum of X(F) for sampling frequencies Fs = 10, 20, 40, 100 Hz

10.8. Problems 287

for any value of ∆. (Hint: consider the periodic nature of F̃ (jΩ) and remember that
a periodic function has a Fourier series expansion).

(b) Give a qualitative description of the result.

(c) For F (jΩ) as in Figure 10.23, sketch the resulting approximation F̂ (jΩ) for ∆ =
2π/Ω0,∆ = π/Ω0 and ∆ = π/(100/Ω0).

F (jΩ)

−Ω0 Ω0 Ω

Figure 10.23: Fourier transform F (jΩ) in Problem 10.1.

Problem 10.2 One of the standard ways of describing the sampling operation relies on
the concept of “modulation by a pulse train”. Choose a sampling interval Ts and define a
continuous-time pulse train p(t) as:

p(t) =

∞∑

k=−∞
δ(t− kTs).

The Fourier Transform of the pulse train is

P (jΩ) = (2π/Ts)
∞∑

k=−∞
δ(Ω − k(2π/Ts))

This is tricky to show, so just take the result as is. The “sampled” signal is simply the
modulation of an arbitrary-continuous time signal x(t) by the pulse train:

xs(t) = p(t)x(t)

Note that now, this sampled signal is still continuous time but, by the properties of the
delta function, is non-zero only at multiples of Ts; in a sense, xs(t) is a discrete-time
signal brutally embedded in the continuous time world.

288 Chapter 10.

Here’s the question: derive the Fourier transform of xs(t) and show that if x(t) is
bandlimited to π/Ts then we can reconstruct x(t) from xs(t).

Problem 10.3 Consider a real, continuous-time signal xc(t) with the following spectrum:

Xc(jΩ)

Ω0 2Ω0

(a) What is the bandwidth of the signal? What is the minimum sampling period in order
to satisfy the sampling theorem?

(b) Take a sampling period Ts = π/Ω0; clearly, with this sampling period, there will be
aliasing. Plot the DTFT of the discrete-time signal xa[n] = xc(nTs).

(c) Suggest a block diagram to reconstruct xc(t) from xa[n].

(d) With such a scheme available, we can therefore exploit aliasing to reduce the sampling
frequency necessary to sample a bandpass signal. In general, what is the minimum
sampling frequency to be able to reconstruct with the above strategy a real signal
whose frequency support on the positive axis is [Ω0,Ω1] (with the usual symmetry
around zero, of course)?

Appendix 10.A The Sinc Product Expansion Formula

The goal is to prove the product expansion

sin(πt)

πt
=

∞∏

n=1

(

1− t2

n2

)

. (10.49)

We will present two proofs; the first was proposed by Euler in 1748 and, while it certainly
lacks rigor by modern standards, it has the irresistible charm of elegance and simplicity
in that it relies only on basic algebra. The second proof is more rigorous, and is based
on the theory of Fourier series for periodic functions; relying on Fourier theory, however,
hides most the convergence issues.

10.A. The Sinc Product Expansion Formula 289

Euler’s Proof. Consider the N roots of unity for N odd. They will be z = 1 plus N − 1
complex conjugate roots of the form z = e±jωNk for k = 1, . . . , (N −1)/2 and ωN = 2π/N .
If we group the complex conjugate roots pairwise we can factor the polynomial zN − 1 as

zN − 1 = (z − 1)

(N−1)/2
∏

k=1

(z2 − 2z cos(ωNk) + 1).

The above expression can be immediately generalized to

zN − aN = (z − a)

(N−1)/2
∏

k=1

(z2 − 2az cos(ωNk) + a2).

Now replace z and a in the above formula by z = (1+x/N) and a = (1−x/N); we obtain:

(

1 +
x

N

)N
−
(

1− x

N

)N
=

4x

N

(N−1)/2
∏

k=1

(

(1− cos(ωNk) +
x2

N2
(1 + cos(ωNk))

)

=
4x

N

(N−1)/2
∏

k=1

(1− cos(ωNk))

(

1 +
x2

N2
· 1 + cos(ωNk)

1− cos(ωNk)

)

= Ax

(N−1)/2
∏

k=1

(

1 +
x2 (1 + cos(ωNk))

N2 (1− cos(ωNk))

)

where A is just the finite product (4/N)
∏(N−1)/2

k=1 (1− cos(ωNk)). The value A is also the
coefficient for the degree-one term x in the right-hand side and it can be easily seen from
the expansion of the left hand-side that A = 2 for all N ; actually, this is an application
of Pascal’s triangle and it was proven by Pascal in the general case in 1654. As N grows
large we have that

(

1± x

N

)N
≈ e±x;

at the same time, if N is large, then ωN = 2π/N is small and, for small values of the
angle, the cosine can be approximated as

cos(ω) ≈ 1− ω2/2

so that the denominator in the general product term can in turn be approximated as:

N2(1− cos((2π/N)k) ≈ N2 · 4k
2π2

2N2
= 2k2π2.

290 Chapter 10.

By the same token, for large N , the numerator can be approximated as 1+cos((2π/n)k) ≈
2 and therefore the above expansion becomes (by bringing A = 2 over to the left-hand
side):

ex − e−x

2
= x

(

1 +
x2

π2

)(

1 +
x2

4π2

)(

1 +
x2

9π2

)

. . .

Finally, we replace x by jπt to obtain

sin(πt)

πt
=

∞∏

n=1

(

1− t2

n2

)

.

Rigorous Proof. Consider the Fourier series expansion of the even function f(x) =
cos(τx) periodized over the interval [−π, π]. We have

f(x) =
1

2
a0 +

∞∑

n=1

an cos(nx)

with

an =
1

π

∫ π

−π
cos(τx) cos(nx)dx

=
2

π

∫ π

0

1

2
[cos((τ + n)x) + cos((τ − n)x)]dx

=
1

π

[
sin((τ + n)π)

τ + n
+

sin((τ − n)π)

τ − n

]

=
2 sin(τπ)

π

(−1)nτ

τ2 − n2

so that

cos(τx) =
2τ sin(τπ)

π

(
1

2τ2
− cos(x)

τ2 − 1
+

cos(2x)

τ2 − 22
− cos(3x)

τ2 − 32
+ . . .

)

In particular, for x = π we have

cot(πτ) =
2τ

π

(
1

2τ2
+

1

τ2 − 1
+

1

τ2 − 22
+

1

τ2 − 32
+ . . .

)

which we can rewrite as

π

(

cot(πτ)− 1

πτ

)

=

∞∑

n=1

−2τ

n2 − τ2

10.A. The Sinc Product Expansion Formula 291

If we now integrate between 0 and t both sides of the equation we have:

∫ t

0

(

cot(πτ)− 1

πτ

)

dπτ = ln
sin(πτ)

πτ

∣
∣
∣
∣

t

0

= ln

[
sin(πt)

πt

]

and

∫ t

0

∞∑

n=1

−2τ

n2 − τ2
dτ =

∞∑

n=1

ln

(

1− t2

n2

)

= ln

[∞∏

n=1

(

1− t2

n2

)]

from which, finally,

sin(πt)

πt
=

∞∏

n=1

(

1− t2

n2

)

.

292 Chapter 10.

Chapter 11

Multirate Signal Processing

Multirate signal processing refers to systems which allow sequences which arise from dif-
ferent sampling rates to be processed together.

There are two early applications that motivate its use in digital audio. Suppose we
have an audio signal xa(t) which has a significant energy only up to fM = 22, 000Hz. One
way is to implement a bandlimiting filter of width 22kHz with a sharp transition from
pass-band to stop-band as illustrated in the previous chapter. This requires the design

0

kHz

Band limiting filter Hb(jΩ)
(anti-aliasing)

Xa(jΩ)

1

−22 22

Figure 11.1: Spectrum of the continuous signal.

of a very good analog filter.

Another method is to have a much less stringent front-end anti-aliasing filter and then
oversampling it, i.e., sample at a rate larger than required and then change sampling rate
in discrete domain. This is illustrated in Figures 11.1 and 11.2.

Then we pass the over-sampled discrete-time signal through a digital filter and then
down-sample by a factor of 2, i.e., drop every second discrete sample to get back to original
sampling rate.

293

294 Chapter 11.

0

kHz

Xa(jΩ)Hb(jΩ)

1

−22 22

Figure 11.2: Filtering with an ideal analog low-pas filter.

The second application is in altering sampling rate of a system. For example CD is
sampled at 44kHz and DAT (for digital audio players) is sampled at 48kHz. Instead of
going back to continuous-time, we can do this alteration purely in discrete domain.

We have seen that periodic sampling of a continuous-time signal xc(t) at a sampling
rate of 1

Ts
is given by

x[n] = xc(nTs).

As seen in the digital audio example, it is sometimes necessary to change the sampling rate
of a discrete-time signal to obtain a new discrete-time representation of the underlying
continuous-time signal xc(t) as,

y[n] = xc(nT ′
s)

for a different sampling period T ′
s 6= Ts. A trivial approach to obtain such a sequence

y[n] from x[n] would be to reconstruct xc(t) from x[n] using the optimal interpolator,
and then resample the reconstructed signal with period T ′

s. Often this is not desirable
since we would have non-ideality in the reconstruction filter (interpolation). Therefore
it is of interest to consider methods that change the sampling rate by only discrete-time
operations. For example if T ′

s = MTs, then we see that since

x[n] = xc(nTs), y[n] = xc(nT ′
s) = xc(nMTs),

we can write directly the new discrete-time sequence in terms of x[n] as

y[n] = x[Mn],

and therefore obtain it completely by discrete-time operations.

11.1. Downsampling: Sampling rate reduction by an integer factor 295

front−end filter

Analog less stringent

0

Xs(jΩ)

1

−22 22−44 44−88 88

0

X(ejω)

1

22

Digital anti-aliasing filter

0

kHz

Xa(jΩ)

1

−22 22−44 44

kHz

−22−π π

Figure 11.3: Filtering with a much less stringent front-end anti-aliasing filter.

11.1 Downsampling: Sampling rate reduction by an integer fac-

tor

This need for change in sampling rate was seen in the motivating digital audio example
where one might oversample a signal (i.e., sample at a rate higher than necessary) and then
after discrete-time processing reduce the sampling rate by sub-sampling or decimation or
down-sampling. This means keeping only every M -th sample of the discrete-time process.
This is usually represented as shown in Fig. 11.4.

296 Chapter 11.

x[n] y[n] = x[Mn]
M

Figure 11.4: Down-sampling by a factor M .

Example 11.1 The MP3 audio supports a range of sampling frequencies, 8kHz, 11.025
kHz, 12 kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, and 48kHz. For example for high
end audio music since the human ear can at most listen up to 20kHz, if we band-limit
audio at 20kHz, a sampling rate of 44.1kHz (standard for CDs) or 48kHz (standard for
DAT) is suitable. However, if one wants to either save storage space or the content is a
speech then one can have a smaller sampling rate. Suppose we have an MP3 file already
at sampling rate 44.1kHz, and one wants to convert it into a 22.05kHz format, what is the
most efficient way to do it?

An obvious or naive method is to play-back the audio and resample the continuous-time
signal at the lower rate. However, we notice that since the information needed for lower
sampling rate is already contained in the 44.1kHz sampled audio, therefore by retaining
only every other samples from the 44.1kHz sampled audio one can produce an MP3 file in
the 22.05 kHz sampling rate format.

For example the down-sampling is shown pictorially for a discrete-time sequence in
Fig. 11.6.

Example 11.2 x[n] = cos

(
2π

3
n

)

y[n] = x[3n] = cos(2πn) = 1

This sampling process is shown in Fig. 11.7.

Note that the origin of time is very important, since if we down-sample x′[n] = x[n+1]
instead of x[n], the output is

y′[n] = x′[2n] = x[2n + 1] 6= x[2n] = y[n].

Example 11.3 If we down-sample from

x[n] = cos

(
2π

3
n

)

11.1. Downsampling: Sampling rate reduction by an integer factor 297

�����
�
�
�

����������

�����
�
�
�

����������

���������������
�
�
�

0

0

t

n

n

xc(t)

x[n] = xc(nTs)

y[n] = xc(n · 2Ts)

−Ts 0

Ts

−1

1 2 3

4 5

−2Ts

−5 −4 −3 −2

4

32

1−4 −3 −2 −1

Figure 11.5: Sampling from a continuous-time signal with different periods.

and

x′[n] = x[n + 1] = cos

(
2π

3
(n + 1)

)

= cos

(
2π

3
n +

2π

3

)

with down-sampling factor 3, we have

y′[n] = x′[3n] = cos

(
2π

3
· 3n +

2π

3

)

= cos
2π

3
= −1

2
,

and clearly y′[n] 6= y[n] = x[3n] = 1.

Therefore, down-sampling is not a time-invariant operation.

298 Chapter 11.

0

−2 −1

−3

−4

−5 5

−1−2

x[n]

y[n] = x[2n]

32

61

2

3 4

10

Figure 11.6: Down-sampling by a factor 2.

Example 11.4 Let

x[n] = sin

(
2π

3
n

)

,

x1[n] = x[n− 1] = sin

(
2π

3
n− 2π

3

)

,

x2[n] = x[n− 2] = sin

(
2π

3
n− 4π

3

)

,

x3[n] = x[n− 3] = sin

(
2π

3
n− 2π)

)

= sin

(
2π

3
n

)

.

11.1. Downsampling: Sampling rate reduction by an integer factor 299

��
1 2

3 6

−1−2

−6

−1−2−3

xc(t) = cos(2π

3 t)

x[n] = xc(n) = cos(2π

3 n)

y[n] = x[3n] = cos(2πn) = 1

754−4−5

−3 0

32 410

Figure 11.7: Down-sampling from xc(t) = cos(2π
3 t) with down-sampling factor 3.

Hence

y[n] = x[3n] = sin(2πn) = 0,

y1[n] = x1[3n] = x[3n − 1] = sin

(

−2π

3
n

)

= − sin

(
2π

3
n

)

= −
√

3

2
,

y2[n] = x2[3n] = x[3n − 2] = sin

(

−4π

3
n

)

=

√
3

2
,

y3[n] = x3[3n] = x[3n − 3] = sin(2πn) = 0.

Here we see a periodicity in the shifting property.

Example 11.5 Let we sample from the sequences

x[n] =

(
1

2

)n

u[n],

x1[n] = x[n− 1] =

(
1

2

)n−1

u[n− 1],

x2[n] = x[n− 2] =

(
1

2

)n−2

u[n− 2]

300 Chapter 11.

with down-sampling factor 2. Then we have

y[n] = x[2n] =

(
1

2

)2n

u[2n],

y1[n] = x1[2n] = x[2n− 1] =

(
1

2

)2n−1

u[2n− 1],

y2[n] = x2[2n] = x[2n− 2] =

(
1

2

)2n−2

u[2n− 2] =

(
1

2

)2(n−1)

u[2(n − 1)] = y[n− 1].

x[n]

2 3 410−1−2

y[n]

2 3 410−1−2

y2[n]

2 3 410−1−2

Figure 11.8: Sampling from x[n] =
(

1
2

)n
u[n].

If we denote by DM (·), the operator that down-samples a signal by M , i.e.,

DM (x[n]) = x[Mn],

11.1. Downsampling: Sampling rate reduction by an integer factor 301

then we can state the following property.
Property: Down-sampling by M or DM (·) is a linear, periodically time-varying op-

erator with period M .
Proof: Since

DM (αx1[n] = βx2[n]) = αx1[Mn] + βx2[Mn] = αDM (x1[n]) + βDM (x2[n])

clearly DM (·) is a linear operator.
It has a periodically time-varying property because if a sequence is shifted by M , its

down-sampled version is shifted by 1. More precisely,

DM (δ[n − kM]) = δ[n − k], k ∈ Z

DM (δ[n − kM − ℓ]) = 0, ℓ = 1, 2, . . . ,M − 1.

Hence, if y[n] = DM (x[n]), then DM (x[n− kM]) = y[n− k]. �

Therefore, for the down-sampling system the time-varying property implies that com-
plex sinusoids are no longer eigen-functions. This can be seen from the following argument.
Let

x[n] = ejπn = (−1)n.

If we down-sample by a factor 2,

y[n] = x[2n] = ejπ2n = 1 6= c · x[n]

for any constant c. Hence the complex sinusoid is not an eigen-function for the down-
sampling operator.

Recall that for a linear time-invariant system, the complex exponential was an eigen-
function, i.e., if

L{x[n]} =
∑

m

h[m]x[n−m],

then for x[n] = ejω0n,

y[n] = L
{
ejω0n

}
= H

(
ejω0

)
x[n]

was a scaled version of x[n] with scaling factor H
(
ejω0

)
which is a constant independent

of n.
We have now seen that the time-invariant property is crucial for this to be true. This is

because DM (·) is linear but not time-invariant and does not have the complex exponential
as an eigen-sequence or eigen-function.

302 Chapter 11.

An important consideration is to understand what happens to the z-transform (or
discrete-time Fourier transform) when one down-samples a signal. To be specific, we first
consider down-sampling by a factor of 2 of a discrete-time signal with z-transform X(z).

First let us define a new discrete-time sequence x′[n] with z-transform X ′(z) as

X ′(z) =
1

2
[X(z) + X(−z)] =

1

2

∑

n

x[n]z−n +
1

2

∑

n

x[n](−1)−nz−n

=
1

2

∑

n

{
x[n] + (−1)−nx[n]

}
z−n

=
∑

n:even

x[n]z−n +
∑

n:odd

x[n](1− 1)z−n

︸ ︷︷ ︸

0

=
∑

n

x[2n]z−2n.

Now, if

y[n] = x[2n],

then

Y (z) =
∑

n

y[n]z−n =
∑

n

x[2n]z−n = X ′
(

z
1
2

)

=
1

2

[

X
(

z
1
2

)

+ X
(

−z
1
2

)]

.

Evaluating it on the unit circle, if the ROC includes it, gives

Y
(
ejω
)

=
1

2

[

X
(

ej ω
2

)

+ X
(

e−j ω
2

)]

=
1

2

[

X
(

ej ω
2

)

+ X
(

ej(ω
2
−π)
)]

.

Example 11.6 Let

x[n] = anu[n], 0 < a < 1.

Then

X(z) =
1

1− az−1
, ROC: |z| > a.

Now define

y[n] = x[2n] = a2nu[2n] =

{
(a2)n, n ≥ 0
0 else.

Hence

Y (z) =
1

1− z2z−1
, ROC: |z| > a2.

11.1. Downsampling: Sampling rate reduction by an integer factor 303

But we see that

1

2

[

X
(

z
1
2

)

+ X
(

−z
1
2

)]

=
1

2

[
1

1− az−
1
2

+
1

1 + az−
1
2

]

=
1

2

[

2

(1− az−
1
2)(1 + az−

1
2)

]

=
1

1− a2z−1

= Y (z)

with ROC: |z 1
2 | > a or |z| > a2.

This illustrates the following important points:

• The output is a function of not only X(z) but also X(−z) (which corresponds to
the z-transform of a sequence (−1)nx[n], i.e., a modulated version of x[n]).

• Since we have a time-scaling by a factor of 2 in going from x′[n] to y[n], it corresponds

to z −→ z
1
2 or ejω −→ ejω/2 (contraction in time implies expansion in frequency).

Example 11.7 Let x[n] be a sequence with the spectrum X
(
ejω
)

given in Fig. 11.9. Let

�������� ��
��
��
��
�
�
�
�
�
�
�
�

0

X(ejω)
1

−2π 2π

Figure 11.9: X
(
ejω
)
.

y[n] = x[2n] be a down-sampled version of x[n] with factor 2. Note that Y
(
ejω
)

=

X ′
(

ej ω
2

)

, where

X ′ (ejω
)

=
1

2

[

X
(
ejω
)

+ X
(

ej(ω−π)
)]

.

Now consider the plot shown in Fig. 11.10, wherein X
(
ejω
)

is shown in solid line and

X
(
ej(ω−π)

)
is in dashed line. Therefore X ′ (ejω

)
can be constructed as given in Fig. 11.11.

Finally, we construct Y
(
ejω
)

where Y
(
ejω
)

= X ′
(

ej ω
2

)

means that it just expands

the ω axis in going from X ′ (ejω
)

to Y
(
ejω
)
.

304 Chapter 11.

��
��
��
��
�
�
�
�
�
�
�
�

�����������
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

0

1
2

1
2
X(ejω)1

2
X(ej(ω−π))

−π−2π π 2π−3π 3π

Figure 11.10: 1
2X
(
ejω
)

in solid line and 1
2X
(
e(jω−π)

)
in dashed line.

�������� ��
��
��
��
�
�
�
�
�
�
�
�

0

1
2

−π−2π π 2π−3π 3π

X ′(ejω)

Figure 11.11: X ′ (ejω
)
.

�������� ��
��
��
��
�
�
�
�
�
�
�
�

0

1
2

−π−2π π 2π−3π 3π

Y (ejω)

Figure 11.12: Y
(
ejω
)
.

11.1. Downsampling: Sampling rate reduction by an integer factor 305

The result for down-sampling by 2 generalizes to arbitrary integer M as follows.

Proposition 11.1 Given a signal x[n] with z-transform X(z), its down-sampled by factor
M as

y[n] = DM (x[n]) = x[Mn]

has the following z-transform,

Y (z) =
1

M

M−1∑

k=0

X
(

e−j 2π
M

kz
1
M

)

and if the unit circle is in the ROC then,

Y
(
ejω
)

=
1

M

M−1∑

k=0

X
(

ej(ω
M

− 2π
M

k)
)

.

Proof. Using the same idea as done for the M = 2 case, let

X ′(z) =
1

M

M−1∑

k=0

X
(

e−j 2π
M

kz
)

=
1

M

M−1∑

k=0

∑

n

x[n]
(

e−j 2π
M

kz
)−n

=
∑

n

x[n]

{

1

M

M−1∑

k=0

e−j 2π
M

kn

}

︸ ︷︷ ︸

δ[n−ℓM], for ℓ∈Z

z−n

=
∑

ℓ

x[ℓM]z−ℓM .

Then we see that

X ′
(

z
1
M

)

=
∑

ℓ

x[ℓM]z−ℓ = Y (z).

306 Chapter 11.

11.2 Filtering and Down-sampling

As seen in Example. 11.7, we notice that the down-sampled version has aliasing. Because
of this, it is usually better to low-pass filter a signal before sub-sampling. Let us do
Example. 11.7 again along with this filtering.

Example 11.8 Let x[n] be a sequence for which the DTFT is given in Fig. 11.13. We
pass it through a low-pass filter with cut-off frequency at π

2 . Thus, we obtain XLP

(
ejω
)

as shown in Fig. 11.14. Thus X ′ (ejω
)

and Y
(
ejω
)

will be obtained as in Fig. 11.15 and
Fig. 11.16.

Therefore, we see that

XLP (z) = H(z)X(z)

where H(z) is a low-pass filter operation. From here it is clear that for y[n] = xLP [2n],

Y (z) =
1

2

[

XLP

(

z
1
2

)

+ XLP

(

−z
1
2

)]

=
1

2

[

H
(

z
1
2

)

X
(

z
1
2

)

+ H
(

−z
1
2

)

X
(

−z
1
2

)]

.

This operator is presented in Fig. 11.17.
If the unit circle is in the ROC, then

Y
(
ejω
)

=
1

2

[

H
(

ej ω
2

)

X
(

ej ω
2

)

+ H
(

ej(ω
2
−π)
)

X
(

ej(ω
2
−π)
)]

.

Similar to Proposition. 11.1, we see that for a general filtering and down-sampling by M
(see fig. 11.17), it follows that if y[n] = x[Mn],then

Y (z) =
1

M

M−1∑

k=0

H
(

e−j 2π
M

kz
1

M

)

X
(

e−j 2π
M

kz
1
M

)

.

11.3 Upsampling: increasing the sampling rate by an integer

factor

We have seen that the reduction of the sampling rate of a discrete-time signal by an integer
factor involves sampling the sequence in a manner analogous to sampling the continuous-
time signal. A natural question to ask is whether we can increase the sampling rate.
Clearly we cannot get more information by such an operation, but this is useful when we
want to change the sampling rate by a rational factor as we will see later.

11.3. Upsampling: increasing the sampling rate by an integer factor 307

�������� ��
��
��
��
�
�
�
�
�
�
�
�

0

X(ejω)
1

−2π 2π

Figure 11.13: X
(
ejω
)
.

�������� ��
��
��
��
�
�
�
�
�
�
�
�

0

XLP (ejω)
1

−2π 2π

Figure 11.14: XLP

(
ejω
)
.

�������� ��
��
��
��
�
�
�
�
�
�
�
�

X ′(ejω)

−2π 2π0

1
2

Figure 11.15: X ′ (ejω
)
.

�������� ��
��
��
��
�
�
�
�
�
�
�
�

Y (ejω)

−2π 2π0 π−π

1
2

Figure 11.16: Y
(
ejω
)
.

308 Chapter 11.

y[n] = x[Mn]
M

x[n]
h[n]

Figure 11.17: Filtering before subsampling. Typically filter is a low-pass filter
with cut-off frequency π

M .

Suppose we have a sequence x[n] whose sampling rate we wish to increase by a fac-
tor L. If we consider the underlying continuous-time signal xc(t), the objective is to obtain
samples

x′[n] = xc(nTs
′), (11.1)

where Ts
′ = Ts

L , from the sequence of samples

x[n] = xc(nTs). (11.2)

We will refer to the operation of increasing the sampling rate as up-sampling. From
(11.1) and (11.2) it follows that

x′[n] = x [n/L] = xc (nTs/L) for n = kL, k ∈ Z.

For the samples n 6= kL, k ∈ Z, we simply replace it with zero, i.e., y[n] is the up-sampled
version of x[n] if

y[n] =

{
x [n/L] n = kL, k ∈ Z

0 otherwise.
(11.3)

Equivalently,

y[n] =
+∞∑

k=−∞
x[k]δ[n − kL]. (11.4)

Example 11.9 See Fig. 11.18.

Let us now compute teh z-transform of the upsampled version of a sequence. We
denote the up-sampling operator by UL(·). Then we have,

Y (z) =
∑

n

y[n]z−n =
∑

n

(
+∞∑

k=−∞
x[k]δ[n − kL]

)

z−n

=

+∞∑

k=−∞
x[k]z−kL = X

(
zL
)
. (11.5)

11.3. Upsampling: increasing the sampling rate by an integer factor 309

][nx

2L

][ny

Figure 11.18: Example. 11.9

If the unit circle is in the ROC, then

Y
(
ejω
)

= x
(
ejωL

)
.

Note that unlike downsampling, where there is a loss of information (and hence is not an
invertible operation), upsampling can be easily inverted since,

DL (UL (x[n])) = x[n]. (11.6)

Example 11.10 The up-sampling and its inverse are illustrated in Fig. 11.19.

The up-sampling property is summarized in the following proposition.

Proposition 11.2 If

y[n] = UL (x[n]) =

{
x [n/L] n = kL, k ∈ Z

0 else.

=

+∞∑

k=−∞
x[k]δ[n − kL], (11.7)

310 Chapter 11.

][nx

])[(][2 nxUny

0

0

0

])[(][2 nyDnz

Figure 11.19: Up-sampling and down-sampling.

then

Y (z) = X
(
zL
)
, (11.8)

and if |z| = 1 ∈ ROCx,

Y (ejω) = X
(
ejωL

)
. (11.9)

From (11.9) it is clear that up-sampling determines a contraction of the frequency axis.

11.3. Upsampling: increasing the sampling rate by an integer factor 311

Example 11.11 Let x[n] = xc(nTs) corresponds to the spectrum shown in Fig. 11.20,
where Ts = 2ΩN and y[n] = U2 (x[n]).

N N
0

)(jX c

0

)(
j
eX

sT

2

2

0

)()(
2jj
eXeY

2/2/ 2/32/32

2

])[(][

2

)(][

2
nxUny

T

nTxnx

Ns

sc

Figure 11.20: Up-sampling contracts the frequency axis.

Recall that the goal of up-sampling is to obtain samples at a higher rate than available.
Clearly such a goal is impossible if we had not sampled the underlying continuous-time
signal at the required sampling rate.x

For example, if we had sample x[k], we could find a reconstruction through optimal
interpolation as

xr(t) =
∑

k

x[k]sinc

(
t− kTs

Ts

)

.

312 Chapter 11.

Then we could resample this at sampling period Ts
′ to produce

z[n] = xr(nTs
′) =

∑

k

x[k]sinc

(
nTs

′ − kTs

Ts

)

.

If Ts
′

Ts
= 1

L , then we have

z[n] =
∑

k

x[k]sinc
(n

L
− k
)

=
∑

k

x[k]sinc

(
n− kL

L

)

.

Now

sinc

(
n− kL

L

)

= 0 for n = kL± L, kL± 2L, . . .

For n = kL,

sinc

(
n− kL

L

)

= 1.

Therefore we see that for n = mL,m ∈ Z,

z[mL] =
∑

k

x[k]sinc

(
mL− kL

L

)

= x[m].

But it also obtains all the samples in the middle.

Example 11.12 Look at Fig. 11.21, wherein the sampling period has been changed from
Ts to T ′

s = Ts

L .

Example 11.13 xc(t) = cos(4000πt)

Ts =
1

6000
, x[n] = xc(nTs) , Ωs = 2π × 6000 = 12000π

x[n] = cos
(

4000π
n

6000

)

= cos

(
2π

3
n

)

y[n] = U2 (x[n]) =

{
x [n/2] n = 0,±2,±4, . . .
0 else.

Ts
′ =

1

12000
, z[n] = xc(nTs

′)

z[n] = cos
(

4000π
n

12000

)

= cos
(πn

3

)

.

The relationship between the spectrum of all the signals in this example is illustrated in
Fig. 11.22.

11.4. Changing sampling rate by a rational non-integer factor 313

N N
0

)(jX c

0

)(
j
eX

sT

2

2

0

)(
j
eY

2/2/ 2/32/32

2

Ns

sc

T

nTxnx

2

)(][

1

33

sT

1

sT

1

L

2/ 2/3 22/2/32

)(
j

i eH

20

)(
j
eZ

2/2/ 2/32/32

ss T

L

T '

1

])[(][2 nxUny

][*][][nhnynz i

Figure 11.21: changing the up-sampling rate for T ′

s

Ts
= 1

L .

11.4 Changing sampling rate by a rational non-integer factor

Till now, we have shown how to increase or decrease the sampling rate of a sequence by
an integer factor. By combining downsampling and upsampling, it is possible to change

314 Chapter 11.

)(jX c

4000 40000

2/12/1

3/23/2

)(
j
eX

0

2

2

s

2

3/2/ 2/

)(
j
eY

0 2/32 3/2/3

22/ 2/

)(
j

i eH

0 2/32 2/3

23/

)(
j
eZ

0 2/32 3/2/3

)()()(
j

i

jj
eHeYeZ

Figure 11.22: Example. 11.13

the sampling rate by a non-integer (rational) factor.

We have seen till now two operations illustrated in Figures 11.23 and 11.24.

Specifically we can cascade an upsampling and downsampling operation to produce a

11.4. Changing sampling rate by a rational non-integer factor 315

 Low-pass
 Filter
Cut-off M/

M
][nx][nxLP][ny

Figure 11.23: Filtering followed by downsampling

 Low-pass
 Filter
Cut-off L/

][nx][nz
L

Figure 11.24: Upsampling followed by interpolation

rational sampling frequency change as illustrated in Figure 11.25. This can be simplified
as in Figure 11.26.

 Low-pass
 Filter
Cut-off L/

][nx][nz
L

 Low-pass
 Filter
Cut-off M/

M
][nz][nu][nxe

sT LTs /
Sampling

Period: LTs / LTs / LMTs /

Interpolator Downsampler

Figure 11.25: System for changing sampling rate by factor M
L

Example 11.14 If xc(t) = cos(4000πt) , Ts = 1
6000 .

x[n] = xc

(

n
1

6000

)

= cos

(
2π

3
n

)

.

316 Chapter 11.

u[n]
ML

x[n] low-pass filter

cut-off= min(π

L
, π

M
)

Figure 11.26: Same system as Figure 11.25 which is simplified by combining
the two low-pass filters

We want to sample at Ts
′ = 1

8000 , i.e. Ts

Ts
′ = 8000

6000 = 4
3 .

That is we finally want,

u[n] = xc(nTs
′) = cos

(
4000πn

8000

)

= cos
(π

2
n
)

.

Can we do this through discrete-time operations on x[n]?

Since Ts
′ = 3

4Ts, we have M = 3, L = 4 for down-sampling and up-sampling factors.
This has been shown in Fig. 11.27.

Clearly

cos
(π

2
n
)

︸ ︷︷ ︸

u[n]

DTFT⇐⇒ 1

2
δ̃
(

ω − π

2

)

+
1

2
δ̃
(

ω +
π

2

)

︸ ︷︷ ︸

U(ejω)

Example 11.15 [Sampling rate conversion for digital audio.]

If we want to go from 44.1kHz sampling rate to 48.0kHz sampling rate we need:

Ts =
10−3

44.1
, Ts

′ =
10−3

48

Ts
′

Ts
=

44.1

48
=

14.7

16
or Ts

′ = Ts

(
147

160

)

.

Therefore if M = 147, L = 160, we can go from 44.1kHz to 48kHz sampling rate.

Example 11.16 Suppose Ts
′ =

(
3
2

)
Ts, we have L = 2,M = 3. Look at Fig. 11.28

11.5. Interchange of filtering and down-sampling/up-sampling 317

)(jX c

4000 40000

2/12/1

3/23/2

)(
j
eX

0

2

2

s

2

4/
2/ 2/

)(
j
eY

02

26/

)(
j
eZ

02 6/

4/ 4/54/34/5 4/3

6/116/11

)(
j
eU

02 2/2/ 2/32/3

2

2

Figure 11.27: Changing the sampling rate by a rational non-integer factor.

11.5 Interchange of filtering and down-sampling/up-sampling

In this section we examine an important property of down-sampling and upsampling pro-
cess. Consider the two systems shown in Fig. 11.29.

318 Chapter 11.

N N
0

)(jX c

0

)(
j
eX

sT

2

2

0

)(
j

e eX

2/2/ 2/32/32

2

s

sT
2

1

33

)(
j
eU

Ns 2

3/ 3/

202
3/ 3/

02 2 33

)(
j
eZ

Figure 11.28: Example. 11.16: up-sampling and down-sampling with L = 2 and M = 3.

We show that these two systems are equivalent first through an example and then
more formally.

11.5. Interchange of filtering and down-sampling/up-sampling 319

][nxa][nya][nx
)(zH2

)(
2
zH 2

][nxb][nyb][nx

Figure 11.29: Two equivalent systems based on downsampling identities.

Example 11.17

Xa

(
ejω
)

=
1

2

{

X
(

ejω/2
)

+ X
(

ej(ω
2
−π)
)}

Ya

(
ejω
)

= H
(
ejω
)
Xa

(
ejω
)

=
1

2
H
(
ejω
) {

X
(

ejω/2
)

+ X
(

ej(ω
2
−π)
)}

Xb

(
ejω
)

= H
(
ej2ω

)
X
(
ejω
)

Yb

(
ejω
)

=
1

2

{

Xb

(

ejω/2
)

+ Xb

(

ej(ω
2
−π)
)}

=
1

2

{

H
(
ejω
)
X
(

ejω/2
)

+ H
(

ej(ω
2
−π)2

)

X
(

ej(ω
2
−π)
)}

=
1

2
H
(
ejω
) {

X
(

ejω/2
)

+ X
(

ej(ω
2
−π)
)}

.

Hence we see that Ya

(
ejω
)

= Yb

(
ejω
)
.

320 Chapter 11.

20

)(
j
eX

2/2/ 2/32/32

1

2/ 2/3 22/2/32

)(
j
eH

1

4/ 24/2

)(
2j
eH

20

)()()(
2 j

b

jj
eXeHeX

4/4/2

0

)(
)(j

b eX

2 2

20

)(
2

1)
2
(

2 j

b

j

b

j

b eYeXeX

2 2/2/

Figure 11.30: Example 11.17: Comparison of the spectrun of two equivalence systems.

The example suggests the following simple formal proof for the equivalence of the
Fig. 11.29.

We know that if

y[n] = D2 (xf [n]) ,

11.5. Interchange of filtering and down-sampling/up-sampling 321

0

)(
j

a eX

2 2 33

20

)(
j
eX

2/2/ 2/32/32

)(
)(j

eX

2/2/

202 2/2/

)(
j

a eY

Figure 11.31: Continuation of Fig. 11.30 for Example 11.17.

then

Y (z) =
1

2

[

Xf

(

z1/2
)

+ Xf

(

−z1/2
)]

,

or if |z| = 1 is in the ROC,

Y
(
ejω
)

=
1

2

[

Xf

(

ejω/2
)

+ Xf

(

ej(ω
2
−π)
)]

.

Now since xa[n] = D2 (x[n]),

Xa(z) =
1

2

{

X
(

z1/2
)

+ X
(

−z1/2
)}

,

and

Ya(z) = H(z)Xa(z) =
1

2
H(z)

{

X
(

z1/2
)

+ X
(

−z1/2
)}

. (11.10)

Next,

Xb(z) = H
(
z2
)
X(z),

322 Chapter 11.

therefore,

Xb

(

z1/2
)

= H

((

z1/2
)2
)

X
(

z1/2
)

= H(z)X
(

z1/2
)

,

and

Xb

(

−z1/2
)

= H

((

−z1/2
)2
)

X
(

−z1/2
)

= H(z)X
(

−z1/2
)

.

Hence,

Yb(z) =
1

2

{

Xb

(

z1/2
)

+ Xb

(

−z1/2
)}

=
1

2
H(z)

{

X
(

z1/2
)

+ X
(

−z1/2
)}

= Ya(z). �

A similar identity applies to up-sampling as shown in Fig. 11.32.

)(zH L
][nxa

][nya][nx

][nxb][nyb][nx
)(
L
zHL

Figure 11.32: Two equivalent systems based on upsampling identities.

This can be seen from the following.

Ya(z) = Xa

(
zL
)

= H
(
zL
)
X
(
zL
)
,

and

Yb(z) = H
(
zL
)
Xb(z) = H

(
zL
)
X
(
zL
)
.

Hence

Ya(z) = Yb(z),

and since the ROC’s are the same,

ya[n] = yb[n].

11.5. Interchange of filtering and down-sampling/up-sampling 323

Example 11.18 (Polyphase Implementation of Downsampling) Consider the
downsampling system given in Figure 11.33, where H(z) is an arbitrary filter with impulse

H(z) ↓ 2
x[n] y[n]

Figure 11.33: Downsampling system for Exercise 11.18.

response h[n].

We define

e0[n] = h[2n], and e1[n] = h[2n + 1].

Prove that the system of Figure 11.34 is equivalent to the one given in Figure 11.33.

E0(z)

E1(z)

+

z−1

↓ 2

↓ 2
x[n] y[n]

Figure 11.34: Equivalent system.

Solution:

Using one of the noble identities on Figure 11.34 results in Figure 11.35. Downsampling
with a factor two is linear, so can perform it after the addition.

Now define g0[n] to be the impulse response corresponding to E0(z
2). We have

g0[n] =

{

h[n], n even,

0, n odd.

Similarly, defining g1[n] to be the impulse response corresponding to E1(z
2), we have

g1[n] =

{

h[n + 1], n even,

0, n odd.

324 Chapter 11.

E0(z
2)

E1(z
2)

+

z−1

↓ 2

↓ 2
x[n] y[n]

Figure 11.35: Equivalent system.

Now if we consider the filtering operation without downsampling, we have

y[n] =

∞∑

l=−∞
h[l]x[n − l]

=

∞∑

k=−∞
h[2k]x[n − 2k] +

∞∑

k=−∞
h[2k + 1]x[n− 2k − 1],

which we see is exactly the operation performed by the system in Figure 11.35.

Example 11.19 (Haar Decomposition) In this example we consider a filter bank
where the analysis and synthesis filters are not perfect low and high-pass filters.

We start with the 2 component analysis filter bank given in Figure 11.36. The impulse

h0[n]

h1[n] ↓ 2

↓ 2
x[n]

x0[n]

x1[n]

v0[n]

v1[n]

Figure 11.36: Analysis filter bank for Exercise 11.19.

11.5. Interchange of filtering and down-sampling/up-sampling 325

responses of the filters h0[n] and h1[n], in this case are given by

h0[n] =

{

1, if n = 0, 1

0, otherwise
, h1[n] =

−1, if n = 0

1, if n = 1

0, otherwise.

(a) Consider
[
v0[n]
v1[n]

]

= A

[
x[2n − 1]

x[2n]

]

.

Find A. Show that it is orthonormal.

(b) Show that x[2n− 1] and x[2n] can be recovered from v0[n] and v1[n].

In the second part of this exercise we will find the synthesis filter bank that reconstructs
x[n] from v0[n] and v1[n]. The structure of the synthesis filter bank is given in Figure 11.37.
Let

+

g0[n]

g1[n]↑ 2

↑ 2

x̂[n]

u0[n]

u1[n]

y0[n]

y1[n]

v0[n]

v1[n]

Figure 11.37: Synthesis filter bank for Example 11.19.

g0[n] =
1

2
h0[−n + 1], and g1[n] =

1

2
h1[−n + 1].

(c) Find u0[n] and u1[n] and prove that x̂[n] = x[n− 1].

Solution:

(a)

A =

[
1 1
1 −1

]

.

The rows of A are orthogonal, since
〈 [

1 1
]
,
[
1 −1

] 〉

= 0.

326 Chapter 11.

(b) Since the rows of A are orthogonal it is full rank and hence invertible. We have
[
x[2n − 1]

x[2n]

]

= A−1

[
v0[n]
v1[n]

]

,

where

A−1 =
1

2

[
1 1
1 −1

]

.

Let

g0[n] =
1

2
h0[−n + 1], and g1[n] =

1

2
h1[−n + 1].

(c) We have

v0[n] = x[2n] + x[2n− 1]

v1[n] = −x[2n] + x[2n− 1].

g0[n] =
1

2
h0[−n + 1] =

1
2 , n = 0
1
2 , n = 1

0, otherwise,

g1[n] =
1

2
h1[−n + 1] =

1
2 , n = 0

−1
2 , n = 1

0, otherwise.

y0[n] =

{

x[n] + x[n− 1], n even

0, n odd,

y1[n] =

{

−x[n] + x[n− 1], n even

0, n odd.

u0[n] =
1

2
(y0[n] + y0[n− 1]) =

{
1
2 (x[n] + x[n− 1]) , n even
1
2 (x[n− 1] + x[n− 2]) , n odd,

u1[n] =
1

2
(y1[n]− y1[n− 1]) =

{
1
2 (−x[n] + x[n− 1]) , n even
1
2 (x[n− 1]− x[n− 2]) , n odd,

x̂[n] =

{

x[n− 1], n even

x[n− 1], n odd.

11.6. Sub-band decompositions 327

11.6 Sub-band decompositions

As we have seen, it is possible to change the sampling rate of a discrete-time signal by a
combination of upsampling (with interpolation) and downsampling. Multirate techniques
refer in general to utilizing upsampling, downsampling and filtering in a variety of ways
to analyze and process a discrete-time signal. Filterbanks take a discrete-time signal and
pass then through a parallel set bank of filtering and multirate operations. These ideas
have become the corner-stone of modern signal processing techniques.

In digital audio (for example MP3), the representation of audio signal is based on
human auditory perception. The goal is to encode the audio signal in a manner that is
transparent perceptually, i.e. to avoid annoying auditory effects. This is where the model
of auditory system as a filterbank is critically used. This also motivates the study of
filterbanks which are central to multirate signal processing.

11.6.1 Perceptual models

As a first approximation, the human auditory systems analyzes the sounds by passing it
through a bank of filters as shown in Fig. 11.38.

.

.

.

)(
0
fH

)(1 fH

)(1 fH N

)(
0
tx

)(1 tx

)(1 txN

)(tx

Figure 11.38: Filterbank model of human auditory system

The auditory filters have been empirically (experimentally) characterized and are il-
lustrated (approximately) in Fig. 11.39.

328 Chapter 11.

|Hi(f)|2

200 1k 2k 10k log(f)

H0(f) H1(f) Hi(f) HN−1(f)

Figure 11.39: Approximate frequency responses of auditory filters

The human auditory system is able to distinguish signals across these filters but not
within. That is, the output of each filter is a single entity with the dominant (highest
energy) signal within that band masking all other signals in the same band. This masking
process is quite complicated and is still not completely understood, but the basic principle
of filterbanks have been very successfully used in digital audio coding. Therefore we will
study the basic principles of filterbanks and in this sampling rate conversions are crucial.
These ideas also form the basis for other signal representation and transform techniques
such as wavelets which is a topic for an advanced class on signal processing.

11.7. Sub-band or filterbank decomposition of signals 329

11.7 Sub-band or filterbank decomposition of signals

As seen in the auditory perceptual model, there is value to analyzing and representing
signals using a bank of filters. If the filter have (almost) non-overlapping responses (such
as a low-pass and high-pass), then we are splitting the signals into frequency sub-bands
and hence the terminology sub-band decomposition.

A basic structure for a sub-band or filterbank decomposition is illustrated in Fig. 11.40.

Analysis Synthesis

x1[n]

x0[n]

H1(z)

H0(z) F0(z)

F0(z)
y1[n]

2

2

v1[n]

2

2

v0[n] y0[n]

+
u1[n]

u0[n]

x̂[n]x[n]

Figure 11.40: Analysis and synthesis of sub-band decomposition. This is also
called the two-band quadrature mirror filter (QMF) bank.

Example 11.20 Look at Figures 11.41, 11.42, 11.43, and 11.45.

Hence, we see that this filterbank reconstructs x[n] afther the synthesis. Such a fil-
terbank which synthesizes the original signal x[n] (except perhaps sealing and delaying)
is called a perfect reconstruction filterbank. In this example we achieved this by having
non-overlapping frequency responses for the analysis filters (H0(z),H1(z)) and the synthe-
sis filters (F0(z), F1(z)). However, such a perfect reconstruction also holds (surprisingly)
for carefully designed filters H0(z),H1(z), F0(z), F1(z) which might have overlapping fre-
quency responses.

To understand the implications of this example more thoroughly, notice that v0[n] and
v1[n] were sufficient to reconstruct x[n]. Therefore, inherently we are representing x[n]
through v0[n] and v1[n]. This is because v0[n] and v1[n] are downsampled versions of x0[n]
and x1[n] and hence together have the same number of samples as x[n].

Since H0

(
ejω
)

and H1

(
ejω
)

are orthogonal and span the whole space (i.e. cover all
the frequencies), we can easily understand that x0[n] and x1[n] allow us to reconstruct
x[n]. However, the non-trivial observation is that downsampled versions of x0[n] and x1[n]
i.e. v0[n], v1[n] are also sufficient for reconstructing x[n].

330 Chapter 11.

02 2 33

)(
j
eX
1

2/1

2/

2/ 2/3 22/2/32

)(0
j
eH

2/5

2

Figure 11.41: Example 11.20.

Since

X̂
(
ejω
)

= F0

(
ejω
)
Y0

(
ejω
)

+ F1

(
ejω
)
Y1

(
ejω
)
,

and

X̂
(
ejω
)

= X
(
ejω
)
,

we see that the decomposition is

X
(
ejω
)

= F0

(
ejω
)
V0

(
ej2ω

)
+ F1

(
ejω
)
V1

(
ej2ω

)
.

and

X̂
(
ejω
)

= F0

(
ejω
)
Y0

(
ejω
)

+ F1

(
ejω
)
Y1

(
ejω
)

= F0

(
ejω
)
V0

(
ej2ω

)
+ F1

(
ejω
)
V1

(
ej2ω

)
.

Now,

V0

(
ejω
)

=
1

2

{

X0

(

ejω/2
)

+ X0

(

ej(ω
2
−π)
)}

=
1

2

{

X0

(

ejω/2
)

+ X0

(

−ejω/2
)}

11.7. Sub-band or filterbank decomposition of signals 331

Hence,

V0

(
ej2ω

)
=

1

2

{
X0

(
ejω
)

+ X0

(
−ejω

)}

=
1

2

{
H0

(
ejω
)
X
(
ejω
)

+ H0

(
−ejω

)
X
(
−ejω

)}

and similarly,

V1

(
ej2ω

)
=

1

2

{
X1

(
ejω
)

+ X1

(
−ejω

)}

=
1

2

{
H1

(
ejω
)
X
(
ejω
)

+ H1

(
−ejω

)
X
(
−ejω

)}

Therefore,

X̂
(
ejω
)

=
1

2
F0

(
ejω
)
H0

(
ejω
)
X
(
ejω
)

+
1

2
F0

(
ejω
)
H0

(

ej(ω−π)
)

X
(

ej(ω−π)
)

+
1

2
F1

(
ejω
)
H1

(
ejω
)
X
(
ejω
)

+
1

2
F1

(
ejω
)
H1

(

ej(ω−π)
)

X
(

ej(ω−π)
)

.

But F0

(
ejω
)
H0

(
ej(ω−π)

)
= 0 = F1

(
ejω
)
H1

(
ej(ω−π)

)
since

F0

(
ejω
)

= H0

(
ejω
)

=

{ √
2 |ω| ≤ π/2

0 else

and

F1

(
ejω
)

= H1

(
ejω
)

=

{ √
2 |ω| > π/2

0 else.
.

Therefore,

X̂
(
ejω
)

=
1

2

∣
∣H0

(
ejω
)∣
∣
2
X
(
ejω
)

+
1

2

∣
∣H1

(
ejω
)∣
∣
2
X
(
ejω
)

=
1

2

{∣
∣H0

(
ejω
)∣
∣
2
+
∣
∣H1

(
ejω
)∣
∣
2
}

X
(
ejω
)

= X
(
ejω
)
.

Note that in the example shown above, the analysis and synthesis filters were ideal,
i.e. perfect low-pass and high-pass filters. This means that we need infinite length filters
to implement such a system. A natural question to ask is whether we can obtain such a
property by using finite-length filters. At first, this seems impossible since finite-length
filters will definitely have overlapping spectra. However, this is possible and we illustrate
this idea using a signal decomposition method developed by Haar in 1917, which was
largely forgotten till a couple of decades ago.

332 Chapter 11.

We will look at the Haar signal decomposition in two ways. First through a filter bank
and the second through a basis expansion.

Consider the filter h0[n] with impulse response

h0[n] =

{
1√
2

n = −1, 0

0 else.
(11.11)

Note that such a filter is non-causal, but has a finite length and therefore can be imple-
mented using a delay. Consider, as in Figure 11.45,

x0[n] = h0[n] ⋆ x[n] = h0[0]x[n] + h0[1]x[n + 1]

=
1√
2
{x[n] + x[n + 1]} (11.12)

Now consider the filter h1[n] with impulse response,

h1[n] =

1√
2

n = 0

− 1√
2

n = −1

0 else.

(11.13)

Again, such a filter is non-causal but FIR and hence implementable. We therefore obtain,

x1[n] = h1[n] ⋆ x[n] =
1√
2
{x[n]− x[n− 1]} (11.14)

Observing that v0[n] and v1[n] are downsampled versions of x0[n] and x1[n] respectively
(see Figure 11.45), we get

v0[n] = x0[2n] =
1√
2
{x[2n] + x[2n + 1]}

v1[n] = x1[2n] =
1√
2
{x[2n]− x[2n + 1]} . (11.15)

Now it is easy to see from (11.15) that {v0[n]} and {v1[n]} sequences are enough to retain
all the information about x[n] since we see

v0[n] + v1[n] =
√

2x[2n]

v0[n]− v1[n] =
√

2x[2n− 1]. (11.16)

This observation implies that even by filtering through filters H0

(
ejω
)

and H1

(
ejω
)

with
overlapping spectra and downsampling, we still retain all the information about the input
sequence.

11.7. Sub-band or filterbank decomposition of signals 333

This picture can be completed formally by constructing the corresponding synthesis
filter g0[n] and g1[n].

g0[n] = h0[−n] =

{
1√
2

n = 0, 1

0 else.
(11.17)

g1[n] = h1[−n] =

1√
2

n = 0

− 1√
2

n = 1

0 else,

(11.18)

which are now causal FIR filters.

Now we have (see Figure 11.45),

y0[n] =

{
v0 [n/2] , n even
0, else

=

{
1√
2
(x[n] + x[n + 1]) , n even

0, else.

y1[n] =

{
v1 [n/2] , n even
0, else

=

{
1√
2

(x[n]− x[n + 1]) , n even

0, else.
(11.19)

Therefore, we get using (11.17) and (11.18) in (11.19),

u0[n] =
1√
2

(y0[n] + y0[n− 1]) =

{
1√
2
y0[n], n even

1√
2
y0[n− 1], n odd

u1[n] =
1√
2

(y1[n] + y1[n− 1]) =

{
1√
2
y1[n], n even

− 1√
2
y1[n− 1], n odd

(11.20)

yielding

u0[n] =

{
1
2 (x[n] + x[n + 1]) , n even
1
2 (x[n− 1] + x[n]) , n odd

u1[n] =

{
1
2 (x[n]− x[n + 1]) , n even
1
2 (x[n]− x[n− 1]) , n odd.

(11.21)

Therefore, we get for x̂[n] (see Figure 11.45),

x̂[n] = u0[n] + u1[n] =

{
x[n] n even
x[n] n odd

= x[n]. (11.22)

Therefore we get perfect reconstruction.

334 Chapter 11.

This illustrates the fact that we can get perfect reconstruction even with analysis (and
synthesis) filters with finite length. This immediately means that the spectra of the filters
H0

(
ejω
)

and H1

(
ejω
)

are overlapping as shown below in Figure 11.48.

H0

(
ejω
)

=
1√
2

(
1 + e−jω

)

H1

(
ejω
)

=
1√
2

(
1− e−jω

)
=

1√
2

(

1 + e−j(ω−π)
)

∣
∣H0

(
ejω
)∣
∣ =

∣
∣
∣H0

(

ej(ω−π)
)∣
∣
∣ = [1 + cos ω]1/2

An alternate interpretation of this property arises by viewing this through basis func-
tions. This viewpoint is quite general and powerful since it leads to the idea of wavelets
of which the Haar decomposition is a simple example.

Consider Haar basis functions as,

ϕ2k[n] =

{
1√
2

n = 2k, 2k + 1

0 else.
(11.23)

ϕ2k+1[n] =

1√
2

n = 2k

− 1√
2

n = 2k + 1

0 else,

(11.24)

We notice that

ϕ2k[n] = ϕ0[n− 2k] , ϕ2k+1[n] = ϕ1[n− 2k].

Moreover,

〈ϕ2k, ϕ2ℓ〉 =
∑

n

ϕ∗
2k[n]ϕ2ℓ[n] = δ[k − ℓ].

〈ϕ2k, ϕ2k+1〉 =
∑

n

ϕ∗
2k[n]ϕ2k+1[n] =

1√
2
{1− 1} = 0,

and for ℓ 6= k

〈ϕ2k, ϕ2ℓ+1〉 =
∑

n

ϕ∗
2k[n]ϕ2ℓ+1[n] = 0.

Hence we see that {ϕℓ}ℓ form an orthonormal set, i.e.

〈ϕp, ϕq〉 = δ[p − q]. (11.25)

11.7. Sub-band or filterbank decomposition of signals 335

Now the Haar analysis function (see Figure 11.45) can be interpreted as a projection by
noticing that,

v0[k] = x0[2k] = 〈ϕ2k, x〉 =
1√
2
{x[2k] + x[2k + 1]} . (11.26)

v1[k] = x1[2k] = 〈ϕ2k+1, x〉 =
1√
2
{x[2k]− x[2k + 1]} . (11.27)

Therefore from this point-of-view, it is not surprising that {v0[k]},{v1[k]} sequences are
equivalent to the original sequence x[n], since they are just representation of x[n] in the
basis {ϕℓ}ℓ. Therefore, the reconstruction is also quite simple,

x[n] =
∑

k∈Z

x0[2k]ϕ2k[n] +
∑

k∈Z

x1[2k]ϕ2k+1[n]

=
∑

k∈Z

v0[k]ϕ2k[n] +
∑

k∈Z

v1[k]ϕ2k+1[n], (11.28)

as is usual for any orthonormal basis.
We see that (11.28) is clearly equivalent to (11.22), just expressed in the form of basis

functions instead of filters. More concretely we see that
∑

k∈Z

v0[k]ϕ2k[n] =
∑

k

1√
2
{v0[k]δ[n − 2k] + v0[k]δ[n − 2k − 1]}

=
1√
2

∑

k∈Z

v0[k]δ[n − 2k]

︸ ︷︷ ︸

y0[n]=U2(v0[n])

+
1√
2

∑

k∈Z

v0[k]δ[n − 2k − 1]

︸ ︷︷ ︸

y0[n−1]

=
1√
2
{y0[n] + y0[n− 1]} = u0[n].

∑

k∈Z

v1[k]ϕ2k+1[n] =
1√
2

∑

k∈Z

v1[k]δ[n − 2k]

︸ ︷︷ ︸

y1[n]=U2(v1[n])

− 1√
2

∑

k∈Z

v1[k]δ[n − 2k − 1]

︸ ︷︷ ︸

y1[n−1]

=
1√
2
{y1[n]− y1[n− 1]} = u1[n].

Therefore (11.28) just expresses the same relationship as in (11.22) as

x[n] = u0[n] + u1[n]

=
1√
2
{y0[n] + y0[n− 1]}+

1√
2
{y1[n]− y1[n− 1]} , (11.29)

which was done through a filterbank interpretation.

336 Chapter 11.

11.7. Sub-band or filterbank decomposition of signals 337

2/ 2/3 22/2/32

)(1
j
eH

2/5

2

202 2/2/ 2/32/3 2/5

)(0
j
eX

2

2/1

202 2/2/ 2/32/3 2/5

)(0
j
eX)(

)(

0

j
eX

)()(
2

1
)('

)(

000

jjj
eXeXeX

2

2/1

202

)(')(
2/

00

jj
eXeV

2/1

22/1

202 2/2/ 2/32/3 2/5

)(
)(

1

j
eX

)(1
j
eX

)()(
2

1
)('

)(

111

jjj
eXeXeX

2/1

Figure 11.42: Continuation of Fig.11.41: Example 11.20.

338 Chapter 11.

0

)(')(
2/

11

jj
eXeV

2 2 33

22/1

202 2/2/ 2/32/3 2/5

)()(
2

00

jj
eVeY

2/1

22/1

0

)()(
2

11

jj
eVeY

2 22/2/2/3 2/3

22/1

2/ 2/3 22/2/32

)(0
j
eF

2/5

2

2/ 2/3 22/2/32

)(1
j
eF

2/5

2

202 2/2/ 2/32/3 2/5

)()()(000

jjj
eYeFeU

1

2/1

Figure 11.43: Continuation of Fig.11.42: Example 11.20.

11.7. Sub-band or filterbank decomposition of signals 339

202 2/2/ 2/32/3 2/5

2/1

)()()(111

jjj
eYeFeU

02 2 33

)()()(ˆ 10

jjj
eUeUeX

1

Figure 11.44: Continuation of Fig.11.43: Example 11.20.

Figure 11.45: Two-channel filter bank representation of the Haar decomposition

340 Chapter 11.

Figure 11.46: Illustration of synthesis filter operations.

11.7. Sub-band or filterbank decomposition of signals 341

Figure 11.47: Continue to Fig. 11.46: Illustration of synthesis filter operations.

342 Chapter 11.

Figure 11.48: Overlapping spectra of analysis filters.

11.8. Problems 343

11.8 Problems

Problem 11.1 Prove the equivalence of the two down-sampling and up-sampling with
interpolator configurations shown in Fig. 11.49. These equivalent relations are called the
“noble identities”.

Figure 11.49: Show these two equivalences

Problem 11.2 The system shown in Fig 11.50 approximately interpolates the sequence
x[n] by a factor of L. Suppose that the linear filter has impulse response h[n] such that
h[n] = h[−n] and h[n] = 0 for |n| > (RL−1), where R and L are integers, i.e., the impulse
response is symmetric and of length (2RL− 1).

x[n] v[n] y[n]
H(ejω)L

Figure 11.50: Interpolating system

(a) What condition must be satisfied by h[n] in order that y[n] = x[n/L] for n =
0,±L,±2L, . . . ? Note that h[n] = δ[n] is a trivial example for this condition. Can
you give any other example?
Hint: Note that there is no condition on y[n] where n is not divisible by L.

(b) Let z[n] be the downsampled version of y[n] by sampling factor of 2L. Find the
spectrum of z[n] and compare it to spectrum of x[n] which is shown in Fig. 11.51.
What is teh relationship between x[n] and z[n]?

344 Chapter 11.

−π π−π
2

X(ejω)

3π
4

Figure 11.51: Spectrum of x[n]

Problem 11.3 (Downsampling in MATLAB) In this problem we will consider the
effect of aliasing in an audio file. This will be an actual experiment on using prefiltering
for sampling. Download the file hw6.wav from the course website and load it in Matlab in
the variable a

>>[a,fs]=wavread(’hw6.wav’);

(a) Listen to the file:
>>soundsc(a);

(b) Compute the DFT of a and save it in A:
>>A=fft(a);

Read the Matlab help of wavread:
>>help wavread;

and find the sampling frequency of the file. Estimate the the bandwidth of the original
continuous time file, i.e., ω = 2Ω

Ωs
, where ω and Ω respectively denote the frequency

in transform of the discrete-time and continuous-time signals,.
Hint: Recall the relationship between the DFT and DTFT and note that after the
sampling process, the original spectrum will be repeated at the multiples of the sam-
pling frequency, kΩs, and then it is filtered by the appropriate low-pass filter.

(c) Read the Matlab help for downsample:
>>help downsample;

Produce the sequence b which is the down-sampled version of a with down-sampling
factor 3, i.e., b[n] = a[3n]. Listen to b:
>>soundsc(b);

Does it sound like the original audio file?

(d) Plot the spectrum of b:
>>B=fft(b);

>>plot(abs(B));

11.8. Problems 345

Problem 11.4 Consider a real discrete-time signal x[n] with the following spectrum:

X(ejω)

1

π/4 π/2 3π/4 π

Note that the spectrum of a real signal is symmetric, i.e., X(ejω) = X(e−jω), and hence we
just plotted it for ω ≥ 0. Now consider the following multirate processing scheme in which
L(z) is an ideal lowpass filter with cutoff frequency π/2 and H(z) is an ideal highpass
filter with cutoff frequency π/2:

x[n]

L(z)

H(z)

↓ 2

↓ 2

↑ 4

↑ 4

L(z)

H(z)

y1[n]

y2[n]

L(z)

H(z)

y3[n]

y4[n]

Plot the four spectra Y1(e
jω), Y2(e

jω), Y3(e
jω), Y4(e

jω) for ω ≥ 0.

Problem 11.5 Consider the system given in Figure 11.52.

H(ejω) ↓ 2↑ 2
x[n] y[n]

Figure 11.52: System for Problem 1.

346 Chapter 11.

(a) Let H(ejω) and X(ejω) be as given in Figures 11.53 and 11.54 respectively. We
assume that ∠H(ejω) = 0. Draw Y (ejω).

H(ejω)

−π π0

1

Figure 11.53: Problem 1. H(ejω) to be used for Parts (a) and (c).

X(ejω)

−π π−2π
3

2π
30

1

Figure 11.54: Problem 1. X(ejω) to be used for Parts (a) and (c).

(b) Consider the system given in Figure 11.55. For arbitrary h[n] find an expression for

G(ejω)
x[n] y[n]

Figure 11.55: Equivalence to be shown for Problem 1.

g[n] in terms of h[n], such that the systems of Figures 11.52 and 11.55 are equivalent.

(c) Using the results from Part (b), compute Y (ejω) for H(ejω) and X(ejω) as given in
Part (a).

Problem 11.6 Consider the system in Fig. 11.56 with H0(z), H1(z), and H2(z) as the
transfer functions of LTI systems. Assume that x[n] is an arbitrary stable complex signal
without any symmetry properties.

(a) Let H0(z) = 1, H1(z) = z−1, and H2(z) = z−2. Can you reconstruct x[n] from y0[n],
y1[n], and y2[n]? If so, how? If not, justify your answer.

11.8. Problems 347

H0(z)

H1(z)

H2(z)

↓ 3

↓ 3

↓ 3

x[n] y0[n]

y1[n]

y2[n]

Figure 11.56: Sampling system 1.

(b) Assume that H0

(
ejω
)
, H1

(
ejω
)
, and H2

(
ejω
)

are as follows:

H0

(
ejω
)

=

{
1, |ω| ≤ π

3 ,
0, otherwise,

H1

(
ejω
)

=

{
1, π

3 | < ω| ≤ 2π
3 ,

0, otherwise,

H2

(
ejω
)

=

{
1, 2π

3 < |ω| ≤ π,
0, otherwise.

Can you reconstruct x[n] from y0[n], y1[n], and y2[n]? If so, how? If not, justify
your answer.

(c) Now consider the system in Fig. 11.57.

H3(e
jω)

H4(e
jω)

↓ 2

↓ 2

x[n] y3[n]

y4[n]

Figure 11.57: Sampling system 2.

Let H3

(
ejω
)

= 1 and

H4

(
ejω
)

=

{
1, 0 ≤ ω < π,
−1, −π ≤ ω < 0.

348 Chapter 11.

Can you reconstruct x[n] from y3[n] and y4[n]? If so, how? If not, justify your
answer.

Problem 11.7 In your grandmother’s attic you just found a treasure: a collection of
super-rare 78rpm vinyl jazz records. The first thing you want to do is to transfer the
recordings to compact discs, so you can listen to them without wearing out the originals.
Your idea is obviously to play the record on a turntable and use an A/D converter to
convert the line-out signal into a discrete-time sequence, which you can then burn onto a
CD. The problem is, you only have a “modern” turntable, which plays records at 33rpm.
Since you’re a DSP wizard, you know you can just go ahead, play the 78rpm record at
33rpm and sample the output of the turntable at 44.1 KHz. You can then manipulate the
signal in the discrete-time domain so that, when the signal is recorded on a CD and played
back, it will sound right.

Design a system which performs the above conversion. If you need to get on the right
track, consider the following:

• Call s(t) the continuous-time signal encoded on the 78rpm vinyl (the jazz music)

• Call x(t) the continuous-time signal you obtain when you play the record at 33rpm
on the modern turntable

• Let x[n] = x(nTs), with Ts = 1/44100.

and answer the following questions:

(a) Express x(t) in terms of s(t).

(b) Sketch the Fourier transform X(jΩ) when S(jΩ) is as in the following figure. The
highest nonzero frequency of S(jΩ) is Ωmax = (2π) · 16000 Hz (old records have a
smaller bandwidth than modern ones).

|S(jΩ)|

Ωmax−Ωmax

(c) Design a system to convert x[n] into a sequence y[n] so that, when you interpo-
late y[n] to a continuous-time signal y(t) with interpolation period Ts, you obtain
Y (jΩ) = S(jΩ).

Chapter 12

Quantization and AD/DA
Conversions

In the digital world, all variables are represented with a finite precision. That is, usual,
“analog” variables which take values from the real set need to be approximated, or quan-
tized. This topic is central to signal processing, not only because analog-to-digital con-
version is a key component in many signal processing and communication systems, but
also because quantization is at the heart of signal compression. In this chapter we study
several facets of quantization, from basic schemes and their performance to more advanced
methods like the ones used in oversampled analog-to-digital conversion. We also describe
uniform scalar quantization as used in simple compression systems.

12.1 Introduction

The sampling theorem described in Chapter 10 allows one to represent a bandlimited
signal by means of its samples at instants nT under the condition that T ≤ Ts = π/ΩN ,
ΩN being the maximum frequency present in the signal. In order to process this infinite
sequence of numbers x[n] = x(nT), n ∈ Z, we need to transform the real values x[n] into
numbers that can be represented in a computer, that is integers or floating point numbers
(which are integers with a scale factor). Thus, in both cases, we need to map the real line
into a countable set, or more often, an interval of the real line onto a finite set of values.
This mapping is obviously irreversible, or many-to-one, leading to approximation errors.

A simple example is the following: consider an input signal x(t), bandlimited to ΩN =
2π · 1 KHz, is known to have amplitude between −1 and 1. After sampling with sampling
period Ts = π/ωN = 0.5 milliseconds, we need to store each sample as a 1 byte integer,
i.e one of 256 possible values. The obvious solution is to divide the interval [−1, 1] into

349

350 Chapter 12.

256 subintervals of size 1/128, or

Ik = [−1 +
k

128
,−1 +

k + 1

128
], k = 0 . . . 255 (12.1)

Then, define the quantization function Q(·) as

Q(x[n]) = {k|x[n] ∈ Ik} (12.2)

Now, if Q(x[n]) = k, what is the best approximation to x[n], called x̂[n]? In absence of
any other information on x[n] (e.g. probability density function), it is reasonable to choose
the middle of the interval Ik as the approximation. Then

x̂[n] = {−1 +
k + 1/2

128
|x[n] ∈ Ik} (12.3)

The quantization function Q(·) and the reconstruction points are shown in Figure 12.1 for
the case of 3-bit representations, that is, 8 quantization intervals.

Now, the reconstruction of x(t) from x̂[n] will be approximate as well. In the interpo-
lation formula, the sample values are replaced by the approximations leading to:

x̂(t) =

∞∑

k=−∞
x̂[k] sinc

(
t− nTs

Ts

)

(12.4)

While simple, the example above contains all the basic question related to quantization,
namely:

i) What is the set of numbers that need to be represented, e.g. all of R or a specific
interval [a, b].

ii) Into how many intervals N can we split the original interval, or stated in terms of
binary representations, how many bits B can be used, where N = 2B .

iii) How shall we split the original interval into the N subintervals Ik. In our example
we chose a uniform splitting as in (12.1) - (12.2).

iv) Given that x[n] falls into Ik, how should x̂[n] be chosen. In our example, we picked
the midpoint as in (12.3).

v) Given the set of approximate values {x̂[k]}k ∈ Z, how can the continuous-time
approximation x̂(t) be reconstructed, like for example (12.4).

12.1. Introduction 351

1
8

5
8

3
8

7
8

7
8
----–

3
8
----–

5
8
----–

1
8
----–

1
4
---------–1

2
---------–

3
4
---------–1–

1
4

1
2

3
4
---- 1

x̂ n[]

x n[]

Figure 12.1: Quantization of x[n] in [−1, 1] to a 3-bit number, or 8 intervals.
Here, uniform intervals between −1 and 1 are chosen, and the approximation

x̂[n] is chosen as the mid-point of the interval.

It is to be noted that sometimes, the input is already a discrete-time sequence, in which
case the last point is irrelevant. Also, sometimes x[n] already belongs to a countable set,
yet it needs to be represented more coarsely. For example, x[n] may be an 8-bit integer
from the set [−128,−127, . . . ,−1, 0, 1 . . . 127] which however needs to be represented by
a 4-bit number. This is typical to the case of data compression, and will be discussed in
detail in a later chapter. Thus, we will be mostly concerned with the “classical” question
as outlined in the example and summarized in the five questions above.

Before moving on, it is worthwhile to point out that quantization is a non-linear oper-
ation, and therefore quite difficult to analyze in general. Therefore, simplified models are
often used for the sake of making the problem tractable.

352 Chapter 12.

Sampling InterpolationQ
1–x t() x̂ t()Q

x̂ n[]x n[] c n[]

Figure 12.2: Quantization of a bandlimited signal x(t). First, the signal is
sampled into a sequence x[n], and then the values of x[n] are quantized to a

countable set c[n], from which an approximation sequence x̂[n] can be
reconstructed. Interpolating this sequence leads to the continuous-time

approximation x̂(t).

12.2 Quantization in analog-to-digital conversion

When a deterministic function or a stochastic process is bandlimited, then the sampling
theorem and the associated reconstruction formula allow a perfect reconstruction in the
mean-squared squared error sense. Thus, we can restrict our attention to sequences x[n],
either deterministic or random. In particular, any approximation x̂[n] of the sequence x[n]
which induces a quadratic error ‖ x − x̂ ‖2 induces the same quadratic error (within a
scale factor) on the continuous-time reconstruction. To see this, remember that the set of
functions

1√
Ts

sinc

(
t− nTs

Ts

)

, n ∈ Z

is an orthonormal basis for the space of ΩN -bandlimited functions for ΩN = π/Ts. Thus,
the statement above is just an application of Parseval’s formula. Therefore, in the ban-
dlimited case, best approximations in discrete- and continuous-time are equivalent .

We thus concentrate on quantization of discrete-time sequences. Such a system is
depicted in Figure 12.2, where the sequence c[n] represents a sequence of codes labelling
the countable set of quantized values of x̂[n]. To make matters simple, we assume an i.i.d
sequence, where samples have a probability density function (pdf) fX(x). Therefore, the
problem of quantizing such a signal is reduced to quantizing a random variable X with pdf
fX(x), since in analog-to-digital conversion, each sample is quantized individually. This is
called scalar quantization, as opposed to the joint quantization of several samples or vector
quantization that will be discussed in conjunction with data compression applications.

12.2. Quantization in analog-to-digital conversion 353

a)

b)

f X t()

I0 I1 I6 I7

1
T

T0

f X t()

I0 I1 I6 I7

x

x

Figure 12.3: Uniform quantization into 8 cells. (a) Uniform distribution. (b)
Gaussian distribution. In this case, the choice of the left most and right most

boundary is critical, and here one possible but arbitrary choice is given.

12.2.1 Scalar Quantization

We now concentrate on the simplest form of scalar quantization, which is uniform. That
is, a step size △ is chosen, and the real line is subdivided into intervals Ik of width △:

Ik = [k△, k +△) k ∈ Z (12.5)

In practice, only a finite number of intervals is considered, that is, a finite interval of the
real line is quantized into cells of size △. More precisely, given an interval [a, b] of the real
line to be quantized into N uniform cells, we use △ = (b− a)/N and

Ik = [a + k△, a + (k + 1)△) k = 0 . . . N − 1 (12.6)

If fX(x) is zero outside of the interval [a, b], the restriction to a finite interval is of no
consequence. If not, then the regions [−∞, a] and [b,∞] are mapped to the interval 0 and
N−1 respectively, for lack of better choice. The above two cases are shown in Figure 12.3,
where the quantization of uniform and a Gaussian random variable are shown in parts (a)
and (b) respectively.

354 Chapter 12.

Uniform distribution Let us analyze the case of the uniform distribution first. If the
random variable X falls into the interval Ik, the best approximation in the mean square
sense is the expected value of X conditioned on the fact that X ∈ Ik. This is clearly the
midpoint of the interval.

E(X|X ∈ Ik) = (k + 1/2)△ (12.7)

What is the distortion, or squared norm with such a reconstruction? Take I0 for simplicity,
and calculate the variance of X − X̂, assuming X ∈ I0. The conditional pdf of X/X ∈ I0

is the indicator function of the interval [0,△] of height 1/△, and given X̂ = △/2 when
X ∈ I0 thus

E[(X −△/2)2|X ∈ I0] =
1

△

∫ △

0
(X − 1/2)2dx

=
1

△

∫ △/2

−△/2
y2dy

=
1

△
y3

3

/△/2

−△/2

=
△2

12
(12.8)

We assume a uniform pdf between 0 and T = N · △, divided into N intervals of size △.
The total expected squared distortion is

E2 =
∑

k

p(x ∈ Ik) ·
△2

12

=
△2

12
(12.9)

since, given N quantization intervals of size △ between 0 and N · △, p(x ∈ Ik) = 1/N .
It is useful to compare this quadratic error with respect to the variance of the original
distribution, which is

σ2 = T 2/12. (12.10)

Then,

E2 = σ2/N2 (12.11)

The result above, while simple, is fundamental. It says that the variance of the quanti-
zation error is quadratic in the quantization bin size. Now, if we quantize a uniformly

12.2. Quantization in analog-to-digital conversion 355

distributed random variable into an R-bit representation, that is, into N = 2R quantiza-
tion bins, then the quadratic error E2 is, from (12.8):

E2 = △2/12 =
2−2R

12
(12.12)

or, with respect to the variance σ2X, using (12.11):

E2 = σ2 · 2−2R (12.13)

This exponential decay of the error as a function of the number of bits is central not only
in analog-to-digital conversion but also, more widely, in signal compression.

Gaussian distribution Consider now the quantization of a Gaussian random variable into
uniform bins of size △.

Since the support of the probability density function is infinite, we either need an
infinite number of bins, or we need to “clip” the largest values (in magnitude) to the right
and left most quantization bins (see Figure 12.3). In the case of an infinite number of
quantization bins, it can be proven that the squared error for a Gaussian random variable
of variance σ2 quantized into bins of size △ is:

E2 =

√
3π

2
· σ2 · △2 (12.14)

that is, we have a similar behavior to what we have seen for uniform random variables.
In a practical system, when a finite number of bins is used, then there is an additional

error due to the tails of the distribution to the left and right of the intervals I0 and
IN−1, respectively. Typically, one chooses a number of intervals that covers most of the
probability density. A rule of thumb is the so-called 4σ rule, that is, the quantization
bins cover an interval from −2σ to 2σ for a random variable with zero mean and variance
σ2. For the Gaussian case, this rule will catch over 99.5% of the probability mass. The
squared error will increase because of the clipping of values beyond the interval [−2σ, 2σ],
but not by much. Essentially, the behavior will still be given by an expression like (12.14),
or translated into a number of bits R:

E2 = C · σ2 · 2−2R (12.15)

where C is a constant larger but of the same order as
√

3π/2 = 2.72 in (12.14).

12.2.2 Sampling and Quantization

A practical analog-to-digital converter looks like the one shown in Figure 12.4. The input
signal (which is assumed to be zero mean), is first filtered in the continuous-time domain

356 Chapter 12.

x t() x̂ n[] Quantization
with binsize∆

 Clipping

*

δ t nT–()
n
∑

xs t()

 Lowpass

Figure 12.4: Analog-to-digital conversion. After lowpass filtering and
sampling, the values are clipped to the interval [−I/2, I/2], before being

quantized into bins of size △ = I/N .

to ensure a bandlimited characteristic and is then sampled; the samples are then clipped
to an interval [−I/2, I/2]. That interval is then quantized into N bins of size △ = I/N
each.

The practical circuit implementing the analog-to-digital conversion does not use sinc
sampling however; instead it uses a ”sample-and-hold” circuit. That is, a piecewise con-
stant signal xSH(t) is generated, with the following relation to the original signal x(t):

xSH(t) = x(nTs) nTs ≤ t < (n + 1)Ts (12.16)

During each period Ts, the value of xSH(t), which is now constant, can be converted into
a binary string representing the best R bit approximation to x(nTs). This is shown in
Figure 12.4.

Symbolically, x̂SH(t) represents the quantized version of xSH(t), even so we now really
have a sequence of quantized samples,

x̂[n] = x̂SH(nTs). (12.17)

Example 12.1 Let x[n] is a bounded signal, i.e., |x[n]| < K, ∀n for some K ∈ R+.
We pass x[n] through an LTI system to obtain y[n] at the output.

(a) Show that if h[n] be an absolutely summable impulse response, then output of the
system is also bounded.

(b) Now before feeding x[n] to the system, at first we quantize it by a 4 bits quantizer to
obtain x̂[n] and then pass it through the system.

12.2. Quantization in analog-to-digital conversion 357

x[n]
h[n]

y[n]

Figure 12.5: System for Example 12.1

h[n]
y[n]x[n]

Q
x̂[n]

Figure 12.6: System with quantized input in Example 12.1

What is the maximum error of quantization, i.e., the maximum difference between
x[n] and x̂[n]? Compute the maximum error at output caused by quantization of the
input.

Solution:

(a) h[n] is absolutely summable, i.e., there exists some M ∈ R+ such that
∑

n |h[n]| < M .
Therefore y[n] can be bounded as

|y[n]| = |h[n] ∗ x[n]| =
∣
∣
∣

∑

m

h[m]x[n−m]
∣
∣
∣

≤
∑

m

|h[m]||x[n −m]|

<
∑

m

K
∑

m

|h[n]|

< KM.

(b) We use a 4-bit quantizer, which has 24 = 16 levels. Since x[n] is in the range
(−K,+k) of length 2K, each level has the length 2K/16 = K/8, and the difference

between the actual value of x[n] and its quantized version x̂[n] cannot exceed K/8
2 ,

i.e., |x̂[n]− x[n]| < K
16 .

358 Chapter 12.

Let ŷ[n] be the output of the filter for the input x̂[n].

|ŷ[n]− y[n]| =
∣
∣
∣

∑

m

h[m]x̂[n−m]−
∑

m

h[m]x[n −m]
∣
∣
∣

=
∣
∣
∣

∑

m

h[m](x̂[n−m]− x[n−m])
∣
∣
∣

≤
∑

m

|h[n]||x̂[n−m]− x[n−m])|

≤ K

16

∑

m

|h[n]| < KM

16
.

12.3 Oversampled analog-to-digital conversion

In our previous analysis, the quantization noise was assumed to be independent of the
signal 1 and white. That is, the noise spectrum was flat, and of energy △2/12. Pictorially,
this is shown in Figure 12.8 (a).

Is there a way to improve the quantization of a signal after decreasing the quantization
bin size? One method is oversampled analog-to-digital conversion. Instead of sampling
at the critical Nyquist rate, one oversamples the signal by some factor K. In the digital
domain, a digital lowpass filter keeps the original signal while rejecting the out-of-band
quantization noise. The noise and signal spectra are shown in Figure 12.8 (b), and the
overall system is depicted in Figure 12.9.

It turns out than an analysis of this system is difficult. It is intuitively clear than
some of the quantization noise will be rejected by this procedure, however, assumptions
like independence of the quantization noise do not hold in reality.

One result that is often quoted says that only 1/K-th of the quantization noise energy
is keep through the digital lowpass filter, so the resulting noise variance is reduced by a
factor Klat. While the argument is intuitive looking at Figure 12.8 (b), it is only partially
correct. Nonetheless, as a rule of thumb, the signal-to-noise ratio is improved by about
3dB per octave of oversampling. That is, each factor of 2 of oversampling contributes to
reducing the noise variance by a factor of 2, or 20 log10 (2) ≃ 3dB.

1which is clearly an approximation

12.3. Oversampled analog-to-digital conversion 359

t

t

t

a)

b)

c)

x t()

xSH t()

x̂SH t()

2TT 3T

001

000

100

101

011

010

110

111

Figure 12.7: Sample-and-hold operation. (a) Original signal, sampled at
integer multiples of the period T . (b) Sample-and-hold version, where the

value of x(nT) is held for the interval [nT, (n + 1)T]. (c) Quantized version to
3 bits, or 8 possible values. The code given on the left is somewhat arbitrary,

we used a sign + magnitude code.

360 Chapter 12.

a)

b)

π
4
---π

4
---–

π
2
---π

2
---–π– π

π– π

1

1

ω

ω

Figure 12.8: Signal spectrum and quantization noise spectrum. Because of
the assumptions on the quantization noise, its spectrum is flat, and of energy
△2/12 = E2. (a) Critically sampled case. (b) Oversampled by a factor of 4.

x t() x̂ n[]Q Oversampling LP
π
N
----– N

Ωs N 2Ωmax⋅=

Figure 12.9: Oversampled analog-to-digital comversion. The oversampled
signal is quantized first, and then lowpass filtered and subsampled by N .

12.4. Problems 361

12.4 Problems

Problem 12.1 You are given the continuous time signal s(t) shown in Fig. 12.10, which
is 0 when t /∈ [0, 2T]. We start quantizing at time t = T0, where 0 < T0 ≤ 1. The signal
is sampled with a sampling period Ts ≥ 1 and by definition x [n] = s(nTs). You can make
the assumption that T is an integer for simplicity, and that T−T0

Ts
∈ N).

Figure 12.10: Signal s(t)

i) What is the range of s(t) i.e, what is the difference between maxt s(t) and mint s(t)?

ii) How many quantization levels do you need, as a function of the parameters above, if
the maximum error you allow is eq [n] = 0.5?

iii) How many bits do you need to store the quantized signal between T0 and 2T?

iv) A 1-bit differential quantizer (also called delta modulator) is shown in Fig. 12.11.
How many bits does the CODER produce between time t = T0 and time t = 2T , when
we feed the signal s(t) to it (you can assume that y [1] = 0)? What is the maximum
error when we decode the signal i.e., what is emax = maxn|x [n]−xq [n] | at the output
of the DECODER? Make a plot (by hand) of the output of the DECODER.

v) What should the sampling frequency Ts and T0 be if the maximum tolerable error
emax is 0.5? For this sampling frequency Ts and T0, how does the number of bits you

362 Chapter 12.

Figure 12.11: Delta-modulator

need with the delta modulator compare to the number of bits you need for classical
quantization (point (c))?

Chapter 13

Additional Material

363

364 Chapter 13.

13.1 Example of Frequency Domain Manipulations: Denoising

This short example shows how one can easily identify noise components in the frequency
domain while a similar task is very difficult in the time domain. This is not a homework
task, so the only purpose is to help you understand what is happening. Proceed as follows
(if you copy-paste, you might have to change the quote signs ’ in matlab):

i) Download handeln.wav from the course website (under additional material).

ii) Open Matlab, move to the adequate directory and read in the handeln.wav file.
Subsequently, play the sound:

[datan,fs]=wavread(’handeln.wav’);

soundsc(datan,fs);

iii) Plot the 500 first sample of datan

plot(datan(1:500))

It seems very difficult to distinguish the music and the annoying noise!

iv) Fortunately, all hope is not lost. Let’s have a look at what happens in the frequency
domain by calculating the DFT (fft is an algorithm allowing you to compute the
DFT in a very efficient way, you will learn more on that in upcoming lectures...) of
datan:

XN=fft(datan);

plot((1:length(XN))/length(XN),abs(XN(1:end)))

xlabel(’normalized f’)

ylabel(’|XN(f)|’)

The plot you just created is a function of f = F
Fs

= ω
2π . The lowest possible sampling

frequency Fs to avoid aliasing is 2max(F). Hence, high frequencies are represented
close to 0.5. Also note that the spectrum is 1-periodic, so values 0.5 + ǫ correspond
to values −0.5 + ǫ (so also high frequencies)

v) We can see that there are three high frequency components which look different from
the rest of the signal, mainly concentrated in the low frequencies. Let us simply set
values close to 0.5 to zero (remove high frequencies) and see what happens in the
frequency domain first.

xm=(1+73113)/2;

inter=[xm-7000:xm+7000];

13.1. Example of Frequency Domain Manipulations: Denoising 365

X=XN;

X(inter)=zeros(1,length(inter));

plot((1:length(X))/length(X),abs(X(1:end)))

Obviously we have removed the suspicious high frequency components, but unfor-
tunately also a part of the signal, even though there was little energy in the high
frequencies.

vi) Let’s listen to what we obtained in the time domain

data=ifft(X);

soundsc(abs(data),fs)

366 Chapter 13.

13.2 Small Project

Uncompressed digital CD-quality audio signals consume a large amount of data and are
therefore not suited for storage and transmission. The need to reduce this amount without
any noticeable quality loss was stated in the late 80ies by the International Organization
for Standardization (ISO). A working group within the ISO referred to as the Moving
Pictures Experts Group (MPEG), developed a standard that contained several techniques
for both audio and video compression. The audio part of the standard included three
modes with increasing complexity and performance. The third mode, called Layer III,
manages to compress CD music from 1.4 Mbit/s to 128 kbit/s with almost no audible
degradation. This technique, also known as MP3, has become very popular and is widely
used in applications today (see [2] for an overview of the technology). Since the MPEG-1
Layer III is a complex audio compression method it may be quite complicated to get hold
of all different components and to get a full overview of the technique.

In Fig. 13.1 we show a block diagram of an MP3 encoder. While the complete en-
coding process is very complex and far beyond the scope of this course, we will try in
this homework to understand some specific parts. In particular, we will investigate the
subband decomposition (A on figure), the cosine transform (B on figure) and try to get
an idea of what a Psycho-accoustic model is (C onfigure).

Figure 13.1: Block diagram of an MPEG-Layer III (MP3) encoder

13.2. Small Project 367

Problem 13.1 Filterbank In the polyphase filterbank, a sequence of 1152 PCM samples
(Pulse Code Modulation, simply think of it as a sequence of 1152 discrete time symbols)
are filtered into 32 equally spaced frequency subbands depending on the Nyquist frequency
of the PCM signal. Assume that the sample frequency of the PCM signal is 44.1 kHz.

i) What was the Nyquist frequency FN of the PCM signal, assuming that we sample
the signal at the lowest possible frequency?

ii) How wide will every subband be (in Hz)?

iii) Every sample might contain signal components from 0 to the Nyquist frequency that
will be filtered in an appropriate subband. How many samples do you need to store
directly after the subband decomposition?

iv) In practice, the next step is to downsample the output of all 32 passband filters by
a factor 32. Assuming that the subband decomposition can be done using perfect
passband filters, we will show that the downsampling operation can be performed
without introducing any aliasing.

In particular, we will show that you can downsample by a factor M a real bandpass
signal Sc(e

jω), where Sc(jΩ) = 0 for 0 ≤ |Ω| ≤ Ωc and for |Ω| ≥ Ωc + ∆Ω, even
if the sampling frequency is below 2M × (Ωc + ∆Ω). The trick is of course that the
signal is only non-zero for a very small portion of the spectrum. Make the following
assumptions: (i) The signal was sampled at the Nyquist rate i.e 2π

T = 2(Ωc+∆Ω) and
(ii) M is the largest Integer less than or equal to 2π/∆ω. Show that the spectrum of
Sd(e

jω) in Fig. 13.2 is not aliased. A Hilbert transformer has the following frequency
response:

H(ejω) =

{
−j for 0 < ω < π
j for −π < ω < 0

(Hint: draw the spectrum of an arbitrary bandpass signal and try to understand what
happens)

v) How many samples do you need to store after the downsampling operation?

vi) In practice, will you get aliasing? Which operation can introduce aliasing?

By applying a modified discrete cosine transform to each time frame of subband sam-
ples the 32 subbands will be split into 18 finer subbands creating a granule with a total
of 576 frequency lines. But prior to the MDCT each subband signal has to be windowed.

368 Chapter 13.

Figure 13.2: Circuit for downsampling of bandpass signals

Windowing is done to reduce artefacts caused by the edges of the time-limited signal seg-
ment. There are four different window types defined in the MPEG standard. Depending
on the degree of stationarity the psychoacoustic model determines which window type to
apply and forwards the information to this block. If the psychoacoustic model decides that
the subband signal at the present time frame shows little difference from the previous time
frame, then the long window type is applied, which will enhance the spectral resolution
given by the MDCT. Alternatively, if the subband signal shows considerable difference
from the previous time frame, then the short windows is applied. This type of window
consists of three short overlapped windows and will improve the time resolution given by
the MDCT. A higher time resolution is necessary in order to control time artifacts, for
instance pre-echoes. In order to obtain a better adaptation when windows transitions are
required, two windows referred to as start windows and stop windows, are defined. A long
window becomes a start window if it is immediately followed by a short window. Similarly,
a long window becomes a stop window if it is immediately preceded by a short window.
The start and stop windows are skewed to account for the steeper sides of the adjacent
short window.

The DFT is perhaps the most common example of finite length transform representa-
tion of the form

A[k] =
∑N−1

n=0 x[n]φ∗
k[n] (13.1)

x[n] = 1
N

∑N−1
k=0 A[k]φk[n] (13.2)

13.2. Small Project 369

In the case of the DFT, the sequence A[k] is in general complex when the sequence x[n] is
real. It is natural to ask whether there exists transforms which yield a real sequence A[k]
when x[n] is real. This has led to the definition of a series of other orthogonal transform
representations such as the Haar transform and the Discrete Cosine Transform (DCT),
commonly used in speech processing, and in particular in MP3 encoders

Problem 13.2 Cosine Transform There are different types of cosine transforms. In
this homework, we will study DCT of type II defined as follows:

Xc[k] = 2

N−1∑

n=0

x[n] cos(
πk(2n + 1)

2N
) , 0 ≤ k ≤ N − 1 (13.3)

x[n] =
1

N

N−1∑

n=0

β[k]Xc[k] cos(
πk(2n + 1)

2N
) , 0 ≤ n ≤ N − 1 (13.4)

β[k] =

{
1
2 ,when k = 0
1 ,when 1 ≤ k ≤ N − 1

(13.5)

Note that some definitions also include a normalization factor which we omit for simplicity
reasons. We will now explore some of the properties of the DCT and try and understand
why it is commonly used instead of the DFT

i) Show that you can write the DCT in the form Xc=Wx by specifying the N × N
matrix W .

ii) Show that the columns of W T form an orthogonal basis.

iii) Define:

X2[k] = X[k] + X∗[k]ej2πk/(2N)

where X[k] =
∑N−1

n=0 x[n]e−j2πnk/(2N) (i.e., X[k] is the 2N-point DFT of the N point
sequence x[n]). Show that

Xc[k] = e−jπk/(2N)X2[k]

iv) The DCT is used in many data compression applications in preference to the DFT
because of a property known as “energy compaction”. More precisely, this means
that the DCT has its coefficients more concentrated at low frequencies than the DFT
does. Consequently, by only storing the first components of the DCT, we lose less
information than if we stored the same number of components of the DFT. Write a
small program that computes the 32-points DCT of the sequence x[n] = an cos(0.1πn)

370 Chapter 13.

and compare it to the 16 point DFT (remember that for the DFT we must in practice
store the 16 complex and the 16 real coefficients). Is the energy more concentrated
in the first coefficients of the DCT?

Psychoacoustics is the research field where you aim to understand how the ear and brain
interact as various sounds enter the ear. Humans are constantly exposed to an extreme
quantity of radiation. These waves are within a frequency spectrum consisting of zillions
of different frequencies, but only a small fraction of all waves are perceptible by our
sense organs; the light we see and the sound we hear. Infrared and ultraviolet light are
examples of light waves we cannot percept. Regarding our hearing, most humans can not
sense frequencies below 20 Hz nor above 20 kHz. Additionally, this bandwidth tends to
narrow as we get older. A middle aged man, for instance, will usually not hear much
above 16 kHz. Frequencies ranging from 2 kHz to 4 kHz are easiest to perceive, they
are detectable at a relatively low volume. As the frequencies changes towards the ends
of the audible bandwidth, the volume must also be increased for us to detect them (see
Fig. 13.3). That is why we usually set the equalizer on our stereo in a certain symmetric
way. As we are more sensitive to midrange frequencies these are reduced whereas the high
and low frequencies are increased. This makes the music more comfortable to listen to
since we become equal sensitive to all frequencies.As our brain cannot process all the data
available to our five senses at a given time, it can be considered as a mental filter of the
data reaching us. A perceptual audio codec is a codec that takes advantage of this human
characteristic. While playing a CD it is impossible to percept all data reaching your ears,
so there is no point in storing the part of the music that will be inaudible. The process
that makes certain samples inaudible is called masking. There are two masking effects that
the perceptual codec need to be aware of; simultaneous masking and temporal masking.
Experiments have shown that the human ear has 24 frequency bands. Frequencies in these
so called critical bands are harder to distinguish by the human ear. Suppose there is a
dominant tonal component present in an audio signal. The dominant noise will introduce
a masking threshold that will mask out frequencies in the same critical band (see Fig.
13.3). This frequency-domain phenomenon is known as simultaneous masking, which has
been observed within critical bands.

MP3 encoding takes advantage of this masking phenomenon by not encoding masked
tones. In practice, this is done by allocating more bits to the subbands which are not
masked and fewer or no bits to the masked subbands. We refer you to [1] for a deeper
explanation of psychoacoustic models. Note that this is a lossy coding procedure in the
sense that we cannot reconstruct the original signal exactly after we have allocated bits
this way.

Problem 13.3 i) Based on what you have read in this document, the problems you
solved and (maybe) the documents referenced hereunder, briefly explain the overall

13.2. Small Project 371

Figure 13.3: The absolute threshold of hearing (from [1])

372 Chapter 13.

MP3 encoding process (the part we studied). In particular explain conceptually what
phenomenon MP3 exploits to achieve a strong coding gain and how. Explain how it
is possible that even though the coding procedure is lossy, the quality of the sound we
hear hardly degrades.

[1] Ted Painter, Andreas Spanias, “A Review of Algorithms for Perceptual Coding of
Digital Audio Signals”, 1997

[2] Rassol Raissi, “The Theory Behind Mp3”, 2002

13.3. Design Example: OFDM 373

13.3 Design Example: OFDM

13.3.1 Introduction

In this lecture we will have a look at some of the principles used in modem design for Digital
Subscriber Line (DSL) communication. Asymetric Digital Subscriber Line (ADSL), which
is a specific instance of DSL technology, is currently one of the main techniques used to
provide broadband internet access.

DSL operates over twisted pair copper telephone lines. Telephone lines have originally
been used for transmission of voice only, using the spectrum up to 3.4kHz. DSL shares the
telephone line with regular voice transmission, but operates at frequencies roughly from
10kHz up until 1.1MHz.

Transmitting over a twisted pair copper line requires digital-to-analog conversion at
the transmitter and analog-to-digital conversion an the receiver. We will consider only the
discrete-time domain and treat A/D and D/A conversion as a part of our communication
channel.

If one transmits over a twisted pair copper telephone line at high frequencies, the signal
will get corrupted. Since we transmit over a fixed connection, we can assume that the
system is time-invariant. It turns out that we can also use the assumption the the system
is linear. Our time-discrete channel is therefore a linear time-invariant (LTI) system. We
will interchangeably use the terms system and channel.

One of the techniques that are used to transmit over LTI channels is Orthogonal
Frequency Division Multiplexing (OFDM). This technique is also known as Discrete Multi-
Tone (DMT). In this lecture we will look at the principles behind OFDM. We will also
give a complete MATLAB implementation of these ideas.

13.3.2 Problem

We will design a DSL communication system. As seen in the introduction we can model
the communication channel as a Linear Time-Invariant system, see Figure 13.4.

Let h[n] be the impulse response of the LTI channel. We assume that it is of finite-

LTI

x[n] y[n]

Figure 13.4: DSL communication channel modelled as a linear time-invariant system.

374 Chapter 13.

Tx Rxh[n]

{v[n]} {x[n]} {y[n]} {ṽ[n]}

Figure 13.5: Tranmission of a block of symbols {v[n]}. The transmitter (Tx)
produces N symbols {x[n]} that are sent through the channel. At the output

of the channel, the receiver (Rx) takes {y[n]} and produces {ṽ[n]}.

length, i.e. there is a ν such that

h[n] = 0, for n < 0, and n > ν − 1.

We also assume that the receiver knows h[n]. In the example and MATLAB implementa-
tion we consider in this handout, we have a channel for which ν = 128.

The specific problem that we will consider is that of transmission of a sound signal using
a DSL system. We denote the sequence that is to be transmitted by . . . , v[−2], v[−1], v[0], v[1], v[2],

We will split up this sequence in blocks of N symbols. For each block of symbols, say
the symbols v[0], . . . , v[N−1], a transmitter produces N symbols x[0], . . . , x[N−1] that are
sent through the channel. At the output of the channel, a receiver takes y[0], . . . , y[N − 1]
and produces ṽ[0], . . . , ṽ[N − 1], see Figure 13.5. We use the notation {v[n]} to denote the
block v[0], . . . , v[N − 1].

We restrict ourselves to transmitter and receiver structures that produce one input
symbol to the channel for each symbol of the sound sequence. One can think of this
as streaming of audio over the LTI channel. Implicitely we consider the audio samples
arriving at the tranmitter at a certain rate (the number of symbols per second). If we
want to have any hope of successfully streaming the sequence over the channel, we can
not send more than one channel input for each audio symbol.

A trivial transmitter and receiver would directly sent each incoming symbol over the
channel and directly use it, i.e. {x[n]} = {v[n]} and {ṽ[n]} = {y[n]}. The MATLAB
implementations for these trivial transmitter and receiver are given in Figure 13.8. The
code to test this system is given in Figure 13.6.

If we run this code and listen to the received sound sequence ṽ[n], we notice that it is
corrupted. This should not be surprising, since we know that if y[n] = h[n] ∗ x[n], then

Y
(
ejω
)

= H
(
ejω
)
X
(
ejω
)
.

This means that the different frequency components in the signal x[n], get attenuated
differently.

13.3. Design Example: OFDM 375

%%

%

% Loading audio

%

%%

% Load the sound sequence that we will

% use for testing.

[v,fs] = wavread(’handel.wav’);

% Let’s listen to it...

soundsc(v,fs);

%%

%

% Divide the sequence in blocks

%

%%

% We choose to use a blocklength

% of N = 1024.

N = 1024;

% Add zeros to the sound sequence such that the

% total length is a multiple of N.

v = [v; zeros(1024-mod(length(v),N),1)];

% Divide the sequence in blocks.

% Each column of v_block is a block of N symbols

v_block = reshape(v,N,length(v)/N);

%%

%

% The channel

%

%%

impulse_response = [<<removed for handout>>];

Figure 13.6: MATLAB implementation: Initialization. Loading audio and
dividing it into blocks. The channel impulse response is known at the receiver,

so we give it here.

376 Chapter 13.

%%

%

% Transmit the signal over the channel. We use a

% trivial transmitter and receiver.

%

%%

% Initialization

x = zeros(size(v_block,1),1);

y = zeros(size(v_block,1),1);

v_tilde_block = zeros(size(v_block));

% Now do all operations per block

for i=1:size(v_block,2)

x = trivial_transmitter(v_block(:,i));

y = lti_channel(x);

v_tilde_block(:,i) = trivial_receiver(y);

end

%%

%

% Check the result.

%

%%

% Put all blocks back together in one sequence.

v_tilde = reshape(v_tilde_block,size(v));

% ... and listen to what we received.

soundsc(v_tilde,fs);

Figure 13.7: MATLAB implementation: Transmission using the trivial
transmitter and receiver from Figure 13.8.

13.3. Design Example: OFDM 377

%%

%

% Trivial transmitter.

%

%%

function x = trivial_transmitter(v)

x = v;

%%

%

% Trivial receiver.

%

%%

function v_tilde = trivial_receiver(y)

v_tilde = y;

Figure 13.8: MATLAB implementation: A trivial transmitter and receiver.

378 Chapter 13.

In the next sections we will develop a different transmitter/receiver structure.

13.3.3 Basic Idea

The basic idea of our new transmitter and receiver is to use the fact that complex expo-
nentials are eigenfunctions of LTI systems. This follows immediately from the following
DTFT relation

x[n] ∗ h[n]⇔ X
(
ejω
)
H
(
ejω
)
. (13.6)

Suppose we want to transmit a single value v. If we let x[n] = DTFT−1 {vδ(n − ω0)},
with ω0 arbitrarily chosen, we have

y[n] = x[n] ∗ h[n]

and

Y
(
ejω
)

= H
(
ejω0

)
v. (13.7)

From (13.7) we see that we can recover v as

ṽ = H
(
ejω0

)−1
DTFT {y[n]} .

Building on this idea, if we want to transmit v[0], . . . , v[N − 1] we can select some
frequencies ω0, . . . , ωN−1 and let

x[n] = DTFT−1

{
N−1∑

l=0

v[l]δ(n − ωl)

}

. (13.8)

After receiving y[n] we evaluate the Y (ejω) at the points ω0, . . . , ωN−1 to get

Y
(
ejωl

)
= H

(
ejωl

)
v[l], l = 0, . . . ,N − 1.

We see that we can find ṽ[0], . . . , ṽ[N − 1] as

ṽ[l] = H
(
ejωl

)−1
DTFT {y[n]} , l = 0, . . . ,N − 1.

There is a fundamental problem with the idea presented above. The sequence x[n]
in (13.8) is of infinite length and can never be transmitted over the LTI channel. We see
that the above is a nice mathematical construction, but it can not be implemented. In
the next section, however, we will see that we can obtain similar results if we start from
the fact that x[n] is a finite-length sequence.

13.3. Design Example: OFDM 379

DFT−1 DFT 1/H[·]⊛N h[n]

{v[n]} {ṽ[n]}{x′[n]} {y′[n]}

Figure 13.9: Basic idea of the communication system, based on DFT relation (13.9).

Tx Rx

DFT−1 DFT

⊛N h[n]

A Bh[n]

{x[n]} {y[n]}{x′[n]} {y′[n]}{v[n]} {ṽ[n]}

Figure 13.10: Expansion of Figure 13.9. The transmitter and receiver perform
additional processing A and B in order to get an overall behavior of circular

convolution.

13.3.4 Finite Length Inputs

The DTFT equivalent for finite-length sequences is the DFT. The DFT equivalent to
relation (13.6) for N -length sequences is

x′[n] ⊛N h[n]⇔ X ′[k]H[k], (13.9)

where ⊛N is the circular convolution. The idea is to exploit relation (13.9) in a way
as depicted in Figure 13.9. We see that if the LTI channel would perform a circular
convolution, we would be done. The channel, however, performs a linear convolution, i.e.
y[n] = x[h] ∗ h[n]. Therefore, we need to perform a trick to get an overall behavior of
a circular convolution. See Figure 13.10, where the circular convolution comes from the
LTI channel together with some additional processing in the transmitter (A) and in the
receiver (B). We will now analyze how to implement the systems A and B in order to get
an overall circular convolution.

This is where we need the assumption that h[n] has finite length. Remember from
Section 13.3.2 that

h[n] = 0, for n < 0, and n > ν.

380 Chapter 13.

We have

y′[l] = x′[l] ⊛N h′[l] =
ν∑

k=0

h[k]x′[(l − k)N], (13.10)

l = 0, . . . , N − 1, where

(l − k)N =

{

l − k, if l − k ≥ 0

N + l − k, if l − k < 0.

Now, the trick is to add a cyclic prefix. If x′[0] . . . x′[N − 1] is the output of the inverse
DFT in Figure 13.10, we send ν additional symbols over the channel. To simplify notation
we start indexing {x[n]} at −ν, we have {x[n]} = x[−ν] . . . x[N − 1]. If we now let

x[l] =

{

x′[l], if 0 ≤ l ≤ N − 1

x′[N + l], if − ν ≤ l < 0,

we see that at the output of the channel we have, for l = 0, . . . ,N − 1.

y[l] = h[l] ∗ x[l]

=

ν∑

k=0

h[k]x[(l − k)]

=

ν∑

k=0

h[k]x′[[(l − k)N]

= x′[l] ⊛N h′[l]

The overall behavior is that of a circular convolution. Note that the receiver will only
have to keep y[0], . . . , y[N − 1] and process these symbols to retrieve {v[n]}.

Figure 13.11 shows how the cyclic prefix is added.

There is one problem left to solve. In Section 13.3.2 we specified that the transmitter
needs to create blocks of length N . In our current solution it creates an output of length
N + ν.

13.3.5 Downsampling

To make sure that our transmitter outputs a block of N samples we will downsample the
sequence {v[n]} before applying the inverse DFT.

13.3. Design Example: OFDM 381

...

...

...

x′[0]

x′[0]

{x′[n]}

{x[n]}

x′[N−1] x′[N−1]

x′[N−1]

x′[N−ν]

Figure 13.11: The cyclic prefix.

We need to determine the downsampling factor. Let N ′ be the length of the down-
sampled block. After applying the cyclic prefix of length ν we need a length N , i.e. we
need N ′ + ν = N . Therefore we need to resample with a factor

(

1− ν

N

)

.

The receiver, after removing the cyclic prefix, performing the DFT and scaling accord-
ing to 1/H[·], resamples with a factor 1/(1 − ν/N).

In the example implementation we consider here, we have ν = 128 and N = 1024. The
transmitter downsamples with a factor 8/7 and the receiver upsamples with that same
factor.

Figures 13.12 and 13.13 give the complete MATLAB implementation of the transmit-
ter and the receiver. The code from Figure 13.6 can be easily adjusted to use the new
transmitter and receiver. If we know listen to the received sound sequence we notice that
there is no audible difference with the original.

382 Chapter 13.

%%

%

% OFDM transmitter.

%

%%

function x = ofdm_transmitter(v,nu)

% The receiver needs nu as an additional argument

% to know how long the cyclic prefix needs to be

% Resampling

v_down = resample(v,7,8);

% (We could compute the factors 7/8 from the function arguments

% but we cheat a bit here...)

% Inverse DFT

x_prime = ifft(v_down);

% Apply the cyclic prefix

x = [x_prime(end-nu+1:end); x_prime];

Figure 13.12: MATLAB implementation: OFDM transmitter.

13.3. Design Example: OFDM 383

%%

%

% OFDM receiver.

%

%%

function v_tilde = ofdm_receiver(y,nu,impulse_response)

% The OFDM receiver has 2 additional arguments, the length

% of the cyclic prefix and the impulse response of the

% channel.

% Remove the cyclic prefix

y_cut = y(nu+1:end);

% DFT

Y = fft(y_cut);

% Scale

H = fft(impulse_response,length(Y));

v_tilde_down = Y./H.’;

% ...we are still working in the "downsampled regime"

% We know that v_tilde_down is real, but MATLAB keeps it as a

% complex variable.

v_tilde_down = real(v_tilde_down);

v_tilde = resample(v_tilde_down,8,7);

v_tilde = v_tilde(1:1024);

% (Again, we could have computed the upsampling factor and the

% block length from the function arguments, but we cheat a bit

% to keep the code easy.)

Figure 13.13: MATLAB implementation: OFDM receiver.

