
Chapter 6

Fourier Analysis - Practice

In the previous sections we have developed three frequency representations for the
three main types of discrete-time signals; the derivation was eminently theoretical and
concentrated mostly upon the mathematical properties of the transforms seen as a change
of basis in Hilbert space. In the following sections we will see how to put the Fourier
machinery to practical use.

We have seen two fundamental ways to look at a signal: its time-domain representa-
tion, in which we consider the values of the signal as a function of discrete time, and its
frequency-domain representation, in which we consider its energy and phase content as a
function of digital frequency. Both of the two representations contain exactly the same
information, as guaranteed by the invertibility of the Fourier transform; yet, from the
analysis point of view, we can choose to concentrate on one or the other domain according
to what we are specifically looking for. Consider for instance a piece of music; such a signal
contains two coexisting perceptual features, rhythm and melody. Rhythm is determined
by the sequence of musical notes which are played: its “natural” domain is therefore the
time domain; melody, on the other hand, is determined by the pitch of the notes which are
played: since pitch is related to the frequency content of the sound, the natural domain
of this feature is the frequency domain.

6.1 The Transforms in Practice

We will recall the DTFT is mostly a theoretical analysis tool; the DTFT can be exactly
computed only for a small set of sequences (i.e., those in which the sum in (5.1) can be
computed in closed form); yet, these sequences are highly representative and they will be
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used over and over to illustrate a prototypical behavior. The DFT1, on the other hand, is
fundamentally a numerical tool in that it defines a finite set of operations which can be
computed in a finite amount of time; in fact, a very efficient algorithmic implementation
of the DFT exists under the name of Fast Fourier Transform (FFT) which only requires
on the order of N log(N) operations to compute the DFT of an N -point vector. The
DFT, as we know, only applies to finite-length signals but this is actually fine since in
practice all measured signals have finite support; in principle, therefore, the DFT suffices
for the spectral characterization of real-world sequences. Since the transform of a finite-
length signal and its DTFT are related by (5.30) or by (5.31) according to the underlying
model for the infinite-length extension, we can always use the DTFT to illustrate the
fundamental concepts of spectral analysis for the general case and then particularize the
results for finite-length sequences.

6.1.1 Plotting Spectral Data

The first question we ask ourselves is how to represent spectral data. Since the transform
values are complex numbers, it is customary to separately plot their magnitude and their
phase; more often than not, we will concentrate on the magnitude only, which is related to
the energy distribution of the signal in the frequency domain2. For infinite sequences whose
DTFT can be computed exactly, the graphical representation of the transform is akin to
a standard function graph — again, the interest here is mostly theoretical. Consider now
a finite-length signal of length N ; its DFT can be computed numerically, and it yields a
length-N vector of complex spectral values. These values can be displayed as such (and
we obtain a plain DFT plot) or they can be used to obtain the DTFT of the periodic or
finite-support extension of the original signal.

Consider for example the length-16 triangular signal x[n] in Figure 6.1-(a); note in
passing that the signal is symmetric according to our definition in (3.34) so that its DFT
is real. The DFT coefficients |X[k]| are plotted in Figure 6.1-(b); according to the fact
that x[n] is a real sequence, the set of DFT coefficients is symmetric (again according
to (3.34)). The k-th DFT coefficient corresponds to the frequency (2π/N)k and therefore
the plot’s abscissa extends implicitly from 0 to 2π; this is a little different than what we
are used to in the case of the DTFT, where we usually consider the [−π, π] interval, but it
is customary. Furthermore, the difference is easily eliminated if we consider the sequence
of X[k] as being N -periodic (which it is, as we showed in Section 3.2) and plot the values

1And the DFS, of course, which are formally identical. As a general remark, whenever we talk about

the DFT of a length-N signal, the same will hold for the DFS of an N-periodic signal; for simplicity, from

now on we will just concentrate on the DFT.
2A notable exception is the case of transfer function for digital filters, in which phase information is

extremely important; we will study this in the next chapter.
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from −k/2 to k/2 for k even, or from −(k − 1)/2 to (k − 1)/2 for k odd.
This can be made explicit by considering the N -periodic extension of x[n] and by using

the DFS-DTFT relationship (5.10); the standard way to plot this is as in Figure 6.1-(c).
Here the pulse trains, δ̃(ω − (2π/N)k), are represented as lines (or arrows) scaled by the
magnitude of the corresponding DFT coefficients. By plotting the representative [−π, π]
interval, we can appreciate in full the symmetry of the transform’s magnitude.

On the other hand, by considering the finite-support extension of x[n], and by plotting
the magnitude of its DTFT, we obtain Figure 6.1-(d). The points in the plot can be com-
puted directly from the summation defining the DTFT (which, for finite-support signals
only contains a finite number of terms) and by evaluating the sum over a sufficiently fine
grid of values for ω in the [−π, π] interval; alternatively, the whole set of points can be
obtained in one shot from an FFT with a sufficient amount of zero-padding (we will see
more about this later). Again, the DTFT of a finite-support extension is just a smooth
interpolation of the original DFT points and no new information is added.

6.1.2 Computing the Transform: the FFT

The Fast Fourier Transform, or FFT, is not another type of transform but simply the
name of an efficient algorithm to compute the DFT. The algorithm, in its different flavors,
is so ubiquitous and so important that the acronym FFT is often used liberally to indicate
the DFT (or the DFS, which would be more appropriate since the underlying model is
that of a periodic signal).

We have already seen in (3.6) that the DFT can be expressed in terms of a matrix
vector multiplication

X = Wx,

as such, the computation of the DFT requires on the order of N2 operation. The FFT
algorithm exploits the highly structured nature of W to reduce the number of operations
to N log(N). In matrix form this is equivalent to decomposing W into the product of
a series of matrices with mostly zero or unity elements. The algorithmic details of the
FFT will be studied later; we can already state, however, that the FFT algorithm is
particularly efficient for data lengths which are a power of two and that, in general, the
more prime factors the data length can be decomposed into, the more efficient the FFT
implementation.

6.1.3 Cosmetics: Zero Padding

FFT algorithms are tailored to the specific length of the input signal. When the input
signal’s length is a large prime number or when the FFT algorithms is available only for
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Figure 6.1: Plotting spectral information (all transforms are plotted in
magnitude only). (a) Original length-16 signal; (b) Its DFT (or, equivalently,

one period of its DFS); (c) The DTFT of its periodic extension; (d) The DTFT
of its finite-support extension.

particular lengths (when, for instance, all we have is the radix-2 algorithm, which processes
input vector with length a power of two), it is customary to extend the length of the signal
to match the algorithmic requirements. This is usually achieved by zero padding, i.e., the
length-N data vector is extended to a chosen length M by appending (M − N) zeros to
it. The maximum resolution of the original N -point DFT, i.e., the separation between
frequency components, is 2π/N . By extending the signal to a longer length M , we are
indeed reducing the separation between frequency components. One may think that this
artificial increase in resolution will allow the DFT to show finer details of the input signal’s
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spectrum. It is not so.

The M -point DFT X(M) of an N -point data vector x, obtained via zero-padding, can
be obtained directly from the “canonical” N -point DFT of the vector X(N) via a simple
matrix multiplication

X(M) = TM,NX(N). (6.1)

Here the M ×N matrix TM,N is given by

TM,N = W′
MWH

N

where WN is the standard DFT matrix for length N , and W′
M is the M × N matrix

obtained by keeping just the first N columns of the standard DFT matrix WM , the
standard DFT matrix for length M . The fundamental meaning of (6.1) is that, by zero
padding, we are adding no information to the spectral representation of a finite-length
signal. Details of the spectrum which were not apparent in an N -point DFT still won’t
be apparent in a zero padded version of the same. It can be shown that (6.1) is a form
of Lagrangian interpolation of the original DFT samples; therefore the zero-padded DFT
will be more attractive in a “cosmetic” fashion since the new points, when plotted, will
show a smooth curve between the original DFT points (and this is how plots such as the
one in Figure 6.1-(d) are obtained).

6.2 Spectral Analysis

The spectrum is a complete alternative representation of a signal; by analyzing the spec-
trum one can obtain at a glance the fundamental information to characterize and classify
a signal in the frequency domain.

Magnitude The magnitude of a signal’s spectrum obtained by the Fourier transform
represents the energy distribution of the signal in the frequency domain. It is customary
to broadly classify discrete time signals into three classes:

• Lowpass (or baseband) signals, for which the magnitude spectrum is concentrated
around ω = 0 and negligible elsewhere (Figure 6.2-(a)).

• Highpass signals, for which the spectrum is concentrated around ω = π and negli-
gible elsewhere, notably around ω = 0 (Figure 6.2-(b)).

• Passband signals, for which the spectrum is concentrated around ω = ωp and
negligible elsewhere, notably around ω = 0 and ω = π (Figure 6.2-(c)).
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Figure 6.2: Classification of signals based on spectral magnitude.
(a) Baseband; (b) Highpass; (c) Passband. Note the 2π-periodicity of the

spectrum (the replicas are plotted with a dotted line).

For real-valued signals the magnitude spectrum is a symmetric function and the above
classifications take this symmetry into account. Also, all spectra are 2π periodic so that
the above definitions are to be interpreted in a 2π-periodic fashion.

Phase As we said before, the Fourier representation allows us to think of any signal
as the sum of the outputs of a (potentially infinite) number of sinusoidal generators.
While the magnitude of the spectrum defines the inherent power produced by each of
the generators, its phase defines the relative alignment of the generated sinusoids. This
alignment determines the shape of the signal in the discrete-time domain. To illustrate



6.3. Time-Frequency Analysis 135

this with an example, consider the following 64-periodic signal3:

x̃[n] =

3∑

k=0

1

2k + 1
sin(

2π

64
(2k + 1)n + φk)

= sin((2π/64)n + φ0) + (1/3) sin((2π/64)3n + φ1) +

(1/5) sin((2π/64)5n + φ2) + (1/7) sin((2π/64)7n + φ3);

the magnitude of the DFS X̃[k] is independent of the values of φ0, . . . , φ3 and it is plotted
in Figure 6.3-(a). If we set φk = 0, k = 0, 1, 2, 3 we obtain the discrete-time signal which
is plotted in Figure 6.3-(b). Now consider modifying the individual phases so that φk =
2πk/3; the resulting signal is the one depicted in Figure 6.3-(c) for which, as we just noted,
the magnitude DFS does not change. This shows that representation of a signal with only
the magnitude of its Fourier transform is not complete, and a single magnitude plot can
be corresponded to various functions in the time domain.

6.3 Time-Frequency Analysis

Recall our example at the beginning of this chapter, when we considered the time and
frequency information contained in a piece of music. We said that the melodic informa-
tion is related to the frequency content of the signal; obviously this is only partially true,
since the melody is determined not only by the pitch values but also by their duration and
order. Now, if we take a global Fourier Transform of the entire musical piece we have a
comprehensive representation of the frequency content of the piece: in the resulting spec-
trum there is information about the frequency of each played note4. The time information,
however, that is the information pertaining to the order in which the notes are played, is
completely hidden by the spectral representation. This makes us consider whether we can
consider a time-frequency representation of a signal, in which both time and frequency
information are readily apparent.

6.3.1 The Spectrogram

The simplest time-frequency transformation is called the spectrogram. This consists in
splitting the signal into small consecutive (and possibly overlapping) length-N pieces and

3The signal is the sum of the first four terms of the canonical trigonometric expansion of a square wave

of period 64.
4Of course, even with the efficiency of the FFT algorithm, the computation of the DFT of an hour-long

signal is beyond practical means.
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Figure 6.3: Effects of phase shift. (a) The magnitude DFS; (b) The signal
with zero phase; (c) The same signal with a linear phase term.

computing the DFT of each. What we obtain is the following function of discrete-time
and frequency index:

S[k,m] =

N−1∑

i=0

x[mM + i]W ik
N (6.2)
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where M , 1 ≤ M ≤ N , controls the overlap between segments. In matrix notation we
have

S = WN








x[0] x[M ] x[2M ] · · ·
x[1] x[M + 1] x[2M + 1] · · ·
...

...
... · · ·

x[N − 1] x[M + N − 1] x[L] · · ·








(6.3)

The resulting spectrogram is therefore an N ×⌊L/M⌋ matrix, where L is the total length
of the signal x[n]. It is usually represented graphically as a plot in which the x-axis is
the discrete-time index m, the y-axis is the discrete frequency index k and a color is the
magnitude of S[k,m], with darker colors for larger values.

As an example of the insight we can gain from the spectrogram, consider analyzing the
well-known “Bolero” by Ravel. Figure 6.4 shows the spectrogram of the initial 37 seconds
of the piece. In the first 13 seconds the only instrument playing is the snare drum, and
the vertical line in the spectrogram represent at the same time the wide frequency content
of a percussive instrument and its rhythmic pattern: if we look at the spacing between
lines, we can identify the “trademark” drum pattern of Ravel’s Bolero. After 13 seconds,
the flute starts playing the theme; this is identifiable in the dark horizontal stripes which
denote a high energy content around the frequencies which correspond to the pitches of
the melody; with further analysis we could even hope to identify the exact notes. The
clarity of this plot is due to the simple nature of the signal; if we now plot the spectrogram
of the last 20 seconds of the piece, we obtain Figure 6.5. Here the orchestra is playing full
blast, as indicated by the high energy activity across the whole spectrum; we can barely
detect the rhythmic shouts that precede the final chord.

6.3.2 The Uncertainty Principle

Each of the columns of S represents the “local” spectrum of the signal for a time interval
of length N . We can therefore say that the time resolution of the spectrogram is N
samples since the value of the signal at time n0 will influence the DFT of the N -point
window around n0. Seen from another point of view, the time information is “smeared”
over an N -point interval. At the same time, the frequency resolution of the spectrogram
is 2π/N (and we cannot increase it by zero-padding, as we just showed). The conflict is
therefore apparent: if we want to increase the frequency resolution we need to take longer
windows but by doing so we lose the time localization of the spectrogram; likewise, if we
want to achieve a fine resolution in time, the corresponding spectral information for each
‘time slice” will be very coarse. It is easy to show that the amount of overlap does not
change the situation. In practice we will have to choose an optimal tradeoff taking the
characteristics of the signal into consideration.
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Figure 6.4: Spectrogram representation of the beginning of Ravel’s Bolero.

DFT size is 1024 samples, overlap is 512 samples.

The above problem, described for the case of the spectrogram, is actually a particular
instance of a general uncertainty principle for time-frequency analysis. The principle states
that, independently of the analysis tools we put in place, we can never hope to achieve
arbitrarily good resolution in both time and frequency since there exists a lower bound
greater than zero for the product of the localization measure in time and frequency.

6.4 Digital Frequency vs. Real Frequency

We have seen that, in the representation of discrete-time signals, the notion of a dimen-
sionless discrete “time” makes the whole ensemble of signal processing proofs and tools
independent of the underlying physical nature that the signals represent. Similarly, we
have just derived a frequency representation for signals which is based on a notion of
frequency dimensionless; because of the periodicity of the Fourier basis, all we know is
that π is the highest digital frequency we can represent. Again, the power of generality
is (or will soon be) apparent: a digital filter which is designed to remove the upper half
of a signal’s spectrum can be used with any type of input sequence and the results will
stay the same. This abstraction, however, is not without its drawbacks from the point of
view of intuition; after all, we are very familiar with signals in the real world for which
time is expressed in seconds and frequency is expressed in Hertz. We say for instance
that speech has a bandwidth up to 4KHz, that the human ear is sensitive to frequencies
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Figure 6.5: Spectrogram representation of the end of Ravel’s Bolero.

up to 20KHz, that a cell phone transmits in the GHz band, and so on. What does “π”
mean in these cases? The precise, formal link between real-world signal and discrete-time
signal processing is given by the sampling theorem, which we will study later. The funda-
mental idea, however, is that we can remove the abstract nature of a discrete-time signal
(and, correspondingly, of a dimensionless frequency) by associating a time duration to the
interval between successive discrete-time indices in the sequence.

Let us say that the “real-world” time between indices n and n + 1 in a discrete-time
sequence is T seconds; this could correspond to sampling a signal every T seconds or to
generating a synthetic sequence with a DSP chip whose clock cycle is T seconds. Recall
that the phase increment between successive samples of a generic complex exponential ejωn

is ω radians. The oscillation will therefore complete a full cycle in nf = (2π/ω) samples. If
T is the real-world time between samples, the full cycle will be completed in nfT seconds
and so its frequency will be f = (nfT )−1. The relationship between the digital frequency
ω and the “real” frequency f in Hertz as determined by the “clock” period T is therefore:

f
T
←→

1

2π

ω

T
. (6.4)

In particular, the highest real frequency which can be represented in the discrete-time
system (which corresponds to ω = π) is

Fmax = Fs/2,

where we have used Fs = (1/T ); Fs is nothing but the operating frequency of the discrete
time system (also called the sampling frequency or clock frequency). With this notation,
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the digital frequency ω0 corresponding to a real frequency f0 is

ω0 = 2π
f0

Fs
.

The compact disk system, for instance, operates at a frequency Fs = 44.1KHz; the
maximum representable frequency for the system is 22.05KHz (which constitutes the
highest-pitched sound which can be encoded on and reproduced by a CD).

6.5 Problems

Problem 6.1 (Fast Fourier Transform) Let WN = ej 2π

N . Then, one can write the
DFT as

X(k) =

N−1∑

n=0

x(n)W kn
N

for 0 ≤ n ≤ N − 1.

1. To compute X(0)...X(N − 1), how many complex multiplications and additions do
you have to perform (as a function of N) using the formula above?

2. Let N = LM . Instead of storing x(n) in a vector, we now store store it in a table
such that x(l,m) = x(l + mL) as shown in Table 6.1.

Table 6.1: Table representation of a sequence
l m 0 1 ... M-1

0 x(0) x(L) ...
1 x(1) x(L+1)
2 ...
...
L-1 x(LM-1)

Similarly, let X(p, q) = X(Mp + q). Show that:

X(p, q) =

L−1∑

l=0

{

W lq
N

[
M−1∑

m=0

x(l,m)W mq
M

]}

W lp
L

3. One can decompose the above operation as follows:
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• F (l, q) =
∑M−1

m=0 x(l,m)W mq
M

(0 ≤ q ≤M − 1, for each of the rows l = 0...L− 1)

• G(l, q) = W lq
N F (l, q)

(0 ≤ l ≤ L− 1 and 0 ≤ q ≤M − 1)

• X(p, q) =
∑L−1

l=0 G(l, q)W lp
L

(0 ≤ p ≤ L− 1, for each column q = 0...M − 1)

How many complex multiplications and additions do you now need to compute the
Fourier transform (as a function of N,M and L)? Compare the answers in in point
1 and this question when N=1000, L=2 and M=500.
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Chapter 7

Linear Systems

7.1 Definition and Properties

In its most general form, a discrete-time system can be described as a black box accepting
a number of discrete-time sequences as inputs and producing another number of discrete-
time sequences at its output. In this course we are interested in studying the class of
linear time-invariant (LTI) discrete-time systems with a single input and a single output;
a system of this type will be referred to as a filter. A linear time-invariant systems H
can thus be viewed as an operator which transforms an input sequence into an output
sequence:

y[n] = H{x[n]}.

Linearity is expressed by the equivalence

H{ax1[n] + bx2[n]} = aH{x1[n]}+ bH{x2[n]} (7.1)

for any two sequences x1[n] and x2[n] and any two scalars a, b ∈ C. Time-invariance is
expressed by

y[n] = H{x[n]} ⇔ H{x[n− n0]} = y[n− n0] (7.2)

For a linear time-invariant system, knowledge of the system response to the input δ[n]
is sufficient to completely characterize the system; H{δ[n]} is called the impulse response
of the system. Indeed, we know that for any sequence we can always write the canonical
orthonormal expansion (i.e. the famous reproducing formula)

x[n] =

∞∑

k=−∞

x[k]δ[n − k]

143
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and therefore, if we let H{δ[n]} = h[n], we can apply (7.1) and (7.2) to obtain

y[n] = H{x[n]} =

∞∑

k=−∞

x[k]h[n − k]. (7.3)

The above sum is called the convolution of sequences x[n] and h[n] and will be denoted
by the convolution operator “∗”:

y[n] = x[n] ∗ h[n].

Clearly, for the convolution of two sequences to exist, the sum in (7.3) must be finite and
this is always the case if both sequences are absolutely summable. As in the case of the
DTFT, absolute summability is just a sufficient condition and the sum (7.3) can be well
defined in certain other cases as well. A few notes on the impulse response:

• Since the impulse response is defined as the transformation of the discrete-time delta
and since the delta is an infinite-length signal, the impulse response is always an
infinite-length signal, i.e. a sequence. From now on, except when otherwise indicated,
we will assume any impulse response to be at least in l2(Z); sometimes, we will also
need absolute summability.

• When the impulse response is nonzero only for a finite number of sequence indices,
i.e. when the impulse response is a finite-support sequence, the resulting filter is
called a Finite Impulse Response filter (FIR). In all other cases the filter is called
Infinite Impulse Response (IIR).

• The nonzero values of a filter’s impulse response are often called taps. An FIR filter
always has a finite number of taps.

• The convolution is commutative since, with a change of variable, (7.3) becomes:

y[n] =

∞∑

k=−∞

x[k]h[n − k] =

∞∑

k=−∞

h[k]x[n − k].

• For FIR filters, the convolution sum entails only a finite number of operations; if
h[n] = 0 for n < 0 and n ≥ N , the above expression becomes simply

y[n] =

N−1∑

k=0

h[k]x[n − k].

Convolution sums involving a finite-support impulse response, therefore, are always
well defined. We express this also by saying that FIR filter are unconditionally stable.
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• To make the notation and the derivations easier, in the following we will assume
that filter impulse responses are real-valued sequences.

• Sometimes, to indicate the value of the convolution at a particular time index n0,
we will write y[n0] = (x ∗ y)[n0]

7.1.1 Properties of the convolution

The basic properties of the convolution operator are:

• Linearity:

x[n] ∗ (α · y[n] + β · w[n]) = α · x[n] ∗ y[n] + β · x[n] ∗ w[n] (7.4)

• Time-invariance:

w[n] = x[n] ∗ y[n] ⇔ x[n] ∗ y[n− k] = w[n − k] (7.5)

• Commutativity: (Figure 7.1)

x[n] ∗ y[n] = y[n] ∗ x[n] (7.6)

Figure 7.1: Commutativity

• Associativity:

x[n] ∗ (y[n] ∗ w[n]) = (x[n] ∗ y[n]) ∗ w[n]. (7.7)

This last property describes the effect of connecting two filters in cascade; the re-
sulting impulse response is the convolution of the impulse responses. Note however
that the property does not hold for sequences which are not square summable. A
classic counterexample is the following: if you take the three sequences

x[n] = u[n] the unit step
y[n] = δ[n]− δ[n − 1] the first-difference operator
w[n] = 1 a constant signal



146 Chapter 7.

where clearly x[n], w[n] 6∈ l2(Z), it is easy to verify that

x[n] ∗ (y[n] ∗ w[n]) = 0

(x[n] ∗ y[n]) ∗ w[n] = 1.

7.1.2 The meaning of the convolution

It is immediate to see that for two sequences x[n] and h[n] it is

x[n] ∗ h[n] = 〈h∗[n− k], x[k]〉;

that is, the value at index n of the convolution of two sequences is the inner product (in
l2(Z)) of the first sequence – conjugated1, time-reversed and re-centered at n – with the
input sequence. The above expression describes the output of a filtering operation as a
series of “localized” inner products; filtering, therefore, measures the localized similarity
(in the inner product sense, i.e. in the sense of the correlation) between the input sequence
and a prototype sequence (the time-reversed impulse response).

In general, the convolution operator for a signal is defined with respect to the in-
ner product of its underlying Hilbert space. For the space of N -periodic sequences, for
instance, the convolution is defined as

x̃[n] ∗ ỹ[n] =

N−1∑

k=0

x̃[k]ỹ[n− k] (7.8)

=
N−1∑

k=0

x̃[n− k]ỹ[k] (7.9)

which is consistent with the inner product definition in (4.55).

7.1.3 Convolution of frequency spectrum

We can also consider the convolution of DTFT’s. In this case, since we are in the space
of 2π-periodic functions of a real variable, the convolution is defined as

X(ejω) ∗ Y (ejω) =
1

2π
〈X∗(ej(ω−σ)), Y (ejσ)〉 (7.10)

=
1

2π

∫ π

−π
X(ej(ω−σ))Y (ejσ)dσ (7.11)

=
1

2π

∫ π

−π
X(ejσ)Y (ej(ω−σ))dσ (7.12)

which is consistent with the inner product definition for L2[−π, π] signals in (4.30).

1Since we consider only real impulse responses, the conjugation operator is in this case redundant.
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7.2 Circular convolution

We can extend the thought process of convolution as inner products and define it for
periodic sequences over a period rather than throughout. That is, we define the circular
convolution as

x̃[n] ⊛ ỹ[n] =

N−1∑

k=0

x̃[k]ỹ[n− k], (7.13)

for periodic sequences x̃[n], ỹ[n]. But we can extend it to any finite-length sequence by
taking its periodic extension, i.e.

x[n] ⊛ [n] =
N−1∑

k=0

x[k]y[(n − k)N ], (7.14)

where

(n− k)N =

{
n− k n− k ≥ 0
N + (n− k) n− k < 0.

(7.15)

Figure 7.2: Circular convolution

7.3 Stability

A system is bounded-input, bounded-output (BIBO) stable, if its output is bounded for
all bounded input sequences. That is, if x[n] is such that there exists a constant A ∈ R

+

for which

|x[n]| < A ∀ n,

then we want there to exist a constant B ∈ R
+ such that,

|y[n]| = |h[n] ∗ x[n]| = |(h ∗ x)[n]| < B ∀ n.
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A necessary and sufficient condition for BIBO stability is that h[n] (its impulse response)
is absolutely summable, i.e.

+∞∑

k=−∞

|h[k]| < C <∞, (7.16)

for some C ∈ R
+. The sufficiency can be seen by noticing

|y[n]| =

∣
∣
∣
∣
∣

+∞∑

k=−∞

h[k]x[n − k]

∣
∣
∣
∣
∣

(a)

≤

+∞∑

k=−∞

|h[k]| |x[n− k]|

(b)
< A

+∞∑

k=−∞

|h[k]|

(c)
< A · C , B <∞,

where (a) follows due to the property of complex numbers that |a + b| ≤ |a|+ |b|, and (b)
follows from bounded input assumption and (c) from absolute summability of h[n]. The
necessity is seen by considering

x[n] =

{
h∗[−n]
|h[−n]| if h[−n] 6= 0

0 otherwise.

Since,

|x[n]| =
|h∗[−n]|

|h∗[n]|
= 1 <∞,

then,

y[0] =

+∞∑

k=−∞

x[k]h[0 − k] =

+∞∑

k=−∞

h∗[−k]

|h[−k]|
h[−k] =

+∞∑

k=−∞

|h[−k]| =

+∞∑

k=−∞

|h[k]| ,

which means that if h[n] is not absolutely summable, then y[0] is unbounded and hence
the system is BIBO unstable.
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7.3.1 Causality

A system is called causal if its output does not depend on future values of the input.
For an LTI system this implies that the associated impulse response is zero for negative
indices.

h[n] = 0, for n < 0, (7.17)

since for such a system

y[n] =
+∞∑

k=−∞

h[k]x[n − k] =
∞∑

k=0

h[k]x[n − k].

Therefore y[n] depends only on x[n], x[n− 1], . . .
More generally, consider a filter F for which there exists an M ∈ Z such that its

impulse response is zero for n < M . If we consider the pure delay filter D, whose impulse
response is

d[n] = δ[n − 1],

we can easily see that F can be made strictly causal by cascading M delays in front of it.
Clearly, an FIR filter is always causal up to a delay.

Example 7.1 (Linearity and Time Invariance)
For each of the following systems, determine if they are time variant or time invariant,

linear or non-linear, causal or not causal.

(a) y [n] = nx [n]

(b) y [n] = x [−n]

(c) y [n] = x [n] cos(ω0n)

Solution:

Let us express the general relationship between x [n] and y [n] as y [n] ≡ T (x [n])

(a) • T (x [n− k]) = nx [n− k] 6= y [n− k] = [n− k] x [n− k] → time variant (feed-
ing a delayed version of the input to the system does not produce the same
output as feeding the original signal to the system and delaying the output).

• T (αx1 [n]+βx2 [n]) = n(αx1 [n]+βx2 [n]) = αnx1 [n]+βnx2 [n] = αT (x1 [n])+
βT (x2 [n])→ linear.

• The output only depends on present inputs → it does not depend on future
inputs → causal.
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(b) • T (x [n− k]) = x [−n− k] 6= y [n− k] = x [−n + k]→ time variant

• T (αx1 [n]+βx2 [n]) = αx1 [−n]+βx2 [−n]) = αT (x1 [n])+βT (x2 [n])→ linear.

• The output can depend on future inputs ( e.g., y [−3] = x [3]) → not causal.

(c) • T (x [n− k]) = x [n− k] cos(ω0n) 6= y [n− k] = x [n− k] cos(ω0 (n− k)) →
time variant

• T (αx1 [n]+βx2 [n]) = (αx1 [n]+βx2 [n]) cos(ω0n) = αT (x1 [n])+βT (x2 [n])→
linear.

• The output only depends on present inputs → it does not depend on future
inputs → causal.

Example 7.2 (Stability)

(a) Consider an LTI system with impulse response

h [n] =

{
an for n ≥ 0
bn for n < 0.

Give the values of a, b ∈ R for which it is BIBO stable. (Hint: for what values of a
and b is

∑∞
n=−∞ |h [n] | <∞)?)

(b) Consider the system given by

y [n] = ay [n− 1] + x [n] ,

where a is a constant. Let y [−1] = 0. What is the impulse response of this system?
Prove that this system is not BIBO stable for any a (Hint: compute successive values
of y [n] , n ≥ 0, then express y [n] as a function of x [n] and set x [n] = δ [n] to get
the impulse response).

(c) We know that the output of an LTI system is bounded if

Sh =
∞∑

k=−∞

|h [k] | <∞

. A direct consequence is that h [n], the impulse response, goes to zero as n approaches
infinity ( i.e., h [n] is identically 0 for large enough n). Show that the output y [n] of
such a system goes to zero as n approaches infinity, if x [n] < Mx for n < n0 and
x [n] = 0 for n ≥ n0. (Hint: bound |y [n0 + N ] | and look at the limit when N →∞).
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Solution:

(a)
∑∞

n=−∞ |h [n] | =
∑∞

n=0 |a
n| +

∑−1
n=−∞ |b

n|. The first sum converges when |a| < 1.

For the second sum, we have
∑−1

n=−∞ |b
n| =

∑∞
n=1(

1
|b|)

n = 1
|b|(1+ 1

|b| +
1

|b|2
+...), which

converges when |b| > 1. Hence, to guarantee convergence, we must have |a| < 1 < |b|.

(b) Observe that:

y [0] = ay [−1] + x [0] = x [0]
y [1] = ax [0] + x [1]
y [2] = a2x [0] + ax [1] + x [2]
...
y [n] =

∑n
k=0 akx [n− k] .

Replacing x [n] by δ [n], we get y [n] = h [n] = anu [n]. As we have seen in the
previous question, this sum does not converge for a ≥ 1, and consequently a bounded
input ( e.g., a δ function) does not necessarily lead to a bounded output (an → ∞,
as n→∞).

(c) We have

|y [n0 + N ] | = |

=0,x[n]=0 for n≥n0

︷ ︸︸ ︷

N−1∑

k=−∞

h [k] x [n0 + N − k] +
∑∞

k=N h [k]x [n0 + N − k] |

≤
∑∞

k=N |h [k] ||x [n0 + N − k] |
≤Mx

∑∞
k=N |h [k] |

then,

lim
N→∞

|y [n0 + N ] | ≤Mx lim
N→∞

∞∑

k=N

|h [k] | = 0

Example 7.3

Consider the interconnection of systems shown in Fig. 7.3.

(a) Express the overall impulse response h in terms of h1,h2,h3 and h4.
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Figure 7.3: System for Problem 7.3

(b) Determine h [n] when

h1 [n] =







1
2 for n = 0 and n = 2
1
4 for n = 1
0 otherwise,

h2 [n] = h3 [n] = (n + 1)u [n] and h4 [n] = δ [n− 2].

(c) Determine the response of the system in the previous question when x [n] = δ [n + 2]+
3δ [n− 1]− 4δ [n− 3].

Solution:

(a) One can immediately see that:

h [n] = h1 [n] ∗

h234
︷ ︸︸ ︷

(h2 [n]− h3 [n] ∗ h4 [n]
︸ ︷︷ ︸

h34

) .

(b) Referring to the notation in the previous point, we can calculate:

h34 [n] =
∑∞

k=−∞ u [k] (k + 1)δ [n− 2− k] = u [n− 2] (n− 1)

h234 [n] = h2 [n]− h34 [n] = (n + 1)u [n]− (n− 1)u [n− 2] =







0 when n < 0
1 when n = 0
2 otherwise

h [n] = h1 [n] ∗ h234 [n] =
∑2

k=0 h1 [k]h234 [n− k] =







n=0
︷︸︸︷

1

2
, 5

4 , 2, 5
2 , 5

2 , 5
2 , ...
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Figure 7.4: Noisy signal.

(c) Finally, we calculate the value of the output when the input x is given:

y [n] = δ [n + 2] ∗ h [n] + 3δ [n− 1] ∗ h [n]− 4δ [n− 3] ∗ h [n]
= h [n + 2] + 3h [n− 1]− 4h [n− 3]

=







..., 0, 0,

n=−2
︷︸︸︷

1

2
, 5

4 , 2, 4, 25
4 , 13

2 , 5, 2, 0, 0, 0, ...







.

7.4 Introduction to Filtering

Filtering and filter design are the most fundamental topics in signal processing. We will
now introduce the key concepts related to filtering by means of two examples. In both
cases we are considering the following problem: we are given a sequence like the one in
Figure (7.4) and we want to smooth out the little wiggles in the plot, which are probably
due to noise, to improve the readability of the data.

7.4.1 FIR filtering

An intuitive, basic approach to remove noise from data is to replace each point of the
sequence x[n] by a local average, taking the point at n and, say, its N − 1 predecessors
into account. The points for the new plot can therefore be computed as:

y[n] =
1

N

N−1∑

k=0

x[n− k]
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This is easily recognized as a convolution sum, and we can obtain the impulse response of
the associated filter by letting x[n] = δ[n]; it is easy to see that

h[n] =
1

N

N−1∑

k=0

δ[n − k] =

{
(1/N) for 0 ≤ n < N
0 for n < 0 and n ≥ N

The impulse response, as it turns out, is a finite-support sequence so the filter we just built
is an FIR filter; this particular filter goes under the name of Moving Average (MA) filter.
The “smoothing power” of this filter is dependent on the number of samples we take into
account in the average or, in other words, on the length N of its impulse response. The
filtered version of the original sequence for increasing values of N is plotted in Figure 7.5.
Intuitively we can see that as N grows, more and more wiggles are removed. We will soon
see how to handle the “smoothing power” of a filter in a precise, quantitative way. One
thing to notice right away, and which is a general characteristic of FIR filters, is that the
value of the output does not depend on values of the input which are more than N steps
away; FIR filters are therefore called memoryless filters. Another remark we can mention
right away concerns the delay introduced by the filter: each output value is the average of
a window of N input values whose representative sample is the one falling in the middle;
there is therefore a delay of N/2 samples between input and output, and the delay grows
with N .

7.4.2 IIR filtering

The moving average filter we built in the previous section has an obvious drawback; the
more we want to smooth the signal, the more points we need to consider and, therefore,
the more computations we have to perform to obtained the filtered value. Consider now
the formula for the output of a length-M moving average filter:

yM [n] =
1

M

M−1∑

k=0

x[n− k].

We can easily see that:

yM [n] =
M − 1

M
yM−1[n− 1] +

1

M
x[n]

= λyM−1[n− 1] + (1− λ)x[n]

where we have defined λ = (M − 1)/M . Now, as M grows large, we can safely assume
that if we compute the average over M − 1 or over M points the result is basically the
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Figure 7.5: Moving averages for different values of N .

same: in other words, for M large, we can say that yM−1[n] ≈ yM [n]. This suggests a new
way to compute the smoothed version of a sequence in a recursive fashion:

y[n] = λy[n− 1] + (1− λ)x[n] (7.18)

This does not look anymore like a convolution sum; it is, instead, an instance of a constant
coefficients difference equation. We might wonder whether the transformation realized
by (7.18) is still linear and time-invariant and, in this case, what its impulse response
is. The first problem that we face in addressing this question stems from the recursive
nature of (7.18): each new output value depends on the previous output value. We need
to somehow define a starting value for y[n] or, in system theory parlance, we need to set
the initial conditions. The choice which guarantees that the system defined by (7.18) is
linear and time-invariant corresponds to requiring that the system response to a sequence
identically zero be zero for all n; this requirement is also known as zero initial conditions,
since it corresponds to setting y[n] = 0 for n < N0 where N0 is some time in the past.

Linearity of (7.18) can now be proved this way. Assume that the output sequence for
the system defined by (7.18) is y[n] when the input is x[n]. It is immediate to see that
y1[n] = αy[n] satisfies (7.18) for an input equal to αx[n]. All we need to prove is that this
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Figure 7.6: Outputs of the leaky integrator for different values of λ.

is the only solution. Assume this is not the case and call y2[n] the other solution; we have:

y1[n] = λy1[n− 1] + (1− λ)(αx[n])

y2[n] = λy2[n− 1] + (1− λ)(αx[n])

We can now subtract the second equation from the first. What we have is that the sequence
y1[n]− y2[n] is the system’s response to the zero sequence, and therefore is zero for all n.
Linearity with respect to the sum and time invariance can be proven in the exact same
way.



7.5. Filtering in the Frequency Domain 157

Now that we know that (7.18) defines an LTI system, we can try to compute its impulse
response. Assuming zero initial conditions and x[n] = δ[n] we have:

y[n] = 0 for n < 0

y[0] = 1− λ

y[1] = (1− λ)λ

y[2] = (1− λ)λ2

. . .

y[n] = (1− λ)λn

(7.19)

so that the impulse response is:

h[n] = (1− λ)λnu[n]. (7.20)

The impulse response clearly defines an IIR filter and therefore the immediate question
is whether the filter is stable. Since a sufficient condition for stability is that the impulse
response is absolutely summable; we have:

∞∑

n=−∞

|h[n]| = lim
n→∞

|1− λ|
1− |λ|n+1

1− |λ|
(7.21)

We can see that the above limit is finite for |λ| < 1 and so the system is BIBO stable for
these values. The value of λ (which is, as we will see, the pole of the system) determines
the smoothing power of the filter. As λ → 1, the input is smoothed more and more as
can be seen in Figure (7.6), at a constant computational cost. The system implemented
by (7.18) is often called a leaky integrator, in the sense that it approximates the behavior
of an integrator with a leakage (or forgetting) factor λ. The delay introduced by the leaky
integrator is more difficult to analyze than for the moving average but, again, it grows
with the smoothing power of the filter; we will soon see how to proceed in order to quantify
the delay introduced by IIR filters.

As we can infer from this simple analysis, IIR filters are much more delicate entities
than FIR filters; in the next chapters we will also discover that their design is also much
less straightforward and offers less flexibility. This is why, in the practice, FIR filters are
the filters of choice. IIR filters, however, and especially the simplest ones such as the leaky
integrator, are extremely attractive when computational power is a scarce resource.

7.5 Filtering in the Frequency Domain

The above examples have introduced the notion of filtering in an operational and intuitive
way. In order to make more precise statements on the characteristics of a discrete-time
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filter we need to move to the frequency domain. What does a filtering operation translate
to in the frequency domain? The fundamental result of this section is the convolution
theorem for discrete-time signals: a convolution in the discrete-time domain is equivalent
to a multiplication of Fourier transforms in the frequency domain. This result opens up a
very fruitful perspective on filtering and filter design, together with alternative approaches
to the implementation of filtering devices, as we will see.

7.5.1 Preliminaries

Before we proceed to stating the convolution theorem, let us consider what happens if the
input to a linear time-invariant system H is a complex exponential sequence of frequency
ω0; we have

H{ejω0n} =

∞∑

k=−∞

ejω0kh[n− k]

=

∞∑

k=−∞

h[k]ejω0(n−k)

= ejω0n
∞∑

k=−∞

h[k]e−jω0k

= H(ejω0)ejω0n (7.22)

where H(ejω0) (i.e. the DTFT of h[n] at ω = ω0) is called the frequency response of
the filter at frequency ω0. The above result states the fundamental fact that complex
exponentials are eigenfunctions of linear-time invariant systems. Some remarks:

• If we move to polar form, H(ejω0) = A0e
jθ0 and we can write:

H{ejω0n} = A0e
j(ω0n+θ0)

i.e., the output oscillation is scaled in amplitude by A0 = |H(ejω0 |, the magnitude
of the DTFT, and it is shifted in phase by θ0 = ∡H(ejω0), the phase of the DTFT.

• If the input to a linear time-invariant system is a sinusoidal oscillation, the output
will always be a sinusoidal oscillation of the same frequency (or zero if H(ejω0) = 0).
In other words, linear time-invariant systems cannot shift or duplicate frequencies.
This strength is also a weakness in some applications and that is why sometimes in
practice nonlinear transformations are used.
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7.5.2 The Convolution and Modulation theorems

We are now ready to state the fundamental result of this section: consider two sequences
x[n] and h[n], both absolutely summable. The discrete-time Fourier transform of the
convolution y[n] = x[n] ∗ h[n] is:

Y (ejω) = X(ejω)H(ejω). (7.23)

The proof is as follows: if we take the DTFT of the convolution sum we have

Y (ejω) =

∞∑

n=−∞

∞∑

k=−∞

x[k]h[n − k]e−jωn

by interchanging the order of summation (which can be done because of the absolute
summability of both sequences) and by splitting the complex exponential we obtain

Y (ejω) =
∞∑

k=−∞

x[k]e−jωk
∞∑

n=−∞

h[n− k]e−jω(n−k)

from which the result immediately follows after a change of variable. Before discussing
the implications of the theorem, we want to state and prove its dual, called the Mod-
ulation Theorem. Consider the discrete-time sequences x[n] and w[n], both absolutely
summable, with discrete-time Fourier transforms X(ejω) and W (ejω). The discrete-time
Fourier transform of the product y[n] = x[n]w[n] is:

Y (ejω) = X(ejω) ∗W (ejω) (7.24)

where the DTFT convolution is via the convolution operator for 2π-periodic functions
defined in (7.12). This is easily proven as follows: we start from the DTFT inversion
formula of the DTFT convolution:

1

2π

∫ π

−π
(X ∗ Y )(ejω)ejωndω =

1

2π

∫ π

−π

1

2π

∫ π

−π
X(ej(ω−σ))Y (ejσ)ejωndσdω =

and we split the last integral to obtain

=

(
1

2π

∫ π

−π
X(ej(ω−σ))ej(ω−σ)ndω

)(
1

2π

∫ π

−π
Y (ejσ)ejσndσ

)

= x[n]y[n].

These fundamental results are summarized in Table 7.1.
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Time Domain Frequency Domain

x[n] ∗ y[n] X(ejω)Y (ejω)

x[n]y[n] X(ejω) ∗ Y (ejω)

Table 7.1: The Convolution and Modulation Theorems

7.6 The Frequency Response

Just as the impulse response completely characterizes a filter in the discrete-time domain,
its Fourier transform, called the filter’s frequency response, completely characterizes the
filter in the frequency domain. The properties of LTI systems are described in terms
of their DTFT’s magnitude and phase, each of which controls different features of the
system’s behavior.

7.6.1 Magnitude

The most powerful intuition arising from the convolution theorem is obtained by consid-
ering the magnitude of the spectra involved in a filtering operation. Recall that a Fourier
spectrum represents the energy distribution of a signal in frequency; by appropriately
“shaping” the magnitude spectrum of a filter’s impulse response we can easily boost, at-
tenuate and even completely eliminate a given part of the frequency content in the filtered
input sequence. According to the way the magnitude spectrum is affected by the filter, we
can classify filters into three broad categories (here as before we assume that the impulse
response is real, and therefore the associated magnitude spectrum is symmetric; also, the
2π periodicity of the spectrum is implicitly understood):

• Lowpass filters, for which the magnitude of the transform is concentrated around
ω = 0; these filter preserve the low-frequency energy of the input signals and atten-
uate or eliminate the high-frequency components.

• Highpass filters, for which the magnitude of the transform is concentrated around
ω = ±π; these filter preserve the high-frequency energy of the input signals and
attenuate or eliminate the low-frequency components.

• Bandpass filters, for which the magnitude of the transform is concentrated around
ω = ±ωp; these filter preserve the energy of the input signals around the frequency
ωp and attenuate the signals elsewhere, notably around ω = 0 and ω = ±π.
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• Allpass filters, for which the magnitude of the transform is a constant over the
entire [−π, π] interval. These filters do not affect their input’s spectral magnitude
(except for a constant gain factor) and they are designed entirely in terms of their
phase response (typically, to introduce or compensate for a delay).

The frequency interval (or intervals) for which the magnitude of the frequency response is
zero (or practically negligible) is called the stopband. Conversely, the frequency interval
(or intervals) for which the magnitude is non-negligible is called the passband.

7.6.2 Phase

The phase response of a filter has an equally important effect on the output signal, even
though it is less immediately perceivable.

Phase as a generalized delay. Consider equation (7.22); we can see that a single si-
nusoidal oscillation undergoes a phase shift equal to the phase of the impulse response’s
Fourier transform. A phase offset for a sinusoid is equivalent to a delay in the time domain.
This is immediate to see for a trigonometric function defined on the real line since we can
always write

cos(ωt + φ) = cos(ω(t− t0)), t0 = −φ/ω.

For discrete-time sinusoids it is not always possible to express the phase offset in terms
of an integer number of samples (exactly for the same reasons for which a discrete-time
sinusoid is not always periodic in its index n); yet the effect is the same, in that a phase
offset corresponds to an implicit delay of the sinusoid. When the phase offset for a complex
exponential is not an integer multiple of its frequency, we say we are in the presence of
a fractional delay. Now, since each sinusoidal component of the input signal may be
delayed by an arbitrary amount, the output signal will be composed of sinusoids whose
relative alignment may be very different than the original. Phase alignment determines
the shape of the signal in the time domain, as we have seen in section 6.2. A filter with
unit magnitude across the spectrum, which does not affect the amplitude of the sinusoidal
components, but whose phase response is not linear, will completely change the shape of
a filtered signal2.

Linear phase. A very important type of phase response is linear phase:

∡H(ejω) = e−jωd (7.25)

2In all fairness, the phase response of a system is not very important in most audio applications, since

the human ear is largely insensitive to phase. Phase is however extremely important in data transmission

applications.
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Consider a simple system which just delays its input, i.e. y[n] = x[n−D] with D ∈ Z; this
is obviously an LTI system with impulse response h[n] = δ[n−D] and frequency response
H(ejω) = e−jωD. This means that, if the value d in (7.25) is an integer, (7.25) defines a
pure delay system; since the magnitude is constant and equal to one, this is an example
of an allpass filter. If d is not an integer, (7.25) still defines an allpass delay system for
which the delay is fractional, and we should interpret its effect as explained in the previous
section. In particular, if we think of the original signal in terms of its Fourier reconstruction
formula, the fractionally delayed output is obtained by stepping forward the initial phase
of all oscillators by a non-integer multiple of the frequency. In the discrete-time domain
we will then have a signal which takes values “between” the original samples but, since
the relative phase of any one oscillator with respect to the others has remained the same
as in the original signal, the shape of the signal in the time domain is unchanged.

For a general filter with linear phase we can always write

H(ejω) = |H(ejω)|e−jωd

In other words, the net effect of the filter is that of a cascade of two systems: a zero-phase
filter which affects only the spectral magnitude of the input and therefore introduces no
phase distortion, followed by a (possibly fractional) delay system (which, again, introduces
just a delay but no phase distortion).

Group delay. When a filter does not have linear phase, it is important to quantify the
amount of phase distortion both in amount and in location. Nonlinear phase is not always
a problem; if a filter’s phase is nonlinear just in the stopband, for instance, the actual
phase distortion is negligible. The concept of group delay is a measure of nonlinearity in
the phase; the idea is to express the phase response around any given frequency ω0 using a
first order Taylor approximation. Define ϕ(ω) = ∡H(ejω) and approximate ϕ(ω) around
ω0 as ϕ(ω0 + τ) = ϕ(ω0) + τϕ′(ω0); we can write

H(ej(ω0+τ)) = |H(ej(ω0+τ))|ejϕ(ω0+τ)

≈

(

|H(ej(ω0+τ))|ejϕ(ω0)

)

ejϕ′(ω0)τ (7.26)

so that, approximately, the frequency response of the filter is linear phase for at least a
group of frequencies around a given ω0. The delay for this group of frequencies is the
negative of the derivative of the phase, from which the definition of group delay:

grd{H(ejω)} = −ϕ′(ω) = −
d∡H(ejω)

dω
(7.27)

For truly linear phase systems, the group delay is a constant. Deviations from a con-
stant value quantify the amount of phase distortion introduced by a filter in terms of the
(possibly non-integer) number of samples a frequency component is delayed by.
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7.7 Examples of Filters

7.7.1 Ideal Filters

Ideal filters are what their name suggests: ideal abstractions which capture the essence of
the basic filtering operation. While not realizable in practice, they are the “gold standard”
of filter design.

Ideal Lowpass Filter. The ideal lowpass filter is a filter which kills all frequency content
above a cutoff frequency ωc and leaves all frequency content below ωc untouched; it is
defined in the frequency domain as

Hlp(e
jω) =

{
1 |ω| ≤ ωc

0 ωc < |ω| ≤ π
(7.28)

Clearly, the filter has zero phase delay. The ideal lowpass filter can also be defined in
terms of its bandwidth ωb = 2ωc. The DTFT inversion formula gives the corresponding
impulse response:

hlp[n] =
sin(ωcn)

πn
. (7.29)

The impulse response turns out to be a symmetric infinite sequence and the filter is
therefore IIR; unfortunately, however, it can be proved that no realizable system (i.e., no
algorithm with a finite number of operations per output sample) can exactly implement
the above impulse response. More bad news: the decay of the impulse response is slow,
going to zero only as 1/n, and it is not absolutely summable; this means that any FIR
approximation of the ideal lowpass obtained by truncating h[n] will need a lot of samples to
achieve some accuracy; and that, in any case, convergence to the ideal frequency response
will only be in the mean square sense (see section 5). An immediate consequence of these
facts is that, when designing realizable filters, we will take an entirely different approach.

Despite these practical difficulties, the ideal lowpass filter and its associated DTFT
pair are so important as a theoretical paradigm that two special function names are used
to denote the above expressions. We define

rect(x) =

{
1 |x| ≤ 1/2
0 |x| > 1/2

(7.30)

sinc(x) =







sin(πx)

πx
x 6= 0

1 x = 0
(7.31)
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Figure 7.7: Ideal lowpass filter, ωc = π/3. (a) Frequency response;

(b) Impulse response (portion).

Note that the sinc function is zero for all integer values of the argument except zero. With
this notation, and with respect to the bandwidth of the filter, the ideal lowpass filter’s
frequency response between −π and π becomes:

Hlp(e
jω) = rect

(
ω

ωb

)

(7.32)

(obviously 2π-periodized over all R). Its impulse response in terms of bandwidth becomes:

hlp[n] =
ωb

2π
sinc

(ωb

2π
n
)

(7.33)

or, in terms of cutoff frequency,

hlp[n] =
ωc

π
sinc

(ωc

π
n
)

. (7.34)

The DTFT pair:

ωb

2π
sinc

( ωb

2π
n
)

DTFT
←→ rect

(
ω

ωb

)

(7.35)

constitutes one of the fundamental relationships of digital signal processing. Note that as
ωb → 2π, we re-obtain the well-known DTFT pair δ[n] ←→ 1, while as ωb → 0 we can
re-normalize by (2π/ωb) to obtain 1←→ δ̃(ω).
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Ideal Highpass Filter. The ideal highpass filter with cutoff frequency ωc is the com-
plementary filter to the ideal lowpass filter, in the sense that it eliminates all frequency
content below the cutoff frequency. Its frequency response is

Hhp(e
jω) =

{
0 |ω| ≤ ωc

1 ωc < |ω| ≤ π
(7.36)

where the 2π-periodicity is as usual implicitly assumed. From the relation Hh(ejω) =
1− rect(ω/2ωc) the impulse response is easily obtained as

hhp[n] = δ[n]−
ωc

π
sinc

(ωc

π
n
)

Ideal Bandpass Filter. The ideal bandpass filter with center frequency ω0 and bandwidth
ωb, ωb/2 < ω0 is defined in the frequency domain between −π and π as:

Hbp(e
jω) =







1 ω0 − ωb/2 ≤ ω ≤ ω0 + ωb/2
1 −ω0 − ωb/2 ≥ ω ≥ −ω0 + ωb/2
0 elsewhere

(7.37)

where the 2π-periodicity is as usual implicitly assumed. It is left as an exercise to prove
that the impulse response is

hbp[n] = 2 cos(ω0n)
ωb

2π
sinc

( ωb

2π
n
)

. (7.38)

Hilbert Filter. The Hilbert filter is defined in the frequency domain as

H(ejω) =

{
−j 0 ≤ ω < π
+j −π ≤ ω < 0

(7.39)

where the 2π-periodicity is as usual implicitly assumed. Its impulse response is easily
computed as

h[n] =
2 sin2(πn/2)

πn
=

{
0 for n even
2

nπ for n odd
(7.40)

It is clearly |H(ejω)| = 1, so this filter is allpass. It introduces a phase shift of π/2 in the
input signal so that, for instance,

h[n] ∗ cos(ω0n) = − sin(ω0n). (7.41)

as one can verify from (5.26) and (5.27). More generally, the Hilbert filter is used in
communication systems to build efficient demodulation schemes, as we will see later. The
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fundamental concept is the following: consider a real signal x[n] and its DTFT X(ejω);
consider also the signal processed by the Hilbert filter y[n] = h[n] ∗ x[n]. Define:

A(ejω) =

{
X(ejω) for 0 ≤ ω < π
0 for −π ≤ ω < 0

i.e. A(ejω) is the positive-frequency part of the spectrum of x[n]. Since x[n] is real, its
DTFT has symmetry X(ejω) = X∗(e−jω) and therefore we can write

X(ejω) = A∗(e−jω) + A(ejω).

By separating real and imaginary part we can always write A(ejω) = AR(ejω) + jAI(e
jω)

and so:

X(ejω) = AR(e−jω)− jAI(e
−jω) + AR(ejω) + jAI(e

jω)

For the filtered signal we have Y (ejω) = H(ejω)X(ejω) and therefore

Y (ejω) = jAR(e−jω) + AI(e
−jω)− jAR(ejω) + AI(e

jω)

It is therefore easy to see that

x[n] + jy[n]
DTFT
←→ 2A(ejω), (7.42)

i.e., the spectrum of the signal a[n] = x[n]+jy[n] contains only the positive-frequency com-
ponents of the original signal x[n]. The signal a[n] is called the analytic signal associated
to x[n].

7.7.2 Examples Revisited

The following is a frequency domain analysis of the two practical filters which we saw
earlier. These filters are realizable, in the sense that their operation can be implemented
with practical efficient algorithms as we will study in the next chapters. The frequency
domain analysis allows us to qualify and quantify precisely the smoothing properties which
we described in an intuitive fashion in section 7.4.

Moving Average. The frequency response of the moving average filter in section 7.4.1
can be shown to be

H(ejω) =
1

N

sin(ωN/2)

sin(ω/2)
e−j N−1

2
ω. (7.43)

In the above expression it is immediate to recognize the magnitude and the phase of the
frequency response; they are plotted in Figure 7.8. Note that the phase is “wrapped” onto
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Figure 7.8: Magnitude and phase response of the Moving Average filter for N = 12.

the interval [−π, π], which is customary plotting practice. The group delay for the filter
is the constant (N − 1)/2, which means that the filters delays its output by (N − 1)/2
samples (i.e. there is a fractional delay for N even).

Leaky Integrator. The frequency response of the leaky integrator in section 7.4.2 is:

H(ejω) =
1− λ

1− λe−jω
(7.44)

Magnitude and phase are respectively:

|H(ejω)|2 =
(1− λ)2

1 + λ2 − 2λ cos(ω)
(7.45)

∡H(ejω) = arctan

[

−
λ sin(ω)

1− λ cos(ω)

]

(7.46)

and they are plotted in Figure 7.9. The group delay, also plotted in Figure 7.9, is obtained
by differentiating the phase response:

grd{H(ejω)} =
λ cos(ω)− λ2

1 + λ2 − 2λ cos(ω)
(7.47)



168 Chapter 7.

−3 −2 −1 0 1 2 3
0

0.5

1

Magnitude

−3 −2 −1 0 1 2 3

−1

0

1

Phase

ra
d

ia
n

s

−3 −2 −1 0 1 2 3

0

5

10
Group Delay

ω = −π, π

s
a

m
p

le
s

Figure 7.9: Magnitude and phase response of the leaky integrator for λ = 0.9.

Note that, according to the classification in section 7.6.1, both the moving average and
the leaky integrator are lowpass filters.

7.8 Filtering and Signal Classes

We have so far shown the main properties of filters as applied to generic (infinite) se-
quences. We will now consider the other two main classes of discrete-time signals, namely
finite-length signals and periodic sequences.
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7.8.1 Filtering of Finite-Length Signals

The convolution sum in (7.3) is defined for infinite sequences. For a finite-length signal of
length N we may choose to write simply

y[n] = H{x[n]} =

N−1∑

k=0

x[k]h[n − k] (7.48)

i.e. we let the summation index span only the indices for which the signal is defined. It is
immediate to see, however, that in so doing we are actually computing y[n] = x̄[n] ∗ h[n],
where x̄[n] is the finite support extension of x[n] as in (2.23)); that is, by using (7.48), we
are implicitly assuming a finite support extension for the input signal.

Even when the input is finite-length, the output of an LTI system is not necessarily a
finite-support sequence. When the impulse response is FIR, however, the output has finite
support; specifically, if the input sequence has support N and the impulse response has
support L, the support of the output will be N + L− 1. While the convolution theorem
obviously still holds, and the DTFT of the input is as in (5.31), no special insight can be
gained from its analytical expression.

7.8.2 Filtering of Periodic Sequences

For periodic sequences, the convolution sum in (7.3) is well defined so there is no special
care to be taken. It is easy to see that, for any LTI system, an N -periodic input produces
an N -periodic output. A case of particular interest is the following: consider a length-
N signal x[n] and its N -periodic extension x̃[n]. Consider then a filter whose impulse
response is FIR with a length-N support; if we call h[n] the length-N signal obtained by
considering only the values of the impulse response over its finite support, we have that
the impulse response of the filter is h̄[n] (see (2.23)). In this case we can write:

ỹ[n] =

∞∑

k=−∞

x̃[k]h̄[n− k] =

N−1∑

k=0

h[k]x̃[(n − k) mod N ] (7.49)

Note that in the last sum, only the first period of x̃[n] is used; we can therefore define the
sum just in terms of the two N -point signals x[n] and h[n]:

ỹ[n] =

N−1∑

k=0

h[k]x[(n − k) mod N ] (7.50)

The above summation is called the circular convolution of x[n] and h[n] and is sometimes
indicated as

ỹ[n] = x[n]©N h[n]
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Note that, for periodic sequences, the convolution as defined in (7.8) and the circular
convolution coincide. The circular convolution, just like the standard convolution operator,
is associative and commutative:

x[n]©N h[n] = h[n]©N x[n]

(h[n] + f [n])©N x[n] = h[n]©N x[n] + f [n]©N x[n]

as we will easily prove later on.
Consider now the output of the filter, expressed using the commutative property of

the circular convolution:

ỹ[n] =

N−1∑

k=0

x[k]h[(n − k) mod N ];

since the output sequence ỹ[n] is itself N -periodic we can consider the finite-length signal
y[n] = ỹ[n], n = 0, . . . ,N − 1, i.e. the first period of the output sequence. The circular
convolution can now be expressed in matrix form as

y = Hx (7.51)

where y,x are the usual vector notation for the finite-length signals y[n], x[n] and where

H =








h[0] h[N − 1] h[N − 2] · · · h[2] h[1]
h[1] h[0] h[N − 1] · · · h[3] h[2]
...

...
... · · ·

...
...

h[N − 1] h[N − 2] h[N − 3] · · · h[1] h[0]








(7.52)

The above matrix is called a circulant matrix, since each row is obtained by a right circular
shift of the previous row. A fundamental result, whose proof is left as an exercise, is that
the length-N DFT basis vectors w(k) defined in (3.5) are left eigenvectors of N × N
circulant matrices:

(w(k))T H = H[k]w(k)

where H[k] is the k-th DFT coefficient of the length-N signal h[n], n = 0, . . . ,N − 1. If
we now take the DFT of (7.51) we have

Y = WHx = ΓWx = ΓX

with

Γ = diag(H[0],H[1], . . . ,H[N − 1])
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or, in other words

Y [k] = H[k]X[k]. (7.53)

We have just proven a finite-length version of the convolution theorem. To repeat the
main points:

• the convolution of an N -periodic sequence with a N -tap FIR impulse response is
equal to the periodic convolution of two finite-length signals of length N , where
the first signal is one period of the input and the second signal is the values of the
impulse response over the support

• the periodic convolution can be expressed as a matrix-vector product in which the
matrix is circulant

• the DFT of the circular convolution is simply the product of the DFT’s of the two
finite-length signals; in particular, (7.53) can be used to easily prove the commuta-
tivity and distributivity of the circular convolution.

The importance of this particular case of filtering stems from the following fact: the matrix-
vector product in (7.51) requires O(N2) operations. The same product can however be
written as

y =
1

N
WHΓWx = DFT−1{Γ DFT{x}}

which, by using the FFT algorithm, requires approximately N +2N log2 N operations and
is therefore much more efficient even for moderate values of N . Practical applications of
this idea will be studied in detail later on; suffice it to say for now that, if you want to
filter a long signal with an N -tap FIR filter, a computationally attractive way to do it
is to break the signal up into consecutive length-N pieces and use the FFT to filter each
piece. Efficient methods to glue together the output pieces into the correct final results
are called overlap-save and overlap-add filtering methods.

Finally, we want to show that we could have quickly arrived at the same results only
by considering the formal DTFT’s of the sequences involved; this is an instance of the
power of the DTFT formalism. From (5.30) and (5.31) we have:

Y (ejω) = H̄(ejω)X̃(ejω)

=

( N−1∑

k=0

H[k]Λ(ω −
2π

N
k)

)(
1

N

N−1∑

k=0

X[k]δ̃(ω −
2π

N
k)

)

=
1

N

N−1∑

k=0

H[k]X[k]δ̃(ω −
2π

N
k) (7.54)
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where in the last passage we have exploited the sifting property of the Dirac delta (see 5.18)
and the fact that Λ(0) = 1. It is immediate to recognize in the last expresion the DTFT
of a periodic sequence whose DFS coefficients are given by H[k]X[k], which is what we
wanted to show.

7.9 Summary

This chapter introduced the concept of discrete-time linear time-invariant systems, also
known as filters. The main points have been:

• Characterization of LTI systems in terms of their impulse response; IIR and FIR
impulse responses;

• The convolution operator and its properties;

• BIBO stability;

• Filtering in the frequency domain; the Convolution and Modulation theorems;

• Magnitude and phase responses; generalized delay and group delay; linear phase;

• Ideal filters: lowpass, highpass, bandpass; Hilbert filter;

• Realizable filters: moving average and leaky integrator;

• Filtering of periodic sequences; circular convolution.

7.10 Problems

Problem 7.1 (Filter Design: Parks-McClellan Algorithm) In this exercise, our
goal is to design an optimal lowpass filter minimizing the maximum error, with passband
0 ≤ ω ≤ ωp and stopband ωs ≤ ω ≤ π. Hence, the desired frequency response |Hdr(e

jω)|
is 1 in the passband and 0 elsewhere. We would like the response of the designed filter
to be within δ1 of |Hdr(e

jω)| in the passband and within δ2 of |Hdr(e
jω)| in the stopband.

Fig. 7.1 illustrates this idea.

1. Show that h [n] = he [n] + ho [n], where he [n] = 1
2(h [n]+ h [−n]) is an even sequence

and ho [n] = 1
2 (h [n]−h [−n]) is an odd sequence. Show that it is easy to recover h [n]

from its even part for 0 ≤ n ≤ ∞ if h [n] is causal. Finally, show that he [n]
DTFT
↔

HR(ejω) if h [n] is real valued and causal ( i.e., He(e
jω) is real).
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2. Let h [n] be of length M . If h [n] = h [M − 1− n] (the unit sample response is
symmetric) and M is odd, we have:

HR(ejω) = h

[
M − 1

2

]

+ 2

(M−3)/2
∑

n=0

h [n] cos(ω(
M − 1

2
− n))

Further, by making an appropriate change of variable, we have:

P (ejω) = HR(ejω) =

(M−1)/2
∑

k=0

a [k] cos(ωk) ≡

L∑

k=0

a [k] cos(ωk)

Let

W (ejω) =

{
δ2/δ1 ω in the passband
1 ω in the stopband

and the error function be

E(ejω) = W (ejω)(Hdr(e
jω)− P (ejω))

We seek the solution to the problem:

min
over a [k]

(max
ω∈S
|E(ejω)|)

where S represents the disjoint union of frequency bands over which the optimization
is to be performed (in our case S is the union of the passband and the stopband fre-
quencies). The alternation theorem tells us that a necessary and sufficient condition
for P (ejω) to be the best weighted Chebyshev approximation to Hdr(e

jω) in S is that
the error function E(ejω) exhibit at least L + 2 extremal frequencies in S. That is,
there must be at least L+2 (L = (M − 1)/2 in our case) frequencies {ωi} in S such
that ω1 < ω2 < ... < ωL+2, E(ejωi) = −E(ejωi+1) and |E(ejωi))| = maxω∈S |E(ejω)|.
At the desired extremal frequencies, we have the set of equations:

W (ejωn)(Hdr(e
jωn)− P (ejωn)) = (−1)nδ2 for n = 0, 1, 2, ..., L + 1

Show that this set of equations can be written in matrix form as








1 cos(ω0) cos(2ω0) ... cos(Lω0)
1

W (ω0)

1 cos(ω1) cos(2ω1) ... cos(Lω1)
−1

W (ω1)

1 cos(ωL+1) cos(2ωL+1) ... cos(LωL+1)
(−1)L+1

W (ωL+1)
















a [0]
a [1]
...
a [L]
δ2









=







Hdr(e
jω0)

Hdr(e
jω1)

...
Hdr(e

jωL+1)
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3. The above set of equations can be solved iteratively by first guessing the extremal
frequencies and then solving the system for a and δ2. Subsequently, given E(ejω) we
find new extremal frequencies and repeat the process. In Matlab, the firpm command
(McClellan Algorithm) solves the problem efficiently. Plot the impulse response and
frequency response of a M = 21 taps filter, with ωp = 0.45 and ωs = 0.55 and
δ2/δ1 = 5 and give the error. (Hint: you can use the same set of arguments as for
the remez command presented in the course notes, so play around with this function
and see what happens; also take a look at the help). Finally, mark the extremal
frequencies on your plot (you can do it by hand).

Problem 7.2 An operator S is a transformation of a given signal and is indicated by the
notation:

y[n] = S{x[n]}.

For instance, the delay operator D is indicated as

D{x[n]} = x[n− 1],

and the differentiation operator is indicated as

∆{x[n]} = x[n]−D{x[n]} = x[n]− x[n− 1]. (7.55)

A linear operator is one for which the following holds:
{

S{αx[n]} = αS{x[n]}
S{x[n] + y[n]} = S{x[n]}+ S{y[n]}

1. Show that the delay operator D is linear.

2. Show that the differentiation operator ∆ is linear.

3. Show that the squaring operator S{x[n]} = x2[n] is not linear.

In C
N , any linear operator on a vector x can be expressed as a matrix-vector multipli-

cation for a suitable matrix A. In C
N , define the delay operator as the left circular shift

of a vector:

D{x} = [xN−1 x0 x1 . . . xN−2]
T .

Assume N = 4 for convenience; it is easy to see that

D{x} =







0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0







x = Dx
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4. Using the same definition of the differentiation operator as in (7.55), write out the
matrix form of the differentiation operator in C

4.

5. Consider the following matrix:

A =







1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1







.

Which operator do you think it corresponds to?

Problem 7.3 Let x[n] be a signal. Consider the following systems with output y[n]. De-
termine if such systems are: linear, time invariant, stable (BIBO) and causal or anti-
causal. Characterize the systems by their impulse response.

1. y[n] = x[−n]

2. y[n] = e−jωnx[n]

3. y[n] =
∑n+n0

k=n−n0
x[k]

4. y[n] = ny[n− 1] + x[n], such that if x[n] = 0 for n < n0, then y[n] = 0 for n < n0.
(Hint: Since the system is causal and satisfies initial-rest conditions, we can recur-
sively find the response to any input as, for instance, δ[n].)

Problem 7.4 Consider an operator R which turns a sequence into its time-reversed ver-
sion:

R{x[n]} = x[−n].

1. The operator is clearly linear. Show that it is not time-invariant.

Suppose you have an LTI filter H with impulse response h[n] and you perform the
following sequence of operations in order:

1) s[n] = H{x[n]}

2) r[n] = R{s[n]}

3) w[n] = H{r[n]}

4) y[n] = R{w[n]}
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2. Show that the input-output relation between x[n] and y[n] is an LTI transformation.

3. Give the frequency response of the equivalent filter realized by the series of transfor-
mations and show that it has zero phase.
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