
Chapter 4

Signals and Hilbert Spaces

In the 17th century, algebra and geometry started to interact in a fruitful synergy which
continues to the present day. Descartes’s original idea of translating geometric constructs
into algebraic form spurred a new line of attack in mathematics; soon, a series of aston-
ishing results was produced for a number of problems which had long defied geometrical
solutions (such as, famously, the trisection of the angle). It also spearheaded the no-
tion of vector space, in which a geometrical point could be represented as an n-tuple of
coordinates; this, in turn, readily evolved into the theory of linear algebra. Later, the
concept proved useful in the opposite direction: many algebraic problems could benefit
from our innate geometrical intuition once they were cast in vector form; from the easy
three-dimensional visualization of concepts such as distance and orthogonality, more com-
plex algebraic constructs could be brought within the realm of intuition. The final leap of
imagination came with the realization that the concept of vector space could be applied
to much more abstract entities such as infinite-dimensional objects and functions. In so
doing, however, spatial intuition could be of limited help and so the notion of vector space
had to be formalized in much more rigorous terms; we will see that the definition of Hilbert
space is one such formalization.

Most of the signal processing theory which we will study in the course can be usefully
cast in terms of vector notation and the advantages of this approach are exactly what we
just delineated before. First of all, all the standard machinery of linear algebra becomes
immediately available and applicable; this greatly simplifies the formalism used in the
mathematical proofs which will follow and, at the same time, it fosters a good intuition
with respect to the underlying principles which are being put in place. Furthermore,
the vector notation creates a frame of thought which seamlessly links the more abstract
results involving infinite sequences to the algorithmic reality involving finite-length signals.
Finally, on the practical side, vector notation is the standard paradigm for numerical
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88 Chapter 4.

analysis packages such as Matlab; signal processing algorithms expressed in vector notation
translate to working code with very little effort.

In Chapter 2 we established the basic notation for the different classes of discrete-time
signals which we will encounter time and again in the rest of the course and we hinted at
the fact that a tight correspondence can be established between the concept of signal and
that of vector space. In this chapter we will pursue this link further, firstly by reviewing
the familiar Euclidean spaces in finite dimensions and then by extending the concept of
basic vector spaces to infinite-dimensional Hilbert spaces.

4.1 A Quick Review of Euclidean Geometry

Euclidean geometry is a straightforward formalization of our spatial sensory experience;
hence its cornerstone role in developing a basic intuition for vector spaces. Everybody is
(or should be) familiar with Euclidean geometry and the natural “physical” spaces like
R2 (the plane) and R3 (the three-dimensional space). The notion of distance is clear,
orthogonality is intuitive and maps to the idea of a “right angle”. Even a more abstract
concept such as that of basis is rather easy to think of (the standard coordinate concepts
of latitude, longitude and height, which correspond to the three orthogonal axes in R3).
Unfortunately, immediate spatial intuition fails us for higher dimensions (i.e. for RN with
N > 3), yet the basic concepts introduced for R3 generalize easily to RN so that it is easier
to state such concepts for the higher-dimensional case and specialize them with examples
for N = 2 or N = 3. These notions ultimately will be generalized even further to more
abstract types of vector spaces. For the moment, let us review the properties of RN , the
N -dimensional Euclidean space.

Vectors and Notation. A point in RN is specified by an N -tuple of coordinates1:

x =















x0

x1

...

xN−1















= [x0 x1 . . . xN−1]
T

where xi ∈ R, i = 0, 1, . . . ,N −1. We call this set of coordinates a vector and the N -tuple
will be denoted synthetically by the symbol x; coordinates are usually expressed with

1N-dimensional vectors are by default column vectors.
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respect to a “standard” orthonormal basis2. The vector 0 = [0 0 . . . 0]T , i.e. the null
vector, is considered the origin of the coordinate system.

The generic n-th element in vector x is indicated by the subscript xn. In the following
we will often consider a set of M arbitrarily chosen vectors in RN and this set will be indi-
cated by the notation {x(k)}k=0...M−1. Each vector in the set is indexed by the superscript

·(k). The n-th element of the k-th vector in the set is indicated by the notation x
(k)
n

Inner Product. The inner product between two vectors x,y ∈ RN is defined as:

〈x,y〉 =
N−1∑

n=0

xnyn. (4.1)

We say that x and y are orthogonal, or x ⊥ y, when the inner product is zero:

x ⊥ y ⇐⇒ 〈x,y〉 = 0. (4.2)

Norm. The norm of a vector is defined in terms of the inner product as

‖x‖2 =

√
√
√
√

N−1∑

n=0

x2
n = 〈x,x〉1/2. (4.3)

It is easy to visualize geometrically that the norm of a vector corresponds to its length,
i.e. to the distance between the origin and the point identified by the vector’s coordinates.
A remarkable property linking the inner product and the norm is the Cauchy-Schwarz
inequality (whose proof is a little tricky); given x,y ∈ RN we always have:

|〈x,y〉| ≤ ‖x‖2‖y‖2.

Distance. The concept of norm is used to introduce the notion of Euclidean distance
between two vectors x and y:

d(x,y) = ‖x− y‖2 =

√
√
√
√

N−1∑

n=0

(xn − yn)2. (4.4)

From this, we can easily derive the Pythagorean theorem for N dimensions: if two vectors
are orthogonal, x ⊥ y, and we consider the sum vector z = x + y, we have:

‖z‖22 = ‖x‖22 + ‖y‖22. (4.5)

2The concept of basis will be defined more precisely later on; for the time being, consider a standard
set of orthogonal axes.
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The above properties are graphically shown in Figure 4.1 for R2.

Bases. Consider a set of M arbitrarily chosen vectors in RN : {x(k)}k=0...M−1. Given
such a set, a key question is that of completeness: can any vector in RN be written as a
linear combination of vectors from the set? In other words, we ask ourselves whether for
any z ∈ RN we can find a set of M coefficients αk ∈ R such that z can be expressed as:

z =

M−1∑

k=0

αkx
(k). (4.6)

Clearly, M needs to be greater or equal to N , but what conditions does a set of vectors
{x(k)}k=0...M−1 need to satisfy so that (4.6) holds for any z ∈ RN? There needs to be
a set of M vectors that span RN , and it can be shown that this is equivalent to saying
that the set must contain at least N linearly independent vectors. In turn, N vectors
{y(k)}k=0...N−1 are linearly independent if the equation

N−1∑

k=0

βky
(k) = 0 (4.7)

is satisfied only when all the βk’s are zero. A set of N linearly independent vectors for RN

is called a basis and, amongst bases, the ones with mutually orthogonal vectors of norm
equal to one are called orthonormal bases. For an orthonormal basis {y(k)} we therefore
have:

〈y(k),y(h)〉 =







1 if k = h

0 otherwise

(4.8)

Figure 4.2 reviews the above concepts in low dimensions.
The standard orthonormal basis for RN is the canonical basis {δ(k)}k=0...N−1 with

δ(k)
n = δ[n − k] =







1 if n = k

0 otherwise.

The orthonormality of such a set is immediately apparent. Another important orthonormal
basis for RN is the normalized Fourier basis {w(k)}k=0...N−1 for which:

w(k)
n =

1√
N

e−j 2π
N

nk;

the orthonormality proof for the basis is left as an exercise.
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Figure 4.1: Elementary properties of vectors in R2. (a) Orthogonality of two
vectors x and y. (b) Difference vector x− y and distance between x and y.

(c) Sum of two orthogonal vectors z = x + y, and Pythagorean theorem.
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Figure 4.2: Linear independence and bases. (a) (y(1),y(2),y(3)) are coplanar
in R3 , and so do not form a basis. y(4) and any two of {y(1),y(2),y(3)} are

linearly independent. (b) Any two of {y(1),y(2),y(3)} form a basis, and
{y(1),y(3)} form an orthogonal basis.
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4.2 From Vector Spaces to Hilbert Spaces

The purpose of the previous review was to briefly review the elementary notions and
spatial intuitions of Euclidean geometry. A thorough study of vectors in RN and CN is
the subject of linear algebra; yet, the idea of vectors, orthogonality and bases is much
more general, the basic ingredients being an inner product and the use of a square norm
as in (4.3).

While the analogy between vectors in CN and length-N signals is readily apparent, the
question now hinges on how we are to proceed in order to generalize the above concepts to
the class of infinite sequences. Intuitively, for instance, we can let N grow to infinity and
obtain C∞ as the Euclidean space for infinite sequences; in this case, however, much care
must be exercised with expressions such as (4.1) and (4.3) which can diverge for sequences
as simple as x[n] = 1 for all n. In fact, the proper generalization of CN to an infinite
number of dimensions is in the form of a particular vector space called Hilbert space;
the structure of this kind of vector space imposes a set of constraints on its elements
so that divergence problems such as the one we just mentioned no longer bother us.
When we embed infinite sequences into a Hilbert space, these constraints translate to
the condition that the corresponding signals have finite energy — which is a mild and
reasonable requirement.

Finally, it is important to remember the notion of Hilbert space is applicable to much
more general vector spaces than CN ; for instance, we can easily consider spaces of functions
over an interval or over the real line. This generality is actually the cornerstone of a branch
of mathematics called functional analysis. While we will not tread very far into these kind
of generalizations, we will certainly point out a few of them along the way. The space
of square integrable functions, for instance, will turn out to be a marvelous tool a few
chapters from now when, finally, the link between continuous- and discrete-time signals
will be explored in detail.

4.2.1 The Recipe for Hilbert Spaces

A word of caution: we are now starting to operate in a world of complete abstraction.
Here a vector is an entity per se and, while analogies and examples in terms of Euclidean
geometry can be useful visually, they are by no means exhaustive. In other words: vectors
are no longer just N -tuples of numbers; they can be anything. This said, a Hilbert space
can be defined in incremental steps starting from a general notion of vector space and by
supplementing this space with two additional features: the existence of an inner product
and the property of completeness.

Vector Space. Consider a set of vectors V and a set of scalars S (which can be either R
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or C for our purposes). A vector space H(V, S) is completely defined by the existence of a
vector addition operation and a scalar multiplication operation which satisfy the following
properties for any x,y, z, ∈ V and any α, β ∈ S:

• Addition is commutative:

x + y = y + x (4.9)

• Addition is associative:

(x + y) + z = x + (y + z) (4.10)

• Scalar multiplication is distributive:

α(x + y) = αx + αy (4.11)

(α + β)x = αx + βx (4.12)

α(βx) = (αβ)x (4.13)

• There exists a null vector 0 in V which is the additive identity so that ∀ x ∈ V :

x + 0 = 0 + x = x (4.14)

• ∀ x ∈ V there exists in V an additive inverse −x such that:

x + (−x) = (−x) + x = 0 (4.15)

• There exists an identity element “1” for scalar multiplication so that ∀ x ∈ V :

1 · x = x · 1 = x. (4.16)

Inner Product Space. What we have so far is the simplest type of vector space; the next
ingredient which we will consider is the inner product which is essential to build a notion
of distance between elements in a vector space. A vector space with an inner product is
called an inner product space. An inner product for H(V, S) is a function from V × V to
S which satisfies the following properties for any x,y, z, ∈ V :
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• It is distributive with respect to vector addition:

〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 (4.17)

• It possesses the scaling property with respect to scalar multiplication3:

〈x, αy〉 = α〈x,y〉 (4.18)

〈αx,y〉 = α∗〈x,y〉 (4.19)

• It is commutative within complex conjugation:

〈x,y〉 = 〈y,x〉∗ (4.20)

• The self-product is real and positive:

〈x,x〉 ≥ 0 (4.21)

〈x,x〉 ∈ R

〈x,x〉 = 0⇐⇒ x = 0. (4.22)

From this definition of the inner product a series of additional definitions and properties
can be derived: first of all, orthogonality between two vectors is defined with respect to
the inner product, and we will say that non-zero vectors x and y are orthogonal, or x ⊥ y,
if and only if

〈x,y〉 = 0. (4.23)

From the definition of an inner product we can define the norm of a vector as:

||x|| = 〈x,x〉1/2. (4.24)

In turn, the norm satisfies the Cauchy-Schwartz inequality :

|〈x,y〉| ≤ ‖x‖ · ‖y‖, (4.25)

with strict equality if and only if x = αy.

3Note that in our notation, the left operand is conjugated.
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Proof: If y = 0, then (4.25) holds since 〈x,0〉 = 0.
If y 6= 0, then for every scalar α we have

0 ≤ ‖x− αy‖2 = 〈x− αy,x− αy〉 = 〈x,x〉 − α〈x,y〉 − α∗ [〈y,x〉 − α〈y,y〉] .

If we choose α = 〈y,x〉
〈y,y〉 then we have

0 ≤ 〈x,x〉 − 〈y,x〉
〈y,y〉 〈x,y〉 =

〈x,x〉〈y,y〉 − |〈x,y〉|2
〈y,y〉 ,

or

|〈x,y〉| ≤ ‖x‖ · ‖y‖,

with equality iff x = αy. �

The norm also satisfies the triangle inequality :

‖x + y‖ ≤ ‖x‖ + ‖y‖ (4.26)

with strict equality if and only if x = αy and α ∈ R+.

Proof:

‖x + y‖2 = 〈x + y,x + y〉 = ‖x‖2 + 〈x,y〉 + 〈y,x〉 + ‖y‖2.

Since for any complex number u, Re(u) ≤ |u| and Im(u) ≤ |u| , we have 〈x,y〉 ≤ |〈x,y〉|,
and 〈y,x〉 ≤ |〈x,y〉|.
Hence

‖x + y‖2 ≤ ‖x‖2 + ‖y‖2 + 2|〈x,y〉| ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2 .

Taking square roots we get

‖x + y‖ ≤ ‖x‖ + ‖y‖. �
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For orthogonal vectors, the triangle inequality becomes the famous Pythagorean The-
orem:

‖x + y‖2 = ‖x‖2 + ‖y‖2 for x ⊥ y. (4.27)

Hilbert Space. A vector space H(V, S) equipped with an inner product is called an
inner product space. To obtain a Hilbert space, we need completeness. This is a slightly
more technical notion, which essentially implies that convergent sequences of vectors in
V have a limit that is also in V . To gain intuition, think of the set of rational numbers
Q versus the set of real numbers R. The set of rational numbers is incomplete, because
there are convergent sequences in Q which converge to irrational numbers. The set of
real numbers contains these irrational numbers, and is in that sense the completion of Q.
Completeness is usually hard to prove in the case of infinite-dimensional spaces; in the
following it will be tacitly assumed and the interested reader can easily find the relevant
proofs in advanced analysis textbooks. As a last technicality, we will also only consider
separate Hilbert spaces, which are the ones that admit orthonormal bases.

4.2.2 Examples of Hilbert Spaces

Finite Euclidean Spaces. The vector space CN , with the “natural” definition for the
sum of two vectors z = x + y as:

zn = xn + yn (4.28)

and the definition of the inner product as:

〈x,y〉 =

N−1∑

n=0

x∗
nyn (4.29)

is a Hilbert space.

Polynomial Functions. An example of “functional” Hilbert space is the vector space
PN ([0, 1]) of polynomial functions on the interval [0, 1] with maximum degree N . It is a
good exercise to show that P∞([0, 1]) is not complete: consider for instance the sequence
of polynomials

pn(x) =
n∑

k=0

xk

k!

this series converges as pn(x)→ ex 6∈ P∞([0, 1]).
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Square Summable Functions. Another interesting example of functional Hilbert space
is the space of square integrable functions over a finite interval. For instance, L2([−π, π])
is the space of real or complex functions on the interval [−π, π] which have finite norm.
The inner product over L2([−π, π]) is defined as:

〈f, g〉 =

∫ π

−π
f∗(t)g(t)dt, (4.30)

so that the norm of f(t) is:

‖f‖ =

√
∫ π

−π
|f(t)|2dt. (4.31)

For f(t) to belong to L2([−π, π]) it must have ‖f‖ <∞.

4.2.3 Inner Products and Distances

The inner product is a fundamental tool in a vector space since it allows us to introduce
a notion of distance between vectors. The key intuition about this is a typical instance
in which a geometric construct helps us generalize a basic idea to much more abstract
scenarios. Indeed, take the simple Euclidean space RN and a given vector x; for any
vector y ∈ RN the inner product 〈x,y〉 is the measure of the orthogonal projection of y
over x. We know that the orthogonal projection defines the point on x which is closest
to y and therefore it indicates “how well” we can approximate y by a simple scaling of x.
To see this, just note that

〈x,y〉 = ‖x‖‖y‖ cos θ

where θ is the angle between the two vectors (you can work out the expression in R2 to
easily convince you of this; the result generalizes to any other dimension). Clearly, if the
vectors are orthogonal, the cosine is zero and no approximation will be possible. Since the
inner product is dependent on the angular separation between the vectors, it represents a
first rough measure of similarity between x and y; in broad terms, it provides a measure
of the difference in shape between vectors.

In the context of signal processing, this is particularly relevant since the difference in
“shape” between signals is what we are interested in most of the time. As we stated several
times before, discrete-time signals are vectors; the computation of their inner product will
assume different names according to the processing context we find ourselves in: it will
be called filtering, when we are trying to approximate or modify a signal; or it will be
called correlation when we are trying to detect one particular signal amongst many. Yet,
in all cases, it will still be an inner product, i.e. a qualitative measure of similarity between



98 Chapter 4.

vectors. In particular, the concept of orthogonality between signals implies that the signals
are perfectly distinguishable or, in other words, that their shape is completely different.

The need for a quantitative measure of similarity in some applications calls for the
introduction of the Euclidean distance, which is derived from the inner product as:

d(x,y) = 〈x− y,x− y〉1/2 = ‖x− y‖. (4.32)

In particular, for CN the Euclidean distance is defined as:

d(x,y) =

√
√
√
√

N−1∑

n=0

|xn − yn|2; (4.33)

whereas for L2([−π, π]) we have:

d(x,y) =

√
∫ π

−π
|x(t)− y(t)|2dt. (4.34)

In the practice of signal processing, the Euclidean distance is referred to as the root
mean square error4; this is a global, quantitative goodness-of-fit measure when trying to
approximate signal y with x.

Incidentally, there are other types of distance measures which do not rely on a notion
of inner product; for example in CN we could define

d(x,y) = max
0≤n<N

|xn − yn|. (4.35)

This distance is based on the supremum norm and is usually indicated by ‖x − y‖∞;
however, it can be shown that there is no inner product from which this norm can be
derived and therefore no Hilbert space can be constructed where ‖ · ‖∞ is the natural
norm. Nonetheless, this norm will reappear later, in the context of optimal filter design.

4.3 Subspaces, Bases, and Projections

Now that we have defined the properties of Hilbert spaces, it is only natural to start
looking at the consequent inner structure of such a space. The best way to do so is by
introducing the concept of basis. You can think of a basis as the “skeleton” of a vector
space, a structure which holds everything together; yet, this skeleton is flexible and we can
twist it, stretch it and rotate it in order to highlight some particular structure of the space

4Almost always, the square distance is considered instead; its name is then the mean square error, or
MSE
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and bring out the particular information we are interested in. All this is accomplished by
a linear transformation called a change of basis; for instance, the Fourier transform is an
instance of basis change.

Sometimes we will be interested in exploring more in detail a specific subset of a given
vector space; this is accomplished via the concept of subspace. A subspace is, as the name
implies, a restricted region of the global space with the additional properties that it is
closed under the usual vector operations. This implies that, once in a subspace, we can
operate freely without ever leaving its confines; just like a full-fledged space, a subspace
has its own skeleton (i.e. the basis) and, again, we can exploit the properties of this basis
to highlight the features we are interested in.

4.3.1 Definitions

Assume H(V, S) is a Hilbert space, with V a vector space and S a set of scalars (i.e. C).

Subspace. A subspace of V is defined as a subset P ⊆ V that satisfies the following
properties:

• Closure under addition, i.e.

∀ x,y ∈ P ⇒ x + y ∈ P (4.36)

• Closure under scalar multiplication, i.e.

∀ x ∈ P,∀ α ∈ S ⇒ αx ∈ P. (4.37)

Clearly, V is a subspace of itself.

Span. Given an arbitrary set of M vectors W = {x(m)}m=0,1,...,M−1, the span of these
vector is defined as:

span(W ) =

{M−1∑

m=0

αmx(m)

}

, αm ∈ S (4.38)

i.e. the span of W is the set of all possible linear combinations of the vectors in W . The
set of vectors W is called linearly independent if the following holds:

M−1∑

m=0

αmx(m) = 0 ⇐⇒ αm = 0 for m = 0, 1, . . . ,M − 1. (4.39)

Basis. A set of K vectors W = {x(k)}k=0,1,...,K−1 from a subspace P is a basis for that
subspace if:
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• The set W is linearly independent.

• Its span covers P , i.e. span(W ) = P .

The last statement affirms that any y ∈ P can be written as a linear combination of
{x(k)}k=0,1,...,K−1 or that, for all y ∈ P , there exist K coefficients αk such that

y =
K−1∑

k=0

αkx
(k); (4.40)

this is equivalently expressed by saying that the set W is complete in P .

Orthogonal/Orthonormal Basis. An orthonormal basis for a subspace P is a set of K
basis vectors W = {x(k)}k=0,1,...,K−1 for which:

〈x(i),x(j)〉 = δ[i− j] 0 ≤ i, j < K (4.41)

which means orthogonality across vectors and unit norm. Sometimes, we can have that the
set of vectors is orthogonal but not normal (i.e. the norm of the vectors is not unitary). This
is hardly a problem provided that we remember to include the appropriate normalization
factors in the analysis and/or synthesis formulas. Alternatively, an orthogonal set of
vectors can be normalized via the Gram-Schmidt procedure, which you can find in any
linear algebra textbook.

Among all bases, orthonormal bases are the most “beautiful” in some sense because
of their structure and their properties. One of the most important properties for finite-
dimensional spaces is the following:

• A set of N orthogonal vectors in an N -dimensional subspace is a basis for the sub-
space.

In other words, in finite dimensions, once we find a full set of orthogonal vectors we are
sure that the set spans the space.

4.3.2 Properties of Orthonormal Bases

Let W = {x(k)}k=0,1,...,K−1 be an orthonormal basis for a (sub)space P . Then the following
properties hold (all of which are easily verified):

Analysis Formula. The coefficients in the linear combination (4.40) are obtained simply
as:

αk = 〈x(k),y〉 (4.42)
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The coefficients {αk} are called the Fourier coefficients5 of the orthonormal expansion of
y with respect to the basis W and (4.42) is called the Fourier analysis formula; conversely,
Equation (4.40) is called the synthesis formula.

Parseval’s Identity For an orthonormal basis, there is a norm conservation property given
by Parseval’s identity :

‖y‖2 =

K−1∑

k=0

|〈x(k),y〉|2. (4.43)

For physical quantities, the norm is dimensionally equivalent to a measure of energy;
accordingly, Parseval’s identity is also known as the energy conservation formula.

Basis Completion Let G =
{
z(ℓ)
}L−1

ℓ=0
be a set of orthonormal vectors in a subspace P

of dimension K > L. Clearly, G is not a basis for P . If
{
x(k)

}K−1

k=0
form an orthonormal

basis, then we can find vectors
{
z̃(ℓ)
}K−1

ℓ=L
such that

{{
z(ℓ)
}L−1

ℓ=0
,
{
z̃(ℓ)
}K−1

ℓ=L

}

form an

orthonormal basis for P . This can be done in the following manner, since
{
x(k)

}K−1

k=0
is

an orthonormal basis for P , we want to find z̃(L) ∈ P s.t.

z̃(L) =
K−1∑

k=0

αkx
(k) , 〈z̃(L), z(ℓ)〉 = 0, ℓ = 0, · · · , L− 1

=⇒
K−1∑

k=0

αk〈x(k), z(ℓ)〉 = 0, ℓ = 0, · · · , L− 1

=⇒











〈x(0), z(0)〉 · · · 〈x(K−1), z(0)〉
...

...

〈x(0), z(L−1)〉 · · · 〈x(K−1), z(L−1)〉





















α0

...

αK−1











= 0.

5Fourier coefficients often refer to the particular case of Fourier series. However, the term generally
refers to coefficients in any orthonormal basis.
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Since











〈x(0), z(0)〉 · · · 〈x(K−1), z(0)〉
...

...

〈x(0), z(L−1)〉 · · · 〈x(K−1), z(L−1)〉











∈ CL×K ,

we can find a vector in its null space (which is of dimension K−L) to obtain z̃(L) (properly
normalized). In a similar manner we can find z̃(ℓ), ℓ = L + 1, · · · ,K − 1 by

〈z̃(ℓ), z(p)〉 = 0, for p = 0, · · · , L− 1

〈z̃(ℓ), z̃(q)〉 = 0, for q = L, · · · , ℓ− 1.

This amounts to finding a vector in the null space of























〈x(0), z(0)〉 · · · 〈x(K−1), z(0)〉
...

...

〈x(0), z(L−1)〉 · · · 〈x(K−1), z(L−1)〉

〈x(0), z̃(L)〉 · · · 〈x(K−1), z̃(L)〉
...

...

〈x(0), z̃(ℓ−1)〉 · · · 〈x(K−1), z̃(ℓ−1)〉
























Therefore, by defining z(ℓ) = z̃(ℓ), ℓ = L, · · · ,K − 1, we get an orthonormal basis
{
z(ℓ)
}K−1

ℓ=0
for P , which extends the orthonormal set

{
z(ℓ)
}L−1

ℓ=0
to a basis spanning P .

Therefore for any y ∈ P ,

‖y‖2 =

K−1∑

k=0

|〈z(k),y〉|2 ≥
L−1∑

ℓ=0

|〈z(ℓ),y〉|2.

Best Approximations. Assume P is a subspace of V ; if we try to approximate a vector
y ∈ V by a linear combination of basis vectors from the subspace P , then we are led to the
concepts of least squares approximations and orthogonal projections. First of all, we define
the best linear approximation ŷ ∈ P of a general vector y ∈ V to be the approximation



4.3. Subspaces, Bases, and Projections 103

which minimizes the norm ‖y−ŷ‖. Such an approximation is easily obtained by projecting
y onto an orthonormal basis for P , as shown in Figure 4.3. With W , our usual orthonormal
basis for P , the projection is given by:

ŷ =

K−1∑

k=0

〈x(k),y〉x(k). (4.44)

Define the approximation error as the vector d = y− ŷ. The best approximation ŷ ∈ P is
such that the error d = y − ŷ is orthogonal to all vectors z ∈ P , i.e., y − ŷ ⊥ z ∀z ∈ P.

Proof: Let ŷ be the unique vector such that d = y − ŷ is orthogonal to all vectors
z ∈ P . Consider any vector g ∈ P which is a candidate for the best approximation to y
in P .

‖y − g‖2 = ‖(y − ŷ) + (ŷ − g)‖2 = ‖y − ŷ‖2 + ‖ŷ − g‖2 + 〈y − ŷ, ŷ − g〉+ 〈ŷ − g,y − ŷ〉.

However, since ŷ,g ∈ P , ŷ − g ∈ P and hence

〈ŷ − g,y − ŷ〉 = 0 = 〈y − ŷ, ŷ − g〉.

Hence we have

‖y − g‖2 = ‖y − ŷ‖2 + ‖ŷ − g‖2 ≥ ‖y − ŷ‖2

with equality iff g = ŷ. �

Hence, the approximation minimizes the error square norm, i.e.

arg min
ŷ∈P
‖y − ŷ‖2 = d. (4.45)

This approximation with an orthonormal basis has a key property: it can be suc-
cessively refined. Assume you have the approximation with the first m terms of the
orthonormal basis:

ŷm−term =

m−1∑

k=0

〈x(k),y〉x(k) (4.46)

and now you want to compute the (m + 1)-term approximation. This is simply given by

ŷ(m+1)−term =

m∑

k=0

〈x(k),y〉x(k) = ŷm−term + 〈x(m),y〉x(m). (4.47)
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x1

   x3

x2

x

x )
Figure 4.3: Orthogonal projection of the vector x onto the subspace W

spanned by (x(1),x(2)), leading to the approximation x̂. This approximation
minimizes the square norm ‖x− x̂‖2 among all approximations belonging to W .

While this seems obvious, it is actually a small miracle, since it does not hold for more
general, non-orthonormal bases.

Bessel’s Inequality. The generalization of Parseval’s equality is Bessel’s inequality. Sup-
pose M =

{
e(k)

}
is an orthonormal set, but not a basis for the entire space V . Define a

subspace:

P = Span(M) = Span
{{

e(k)
}}

.

Let us consider the projection of an arbitrary vector x ∈ V , onto P . We have seen that
this is given by

x̂ =
∑

k

〈e(k),x〉e(k)

and that (x− x̂) ⊥ g, ∀g ∈ P . In particular, since x̂ ∈ P , we see that

z , x− x̂ , z ⊥ x̂ and

x = x− x̂
︸ ︷︷ ︸

z

+x̂ = z + x̂.

Hence by Pythagoras theorem:

‖x‖2 = ‖z‖2 + ‖x̂‖2
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or: 0 ≤ ‖z‖2 = ‖x‖2 − ‖x̂‖2

or: ‖x̂‖2 (a)
=
∑

k |〈e(k),x〉|2 ≤ ‖x‖2
where (a) follows from Parseval’s relationship.

Hence for any orthonormal set
{
e(k)

}
,

∑

k

|〈e(k),x〉|2 ≤ ‖x‖2 −→ Bessel’s inequality. (4.48)

4.3.3 Examples of Bases

Considering the examples of Section 4.2.2, we have the following:

Finite Euclidean Spaces. For the simplest case of Hilbert spaces, namely CN , orthonor-
mal bases are also the most intuitive since they contain exactly N mutually orthogonal
vectors of unit norm. The classical example is the canonical basis {δ(k)}k=0...N−1 with

δ
(k)
n = δ[n − k], (4.49)

but we have already seen more interesting bases such as the Fourier basis {w(k)}, for which

w(k)
n = ej 2π

N
nk.

In CN , the analysis and synthesis formulas (4.42) and (4.40) take a particularly neat form.
For any set {x(k)} of N orthonormal vectors one can indeed arrange the conjugates of the
basis vectors6 as the successive rows of an N × N square matrix M so that each matrix
element is

Mmn = (x(m)
n )∗;

M is called a change of basis matrix. Given a vector y, the set of expansion coefficient
{αk}k=0...N−1 can now be written itself as a vector7 α ∈ CN . Therefore, we can rewrite
the analysis formula (4.42) in matrix-vector form and we have:

α = My. (4.50)

6Other definitions may build M by stacking the non-conjugated basis vectors instead; the procedure
is however entirely equivalent. Here we choose this definition in order to be consistent with the usual
derivation of the Discrete Fourier Transform, which we have seen in Chapter 3.

7This isomorphism is rather special and at the foundation of Linear Algebra. If the original vector
space V is not CN , the analysis formula will always provide us with a vector of complex values, but this
vector will not be in V .
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The reconstruction formula (4.40) for y from the expansion coefficients becomes in turn:

y = MH
α (4.51)

where the superscript denotes the Hermitian transpose (transposition and conjugation of
the matrix). The previous equation shows that y is a linear combination of the columns
of MH , which, in turn, are of course the vectors {x(k)}. The orthogonality relation (4.49)
takes the following forms

MHM = I (4.52)

MMH = I (4.53)

since left inverse equals right inverse for square matrices; this implies that M has orthonor-
mal rows as well as orthonormal columns.

Polynomial Functions. A basis for PN ([0, 1]) is {xk}0≤k<N . This basis, however, is
not an orthonormal basis. It can be transformed to an orthonormal basis by a standard
Gram-Schmidt procedure; the basis vectors thus obtained are called Legendre polynomials.

Square Summable Functions. An orthonormal basis set for L2([−π, π]) is the set
{(1/
√

2π)ejnt}n∈Z. This is actually the classic Fourier basis for functions on an inter-
val. Please note that here, as opposed to the previous examples, the number of basis
vectors is actually infinite. The orthogonality of these basis vectors is easily verified; their
completeness, however, is extremely hard to prove and this, unfortunately, is pretty much
the rule for all non-trivial infinite-dimensional basis sets.

4.4 Signal Spaces Revisited

We are now in the position to formalize our intuitions so far with respect to the equivalence
between discrete-time signals and vector spaces, with a particularization for the three main
classes of signals we have introduced in Chapter 2. Note that in the following, we will
liberally interchange the notations x and x[n] to denote a sequence as a vector embedded
in its appropriate Hilbert space.

4.4.1 Finite-Length Signals

The correspondence between the class of finite-length, length-N signals and CN should
be so immediate at this point that it does not need further comment. As a reminder, the
canonical basis is the canonical basis for CN . The k-th canonical basis vector will often
be expressed in signal form as:

δ[n− k] n = 0, . . . ,N − 1, k = 0, . . . ,N − 1.
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4.4.2 Periodic Signals

As we have seen, N -periodic signals are equivalent to length-N signals. The space of
N -periodic sequences is therefore isomorphic to CN . In particular, the sum between two
sequences considered as vectors is the standard pointwise sum for the elements:

z[n] = x[n] + y[n] n ∈ Z (4.54)

while, for the inner product, we extend the summation over a period only:

〈x[n], y[n]〉 =

N−1∑

n=0

x∗[n]y[n]. (4.55)

The canonical basis for the space of N -periodic sequences is the canonical basis for CN ,
because of the isomorphism; in general, any basis for CN is also a basis for the space of
N -periodic sequences. Sometimes, however, we will also consider an explicitly periodized
version of the basis. For the canonical basis, in particular, the periodized basis is composed

of N vectors of infinite length {δ̃(k)}k=0...N−1 with:

δ̃
(k)

=

∞∑

i=−∞

δ[n− k − iN ].

Such a sequence is called a pulse train. Note that here we are abandoning mathematical
rigor, since the norm of each of these basis vectors is infinite; yet the pulse train, if handled
with care, can be a useful tool in formal derivations.

4.4.3 Inifinite Sequences

Finally, this is where we have been heading to all along. For infinite sequences, whose
“natural” Euclidean space would appear to be C∞, the situation is rather delicate. While
the sum of two sequences can be defined in the usual way, by extending the sum for CN

to C∞, care must be taken when evaluating the inner product. We already pointed out
that

〈x[n], y[n]〉 =

∞∑

n=−∞

x∗[n]y[n] (4.56)

can diverge even for simple constant sequences such as x[n] = y[n] = 1. A way out of this
impasse is to restrict ourselves to l2(Z), the space of square summable sequences, for which

‖x‖2 =
∑

n∈Z

|x[n]|2 <∞. (4.57)
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This is the space of choice for all the theoretical derivations involving infinite sequences.
Note that these sequences are often called “of finite energy”, since the square norm corre-
sponds to the definition of energy as given in (2.17).

The canonical basis for l2(Z) is simply the set {δ(k)}k∈Z; in signal form:

δ
(k) = δ[n − k], n, k ∈ Z. (4.58)

This is an infinite set, and actually an infinite set of linearly independent vectors, since

δ[n− k] =
∑

l∈Z/k

αlδ[n − l] (4.59)

has no solution for any k. Note that, for an arbitrary signal x[n] the analysis formula gives

αk = 〈δ(k),x〉 = 〈δ[n − k], x[n]〉 = x[k]

so that the reconstruction formula becomes

x[n] =
∞∑

k=−∞

αkδ
(k) =

∞∑

k=−∞

x[k]δ[n − k],

which is the reproducing formula (2.16). The Fourier basis for l2(Z) will be introduced
and discussed at length in the next chapter.

As a last remark, note that the space of all finite-support signals, which is clearly
a subset of l2(Z), does not form a Hilbert space. Clearly, the space is closed under
addition and scalar multiplication, and the canonical inner product is well behaved since
all sequences have only a finite number of nonzero values. The space however is not
complete; to see this, consider the following family of signals

yk[n] =







1/n |n| < k

0 otherwise

For k growing to infinity the sequence of signals converges as yk[n] → y[n] = 1/n for all
n; while y[n] is indeed in l2(Z), since

∞∑

n=0

1

n2
=

π2

6
,

y[n] is clearly not a finite-support signal.
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4.5 Summary

The purpose of this chapter was to lay a solid geometrical and algebraic foundation to the
theory of discrete-time signal processing. This was achieved by establishing a correspon-
dence between signals and vectors in a Hilbert space. The main points we have covered
are:

• A review of Euclidean geometry in the context of simple vector spaces such as RN .

• The step-by-step definition of Hilbert space as a complete, inner product vector
space.

• The properties of inner product and their extension to the concept of norm and
distance.

• The concepts of basis and orthonormal basis, with a special emphasis on the latter.

• Examples of Hilbert space: CN , PN ([0, 1]), L2([−π, π]) with their respective inner
products and bases.

• A correspondence between the three main classes of discrete-time signals and three
suitable types of Hilbert space. In particular, CN for finite-length and periodic
sequences and l2(Z) for infinite sequences.

4.6 Problems

Problem 4.1 Consider the Fourier basis {w(k)}k=0,...,N−1, defined as:

w
(k)
n = e−j 2π

N
nk.

1. Prove that it is an orthogonal basis in CN .

2. Normalize the vectors in order to get an orthonormal basis.
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Chapter 5

The DTFT (Discrete-Time Fourier
Transform)

We will now consider a Fourier representation for infinite non-periodic sequences. Let us
start out abruptly: the Discrete-Time Fourier Transform of a sequence x[n] is defined as:

X(ejω) =

∞∑

n=−∞

x[n]e−jwn. (5.1)

The DTFT is therefore a complex-valued function of the real argument ω, and, as can be
easily verified, it is periodic in ω with period 2π. The somewhat odd notation X(ejω) is
quite standard in the signal processing literature and offers several advantages:

• it stresses the basic periodic nature of the transform, since, obviously, ej(ω+2π) = ejω;

• regardless of context, it immediately identifies a function as the Fourier transform
of a discrete-time sequence: something like U(ejλ) is just as readily recognizable;

• it provides a nice notational framework which unifies the Fourier transform and the
z-transform (which we will see later).

The DTFT, when it exists, can be inverted via the integral

x[n] =
1

2π

∫ π

−π
X(ejω)ejωndω. (5.2)

This can be easily verified by substituting (5.1) into (5.2) and using
∫ π

−π
e−jω(n−k) = 2πδ[n − k].

111
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In fact, due to the 2π periodicity of the DTFT, the integral in (5.2) can be computed over
any 2π-wide interval on the real line (i.e. between 0 and 2π, for instance). In general, the
relation between a sequence x[n] and its DTFT X(ejω) will be indicated case by

x[n]
DTFT←→ X(ejω)

While the DFT and DFS were signal transformation which involved only a finite num-
ber of quantities, both the infinite summation and the real-valued argument appearing in
the DTFT can create an uneasiness which overshadows the conceptual similarities between
the transforms. In the following, we will start by defining the mathematical properties of
the DTFT and we will try to build an intuitive feeling for this Fourier representation both
with respect to its physical interpretation and to its conformity to the “change of basis”
framework we used for the DFT and DFS.

Mathematically, the DTFT is a transform operator which maps discrete-time sequences
into the space of 2π-periodic functions. Clearly, for the DTFT to exist, the sum in (5.1)
must converge, i.e., the limit for M →∞ of the partial sum

XM (ejω) =

M∑

n=−M

x[n]e−jwn (5.3)

must exist and be finite. Convergence of the partial sum in (5.3) is very easy to prove for
absolutely summable sequences, that is for sequences satisfying

lim
M→∞

=

M∑

n=−M

|x[n]| <∞ (5.4)

since

|XM (ejω)| ≤
M∑

n=−M

|x[n]e−jwn| =
M∑

n=−M

|x[n]| (5.5)

For this class of sequences it can be also proved that the convergence of XM (ejω) to X(ejω)
is uniform and that X(ejω) is continuous. While absolute summability is a sufficient
condition, it can be also shown that the sum in (5.3) is convergent for all square-summable
sequences, i.e., for sequences whose energy is finite; this is very important to us with
respect to the discussion in Section 4.4.3, where we defined the Hilbert space l2(Z). In the
case of square summability only, however, the convergence of (5.3) is no longer uniform
but takes place only in the mean-square sense, i.e.,

lim
M→∞

∫ π

−π
|XM (ejω)−X(ejω)|2dω = 0. (5.6)
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Convergence in the mean square sense implies that, while the total energy of the error
signal becomes zero, the pointwise values of the partial sum may never approach the values
of the limit. One manifestation of this odd behavior is called the Gibbs phenomenon, which
will have important consequences in our approach to filter design, as we will see later.
Furthermore, in the case of square-summable sequences, X(ejω) is no longer guaranteed
to be continuous.

5.1 The DTFT as the Limit of a DFS

A way to gain some intuition about the structure of the DTFT formulas is to consider the
DFS of periodic sequences with longer and longer period. Intuitively, as we look at the
structure of the Fourier basis for the DFS, we can see that the number of basis vectors
in (3.19) grows with the length of the period, N , and, consequently, the frequencies of the
underlying complex exponentials become “denser” between 0 and 2π. We want to show
that, in the limit, we end up with the reconstruction formula of the DTFT.

To do so, let us restrict ourselves to the domain of absolute summable sequences; for
these sequences we know that the sum in (5.1) exists. Now, given an absolutely summable
sequence x[n], we can always build an N -periodic sequence x̃[n] as

x̃[n] =
∞∑

i=−∞

x[n + iN ] (5.7)

for any value of N ; this is guaranteed by the fact that the above sum converges for all
n ∈ Z (because of the absolute summability of x[n]) so that all values of x̃[n] are finite.
Clearly, there is overlap between successive copies of x[n]; the intuition, however, is the
following: since in the end we will consider very large values for N and since x[n] decays
rather fast with n (because of its absolute summability),the resulting overlap of “tails”
will be negligible. In other words, we have

lim
N→∞

x̃[n] = x[n].

Consider now the DFS of x̃[n]:

X̃ [k] =
N−1∑

n=0

x̃[n]e−j 2π
N

nk

=

N−1∑

n=0

(
∞∑

i=−∞

x[n + iN ]

)

e−j 2π
N

nk

=

∞∑

i=−∞

(
N−1∑

n=0

x[n + iN ]e−j 2π
N

(n+iN)k

)

(5.8)
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where in the second equality we have used (5.7), and the last term is obtained by in-
terchanging the order of the summation and exploiting the fact that e−j(2π/N)(n+iN)k =
e−j(2π/N)nk. We can see that, for every value of i in the outer sum, the argument of the
inner sum varies between iN and iN + N − 1, i.e., non-overlapping intervals which cover
all the integer numbers, so that the double summation can be simplified as

X̃[k] =

∞∑

m=−∞

x[m]e−j 2π
N

mk, (5.9)

and therefore

X̃[k] = X(ejω)|ω= 2π
N

k. (5.10)

This already gives us a noteworthy piece of intuition: the DFS coefficients for the peri-
odized signal are a discrete set of values of its DTFT (here considered solely as a formal
operator) computed at multiples of 2π/N . As N grows, the spacing between these fre-
quency intervals narrows more and more so that, in the limit, the DFS converges to the
DTFT.

To see that this assertion is consistent, we can now write the DFS reconstruction
formula (3.20) and using the DFS values given by (5.10)

x̃[n] =
1

N

N−1∑

k=0

X(ej 2π
N

k)ej 2π
N

nk. (5.11)

By defining ∆ = (2π/N), we can rewrite the above expression as

x̃[n] =
1

2π

N−1∑

k=0

X(ej(k∆))ej(k∆)n∆ (5.12)

and the summation is easily recognized as the Riemann sum with step ∆ approximating
the integral of f(ω) = X(ejω)ejωn between 0 and 2π. As N goes to infinity (and therefore
x̃[n]→ x[n]), we can therefore write

x̃[n]→ 1

2π

∫ 2π

0
X(ejω)ejωndω (5.13)

which is indeed the DTFT reconstruction formula (5.2)1.

Example 5.1 Consider the signal x[n] shown in Fig. 5.1. We can build a periodic signal
with period N = 3 based on x[n] which is shown in Fig. 5.2.

1Clearly (5.13) is equivalent to (5.2) in spite of the different integration limits since all the quantities
under the integral sign are 2π-periodic and we are integrating over a period.
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Figure 5.1: x[n]

Figure 5.2: x̃[n],N = 3

5.2 The DTFT as a Formal Change of Basis

We will now show that, if we are willing to sacrifice mathematical rigor, the DTFT can be
cast in the same conceptual framework we used for the DFT and DFS, namely as a basis
change in a vector space. The following formulas are to be taken as nothing more than
a set of purely symbolic derivations, since the mathematical hypotheses under which the
results are well defined are far from obvious and are completely hidden by the formalism.
It is only fair to say, however, that the following expressions represent a very handy and
intuitive toolbox to grasp the essence of the duality between the discrete-time and the
frequency domains and that they can be put to use very effectively to derive quick results
when manipulating sequences.

One way of interpreting equation (5.1) is to see that, for any given value ω0, the
corresponding value of the DTFT is the inner product in l2(Z) of the sequence x[n] with
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the sequence ejω0n; at least formally, we are still performing a projection in a vector space
akin to C∞

X(ejω) = 〈ejωn, x[n]〉.

Here, however, the set of “basis vectors” {ejωn}ω∈R is indexed by the real variable ω and
is therefore uncountable. This uncountability is mirrored in the inversion formula (5.2),
in which the usual summation is replaced by an integral; in fact, the DTFT operator
maps l2(Z) onto L2([−π, π]) which is a space of 2π-periodic, square integrable functions.
This interpretation preserves the physical meaning given to the inner products in (5.1) as
a way to measure the frequency content of the signal at a given frequency; in this case
the number of oscillators is infinite and their frequency separation becomes infinitesimally
small.

To complete the picture of the DTFT as a change of basis, we want to show that, at
least formally, the set {ejωn}ω∈R constitutes an orthogonal “basis” for l2(Z)2. In order to
do so we need to introduce a quirky mathematical entity called the Dirac delta functional;
this is defined in an implicit way by the following formula

∫ ∞

−∞
δ(t− τ)f(t)dt = f(τ) (5.14)

where f(t) is an arbitrary integrable function on the real line; in particular:

∫ ∞

−∞
δ(t)f(t)dt = f(0). (5.15)

While no ordinary function satisfies the above equation, δ(t) can be interpreted as a short-
hand for a limiting operation. Consider for instance the family of parametric functions3

rk(t) = k rect(kt) (5.16)

which are plotted in Figure 5.3. For any continuous function f(t) we can write

∫ ∞

−∞
rk(t)f(t)dt = k

∫ 1/2k

−1/2k
f(t)dt = f(γ)|γ∈[−1/2k,1/2k] (5.17)

2You can see here already why this line of thought is shaky: indeed, ejωn 6∈ l2(Z)!
3The rect function is introduced in its full glory in Section 7.7.1; it is defined as

rect(x) =

8

>

>

<

>

>

:

1 for |x| ≤ 1/2

0 otherwise
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Figure 5.3: The Dirac delta as the limit of a family of rect functions.

where we have used the mean value theorem. Now, as k goes to infinity we have that
the integral converges to f(0) and so we can say that the limit of the series of functions
rk(t) converges then to the Dirac delta. The delta, as we said, cannot be considered as
a proper function so the expression δ(t) outside of an integral sign has no mathematical
meaning; it is customary however to associate an “idea” of function to the delta and we
can think of it as being undefined for t 6= 0 and to have a value of ∞ at t = 0. This
interpretation, together with (5.14), defines the so-called shifting property of the Dirac
delta; this property allows us to write (outside of the integral sign)

δ(t − τ)f(t) = f(τ)δ(t− τ) (5.18)

The physical interpretation of the Dirac delta is related to quantities expressed as contin-
uous distributions for which the most familiar example is probably that of a probability
distribution (pdf). These functions represents a value which makes physical sense only
over an interval of nonzero measure; the punctual value of a distribution is only an abstrac-
tion. The Dirac delta is the operator that extracts this punctual value from a distribution,
in a sense capturing the essence of considering smaller and smaller observation intervals.

To see how the Dirac delta applies to our basis expansion, note that equation (5.14)
is formally identical to an inner product over the space of functions on the real line; by
using the definition of such an inner product we can therefore write

f(t) =

∫ ∞

−∞
〈δ(s − τ), f(s)〉 δ(t− τ)dτ (5.19)

which is in turn formally identical to the reconstruction formula of Section 4.4.3. In reality,
since DTFT’s live in the space of 2π-periodic functions, we are interested in this space.
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This is easily accomplished by building a 2π-periodic version of the delta as

δ̃(ω) = 2π

∞∑

k=−∞

δ(ω − 2πk). (5.20)

where the leading 2π factor is for later convenience. The resulting object is called a pulse
train, similarly to what we built for the case of periodic sequences in C̃N . Using the pulse
train and given any 2π-periodic function f(ω), the reconstruction formula (5.19) becomes:

f(ω) =
1

2π

∫ σ+2π

σ
〈δ̃(θ − φ), f(θ)〉 δ̃(ω − φ)dφ (5.21)

for any σ ∈ R.
Now that we have the delta notation in place, we are ready to start. First of all, we

will show the formal orthogonality of the basis functions {ejωn}ω∈R. We can write

1

2π

∫ π

−π
δ̃(ω − ω0)e

jωndω = ejω0n. (5.22)

The left-hand side of this equation has the exact form of the DTFT reconstruction for-
mula (5.2), and so we have found the the fundamental relationship

ejω0n DTFT←→ δ̃(ω − ω0). (5.23)

Recall our change of basis interpretation in which the DTFT of a complex exponential
ejσn is simply the inner product 〈ejωn, ejσn〉. Therefore, (5.23) implies

〈ejωn, ejσn〉 = δ̃(ω − σ). (5.24)

We will now recall for the last time that the delta notation subsumes a limiting op-
eration; the DTFT pair (5.23) should be interpreted as a shorthand for the limit of the
partial sums

sk(ω) =
k∑

n=−k

e−jωn

(where we have chosen ω0 = 0 for the sake of example). Figure 5.4 plots |sk(ω)| for
increasing values of k (we show only the [−π, π] interval, although of course the functions
are 2π-periodic). The family of functions sk(ω) is exactly equivalent to the family of
rk(t)’s we saw in (5.16) in the sense that they also become narrower and narrower while
keeping a constant area (which turns out to be 2π). That is why we can say simply that
sk(ω)→ δ̃(ω).
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Figure 5.4: Plot of the function |
∑k

n=−k e−jωn| for different values of k.

From (5.23) we can easily obtain other interesting results; by setting ω0 = 0 and by
exploiting the linearity of the DTFT operator we can derive the DTFT of a constant
sequence as

α
DTFT←→ αδ̃(ω); (5.25)

for any arbitrary α ∈ R. The DTFT’s of sinusoidal functions are also derived using Euler’s
formulas,

cos(ω0n + φ)
DTFT←→ 1

2

[

ejφδ̃(ω − ω0) + e−jφδ̃(ω + ω0)
]

, (5.26)

sin(ω0n + φ)
DTFT←→ − j

2

[

ejφδ̃(ω − ω0)− e−jφδ̃(ω + ω0)
]

. (5.27)

As we can see from the above examples, we are defining the DTFT for sequences which
are not even square summable; again, these transforms are purely a notational formalism
used to capture a behavior in the limit as we showed before.

5.3 Relationships Between Transforms

We will conclude this section on the DTFT by showing that the DTFT is the most general
type of Fourier transform for discrete-time signals. Consider a length-N signal x[n] and
its N -DFT coefficients X[k]; consider also the sequences obtained from x[n] either by
periodization or by building a finite-support sequence. The computation of the DTFT’s
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of these sequences will highlight the relationships linking the three types of discrete-time
transforms we have seen so far.

Periodic Sequences. Given a length-N signal x[n], n = 0, . . . ,N − 1, consider the
associated N -periodic sequence x̃[n] = x[n mod N ] and its N DFS coefficients X[k]. If
we write the analysis DTFT formula for x̃[n] we have

X̃(ejω) =

∞∑

n=−∞

x̃[n]e−jωn

=
∞∑

n=−∞

(

1

N

N−1∑

k=0

X[k]ej 2π
N

nk

)

e−jωn (5.28)

=
1

N

N−1∑

k=0

X[k]

(
∞∑

n=−∞

ej 2π
N

nke−jωn

)

, (5.29)

where in (5.28) we have used the DFS reconstruction formula. Now it is immediate
to recognize in the last term of (5.29) as the DTFT of a complex exponential of fre-
quency (2π/N)k; we can therefore write

X̃(ejω) =
1

N

N−1∑

k=0

X[k]δ̃(ω − 2π

N
k), (5.30)

which gives the relationship between the DTFT and the DFS. If we restrict ourselves to
the [−π, π] interval, we can see that the DTFT of a periodic sequence is a series of regularly
spaced deltas placed at the N roots of unity and whose amplitude is proportional to the
DFS coefficients of the sequence. In other words, the DTFT of a priodic sequence is
uniquely determined by its DFS and vice versa.

Finite-Support Sequences. Given a length-N signal x[n], n = 0, . . . ,N − 1 and its N
DFT coefficients X[k], consider the associated finite-support sequence

x̄[n] =







x[n] 0 ≤ n < N,

0 otherwise.

;
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We can easily derive the DTFT of x̄ as

X̄(ejω) =

∞∑

n=−∞

x̄[n]e−jωn =

N−1∑

n=0

x[n]e−jωn

=

N−1∑

n=0

(

1

N

N−1∑

k=0

X[k]ej 2π
N

kn

)

e−jωn

=
N−1∑

k=0

X[k]

(

1

N

N−1∑

n=0

e−j(ω− 2π
N

k)n

)

=

N−1∑

k=0

X[k]Λ(ω − 2π

N
k) (5.31)

with

Λ(ω) =
1

N

N−1∑

n=0

e−jωn.

What the above expression means is that the DTFT of the finite support sequence x̄[n] is
again uniquely determined by the N -DFT coefficients of the finite-length signal x[n] and it
can be obtained by a simple Lagrangian interpolation. As in the previous case, the values
of DTFT at the roots of unity are equal to the DFT coefficients; note, however, that the
transform of a finite support sequence is very different from the DTFT of a periodized
sequence. The latter, in accordance with the definition of the Dirac delta, is defined only
in the limit and for a finite set of frequencies; the former is just a (smooth) interpolation
of the DFT.

5.4 Properties of the DTFT

The DTFT possesses the following properties.

Symmetries & Structure. The DTFT of a time-reversed sequence is

x[−n]
DTFT←→ X(e−jω) (5.32)

while, for the complex conjugate of a sequence we have

x∗[n]
DTFT←→ X∗(e−jω). (5.33)
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For the very important case of a real sequence x[n] ∈ R we have that the DTFT is
conjugate-symmetric:

X(ejω) = X∗(e−jω) (5.34)

which leads to the following symmetries (again, only for real signals)

|X(ejω)| = |X(e−jω)| the magnitude is symmetric (5.35)

∡X(ejω) = −∡X(e−jω) the phase is antisymmetric (5.36)

Re{X(ejω)} = Re{X(e−jω)} the real part is symmetric (5.37)

Im{X(ejω)} = −Im{X(e−jω)} the imaginary is antisymmetric (5.38)

Finally, if x[n] is real and symmetric, then the DTFT is real.

x[n] ∈ R, x[−n] = x[n]⇐⇒ X(ejω) ∈ R, (5.39)

while, for real antisymmetric signals we have that the DTFT is purely imaginary.

x[n] ∈ R, x[−n] = −x[n]⇐⇒ Re{X(ejω)} = 0. (5.40)

Linearity & Shifts. The DTFT is a linear operator:

αx[n] + βy[n]
DTFT←→ αX(ejω) + βY (ejω). (5.41)

A shift in the discrete-time domain leads to multiplication by a phase term in the frequency
domain:

x[n− n0]
DTFT←→ e−jωn0X(ejω), (5.42)

while multiplication of the signal by a complex exponential (i.e. signal modulation by a
complex “carrier” at frequency ω0) leads to

ejω0nx[n]
DTFT←→ X(ej(ω−ω0)), (5.43)

which means that the spectrum is shifted by ω0. This last result is known as the Modulation
Theorem.

Modulation Property.

x[n]y[n]
DTF T←→ 1

2π

∫ π

−π
X
(

ejθ
)

Y
(

ej(ω−θ)
)

dθ
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Proof:

∑

n

y[n]x[n]e−jωn =
∑

n

y[n]
1

2π

∫ π

−π
X
(

ejθ
)

ejθndθ e−jωn

=
1

2π

∫ π

−π
X
(

ejθ
)∑

n

y[n]e−j(ω−θ)ndθ =
1

2π

∫ π

−π
X
(

ejθ
)

Y
(

ej(ω−θ)
)

dθ

Planchard-Parseval equality.

∞∑

n=−∞

x∗[n]y[n] =
1

2π

∫ π

−π
X∗
(
ejω
)
Y
(
ejω
)
dω

or 〈x,y〉 =
1

2π
〈X,Y 〉

Proof: From the modulation property, we have

z[n] = x∗[n]y[n]
DTF T←→ Z

(
ejω
)

=
1

2π

∫ π

−π
X∗
(

e−jθ
)

Y
(

ej(ω−θ)
)

dθ

=⇒
∑

n

x∗[n]y[n] =
∑

n

z[n] = Z
(
ejω
)
∣
∣
∣
∣
ω=0

=
1

2π

∫ π

−π
X∗
(

e−jθ
)

Y
(

e−jθ
)

dθ

=
1

2π

∫ π

−π
X∗
(

ejθ
)

Y
(

ejθ
)

dθ

Energy Conservation. The DTFT satisfyes following equality

∞∑

n=−∞

|x[n]|2 =
1

2π

∫ π

−π
|X(ejω)|2dω (5.44)

which establishes the conservation of energy property between the time and the frequency
domains. The above equality is known as the Parseval’s Theorem.

Example 5.2



124 Chapter 5.

a) Determine the DTFT of the sequence

x [n] =







A 0 ≤ n ≤ L− 1,

0 otherwise.

b) Give an approximate plot of the magnitude and phase of the spectrum (feel free to
use MATLAB; create a sequence x [n] of length N = 1000 for example, use fft to
compute the N -point DFT and set A = 1 and L = 5, check out the commands abs

and angle).

Solution:

a) First, we calculate the DTFT of x [n] as follows:

X(ejω) =
L−1∑

n=0

Ae−jωn = A
1− e−jωL

1− e−jω
= Ae−j(ω

2
)(L−1) sin(ωL/2)

sin(ω/2)
.

b) The amplitude and phase of X(ω) are given by:

|X(ejω))| =







|A|L if ω = 0,

|A|| sin(ωL/2)
sin(ω/2) | otherwise.

∠X(ejω)) = ∠A− (ω/2)(L − 1) + ∠
sin(ωL/2)
sin(ω/2) ,

where we should remember that the phase of a real quantity is zero if the quantity is
positive and π if it is negative. The amplitude and phase are plotted in Figure 5.5.

5.5 Summary

This chapter introduced the concept of the discrete-time Fourier Transform. Here is a
table of common transforms.
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Figure 5.5: Amplitude and phase of X(ejω)

Some DTFT pairs:

x[n] = δ[n− k] X(ejω) = e−jωk

x[n] = 1 X(ejω) = δ̃(ω)

x[n] = u[n] X(ejω) =
1

1− e−jω
+

1

2
δ̃(ω)

x[n] = anu[n] |a| < 1 X(ejω) =
1

1− ae−jω

x[n] = ejω0n X(ejω) = δ̃(ω − ω0)

x[n] = cos(ω0n + φ) X(ejω) = (1/2)[ejφδ̃(ω − ω0) + e−jφδ̃(ω + ω0)]

x[n] = sin(ω0n + φ) X(ejω) = (−j/2)[ejφδ̃(ω − ω0)− e−jφδ̃(ω + ω0)]

x[n] =







1 for 0 ≤ n ≤ N − 1

0 otherwise

X(ejω) =
sin((N/2)ω)

sin(ω/2)
e−j N−1

2
ω
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5.6 Problems

Problem 5.1 Let x[n] and y[n] be two complex valued sequences and X(ejw) and Y (ejw)
be their corresponding DTFTs.

(a) Show that

〈x[n], y[n]〉 =
1

2π
〈X(ejw), Y (ejw)〉,

where we use the inner products for l2(Z) and L2([−π, π]) respectively.

(b) What is the physical meaning of the above formula when x[n] = y[n] ?

Problem 5.2 (DFT and DTFT) Consider the infinite non-periodic sequence

x[n] =







0 n < 3
1 3 ≤ n < 10
−1 10 ≤ n < 15
0 n ≥ 15.

(a) Derive the DTFT X(ejw) of x[n]. (Don’t use MATLAB.)

(b) Use MATLAB to plot the magnitude of X(ejw) for 1000 points in the interval [0, 2π].

(c) In MATLAB, use fft function with N = 20 to compute the DFT of x[n]. Compare
this plot to one obtained in (b).

(d) Repeat part (c) for N = 50, 100, 1000. What can you conclude?

(e) Can you prove your your conclusion analytically?

Problem 5.3 Let x[n] be a discrete-time sequence defined as

x[n] =







M − n 0 ≤ n ≤M,
M + n −M ≤ n ≤ 0,
0 otherwise.

for some odd integer M.

(a) Show that x[n] can be express as the convolution of two discrete-time sequences x1[n]
and x2[n]. Check your result with MATLAB for M = 11.

(b) Using the results found in (a), compute the DTFT of x[n].
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Problem 5.4 Consider the system H implementing the input-output relation y[n] = H{x[n]} =
x2[n].

(a) Prove by example that the system is nonlinear.

(b) Prove that the system is time-invariant

Now consider the following cascade system:

x[n] H G v[n]
y[n]

where G is the following ideal highpass filter:

G(ejω) =

{
0 for |ω| < π/2
2 otherwise

(as per usual, G(ejω) is 2π-periodic (i.e., prolonged by periodicity outside of [−π, π])).
The output of the cascade is therefore v[n] = G{H{x[n]}}.

(c) Compute v[n] when x[n] = cos(ω0n) for ω0 = 3π/8. How would you describe the
transformation operated by the cascade on the input?

(d) Compute v[n] as before, with now ω0 = 7π/8
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