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Chapter 0

Mathematical Prerequisites

0.1 Complex Numbers

Complex number is a number of the form a + bi, where a and b are real numbers, and i is
the imaginary unit, with the property i2 = −1. The real number a is called the real part
of the complex number, and the real number b is the imaginary part. When the imaginary
part b is 0, the complex number is just the real number a.

For example, 3 + 2i is a complex number, with real part 3 and imaginary part 2. If
z = a+bi, the real part (a) is denoted Re(z), and the imaginary part (b) is denoted Im(z).

Complex numbers can be added, subtracted, multiplied, and divided like real numbers,
but they have additional elegant properties. For example, real numbers alone do not
provide a solution for every polynomial algebraic equation with real coefficients, while
complex numbers do (the fundamental theorem of algebra).

In some fields (in particular, electrical engineering and electronics, where i is a symbol
for current), complex numbers are written as a + bj.

0.1.1 Operations on Complex Numbers

The set of all complex numbers is usually denoted as C. The additions, substractions and
multiplications of complex numbers follow the associative, commutative and distributive
laws of algebra. Combining the latter properties with the equation i2 = −1, it is easy to
see that:

(a + bi) + (c + di) = (a + c) + (b + d)i (0.1)

(a + bi) − (c + di) = (a − c) + (b − d)i (0.2)

(a + bi)(c + di) = ac + bci + adi + bdi2 = (ac − bd) + (bc + ad)i (0.3)

9



10 Chapter 0.

0.1.2 The Complex Number Field

Formally, the complex numbers can be defined as ordered pairs of real numbers (a, b)
together with the operations:

(a, b) + (c, d) = (a + c, b + d) (0.4)

(a, b) · (c, d) = (ac − bd, bc + ad) (0.5)

So defined, the complex numbers form a field, the complex number field, denoted by C.

Since a complex number a + bi is uniquely specified by an ordered pair (a, b) of real
numbers, the complex numbers are in one-to-one correspondence with points on a plane,
called the complex plane.

We identify the real number a with the complex number (a, 0), and in this way the
field of real numbers R becomes a subfield of C. The imaginary unit i is the complex
number (0, 1).

In C, we have:

• additive identity (”zero”): (0, 0)

• multiplicative identity (”one”): (1, 0)

• additive inverse of (a, b) : (−a,−b)

• multiplicative inverse (reciprocal) of non-zero (a, b):
(

a
a2+b2

, −b
a2+b2

)

0.1.3 The Complex Plane

A complex number z = a + bi can be viewed as a point or a position vector on a two-
dimensional Cartesian coordinate system called the complex plane. The Cartesian coor-
dinates of the complex number are the real part a and the imaginary part b, while the
polar coordinates are r = |z|, called the absolute value or modulus, and φ = arg(z), called
the complex argument of z (mod-arg form). Together with Euler’s formula we have (see
figure 0.1)

z = a + bi = r(cos ϕ + i sin ϕ) = reiϕ (0.6)



0.1. Complex Numbers 11

Figure 0.1: Complex plane representation

It is easy to see that:

r = |z| =
√

a2 + b2 (0.7)

tanϕ =
b

a
(0.8)

cosϕ =
eiϕ + e−iϕ

2
(0.9)

sinϕ =
eiϕ − e−iϕ

2i
(0.10)

By simple trigonometric identities, we see that

r1e
iϕ1 · r2e

iϕ2 = r1r2e
i(ϕ1+ϕ2) (0.11)

and that

r1e
iϕ1

r2eiϕ2
=

r1

r2
ei(ϕ1−ϕ2). (0.12)
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This gives you an easy way to calculate the powers and the roots of complex numbers. Pay
attention to the fact that reiϕ = rei(ϕ+2kπ), k ∈ Z, so (reiϕ)1/N = r1/Nei(ϕ+2kπ)/N ,k =
0, 1, ...,N − 1.

Now the addition of two complex numbers is just the vector addition of two vectors,
and the multiplication with a fixed complex number can be seen as a simultaneous rotation
and stretching.

Multiplication with i corresponds to a counter clockwise rotation by 90 degrees (π/2
radians). The geometric content of the equation i2 = −1 is that a sequence of two 90
degree rotations results in a 180 degree (π radians) rotation. Even the fact (-1) (-1) =
+1 from arithmetic can be understood geometrically as the combination of two 180 degree
turns.

0.1.4 Absolute Value, Conjugation and Distance

One can check readily that the absolute value has three important properties:

|z| = 0 if and only if z = 0 (0.13)

|z + w| ≤ |z| + |w| (triangle inequality) (0.14)

|zw| = |z| · |w| (0.15)

for all complex numbers z and w. It then follows, for example, that |1| = 1 and |z/w| =
|z|/|w| . By defining the distance function d(z,w) = |z−w| we turn the complex numbers
into a metric space and we can therefore talk about limits and continuity. The addition,
subtraction, multiplication and division of complex numbers are then continuous opera-
tions. Unless anything else is said, this is always the metric being used on the complex
numbers.

The complex conjugate of the complex number z = a+ib is defined to be a−ib, written
as z̄ or z∗. z̄ is the ”reflection” of z about the real axis. The following can be checked:

z + w = z̄ + w̄ (0.16)

zw = z̄w̄ (0.17)

(z/w) = z̄/w̄ (0.18)

¯̄z = z (0.19)

z̄ = z if and only if z is real (0.20)

|z| = |z̄| (0.21)

|z|2 = zz̄ (0.22)

z−1 = z̄|z|−2 if z is non − zero. (0.23)
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The latter formula is the method of choice to compute the inverse of a complex number if
it is given in rectangular coordinates.

That conjugation commutes with all the algebraic operations (and many functions;
e.g. sin z̄ = sin z) is rooted in the ambiguity in choice of i (-1 has two square roots).

0.2 Summations

Let f be a function whose domain includes the integers from n through m. We define

m
∑

i=n

f(i) = f(n) + f(n + 1) + ... + f(m) (0.24)

We call i the index of summation,n is the lower limit of summation, and m is the upper
limit of summation. One can show that:

n
∑

k=1

c = c + c + ... + c = cn (0.25)

n
∑

k=1

k = 1 + 2 + ... + n =
n(n + 1)

2
(0.26)

n
∑

k=1

k2 = 1 + 4 + ... + n2 =
n(n + 1)(2n + 1)

6
(0.27)

(0.28)

Another well-known result is the following:

Sn =
n

∑

k=0

rk = 1 + r + r2 + ... + rn =

{

1−rn+1

1−r if r 6= 1

n + 1 else
(0.29)

Note that when r < 1:

lim
n→+∞

Sn =
1

1 − r
(0.30)

Additionally, be very cautious when taking squares of summations:

[

m
∑

i=n

f(i)

]2

=

[

m
∑

l=n

f(l)

][

m
∑

k=n

f(k)

]

=

m
∑

l=n

m
∑

k=n

f(l)f(k) (0.31)

Finally, let’s SN =
∑N

n=1 an and S = limN→+∞ SN . If the sequence of partial sums is
divergent (i.e. either the limit does not exist or is infinite) then we call the series divergent.
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if |S| = c < ∞, we call the series convergent and we call S the sum or value of the series.
The Cauchy convergence criterion states that a series

∑∞
n=1 an converges if and only if the

sequence of partial sums is a Cauchy sequence. This means that for every ε > 0, there is
a positive integer N such that for all n ≥ m ≥ N we have:

∣

∣

∣

∣

∣

n
∑

k=m

ak

∣

∣

∣

∣

∣

< ε (0.32)

which is equivalent to

lim
n→∞

m→∞

n+m
∑

k=n

ak = 0 (0.33)

0.3 Integration

Besides being comfortable with the basic properties of integrals and methods for integra-
tion (e.g. substitution, integration by parts) it is important to know the definition and
basic properties of the convolution integral.

The convolution between two functions f and g, both with domain R, is itself a func-
tion, let’s call it h, and is defined by

h(x) := f(x) ∗ g(x) =

∫

R

f(y)g(x − y)dy.

The following properties are easy to show:

• f(x) ∗ g(x) = g(x) ∗ f(x).

• f(x) ∗ (g(x) ∗ h(x)) = (f(x) ∗ g(x)) ∗ h(x).

• f(x) ∗ (α · g(x) + β · h(x)) = α · f(x) ∗ g(x) + β · f(x) ∗ h(x).

0.4 Linear Algebra

0.4.1 Matrices

Let A be a matrix with n rows and m colums of complex entries. That is, we have

A :=











A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m
...

...
. . .

...
An,1 An,2 . . . An,m











,
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Ai,j ∈ C.

One of the basic operations on A is taking the transpose, denoted by AT and defined
as

(

AT
)

i,j
= Aj,i, i = 1, . . . , n, j = 1, . . . ,m. More explicitely we have

AT =











A1,1 A2,1 . . . An,1

A1,2 A2,2 . . . An,2
...

...
. . .

...
A1,m A2,m . . . Am,n











.

The conjugate transpose of A, denoted by A∗, is defined as (A∗)i,j = A∗
j,i. Besides taking

the transpose of A we take the complex conjugate of each element. Note that A∗ is also
known as the Hermitian of A.

Based on the above operations we define symmetric and Hermitian matrices. A real
matrix A is symmetric if AT = A, a (complex) matrix is Hermitian if A∗ = A.

The matrix A can be right multiplied with a m by p matrix, say B, resulting in a n by
p matrix. Remember that matrix multiplication is defined by (AB)i,j =

∑m
k=1 Ai,kBk,j.

Note that matrix multiplication is not commutative, i.e. AB 6= BA (assuming
n = m).

0.4.2 Vectors

Let c and d be length n resp. m vectors, i.e. c = [c1, c2, . . . , cn] and d = [d1, d2, . . . , dm].
We will usually assume that vectors are column vectors. This allows us to right multiply
our matrix A with vector d. The result Ad is a length n vector. Similarly bT A gives a
length m row vector.

The inner product between two n length vectors a and b is defined by

〈a, b〉 :=

n
∑

i=1

aibi = aT b.

Note that matrix multiplication is nothing more than taking inner products between rows
and columns of the two matrices. The most common way to define the norm of a vector
is through the inner product. This gives that the norm of x, ‖x‖2 is defined as

‖x‖2 = 〈x, x〉1/2 .

A very useful relation is the Cauchy-Schwartz inequality, which states that

| 〈x, y〉 | ≤ ‖x‖2‖y‖2.
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0.4.3 Determinants

One of the most used properties of a matrix is it’s determinant. The determinant of a 2
by 2 matrix

A =

[

a b
c d

]

is given by
det(A) = ad − bc.

In general for a square n by n matrix A we have, for any row i = 1, . . . , n

det(A) =

n
∑

j=1

Ai,j(−1)i+j det
(

A\(i,j)
)

,

where A\(i,j) is the resulting matrix after removing row i and column j from matrix A.
We can also expand along any column j = 1, . . . ,m, which gives us

det(A) =

n
∑

i=1

Ai,j(−1)i+j det
(

A\(i,j)
)

.

An important result to keep in mind is that

a matrix is invertible if and only if it’s determinant is not equal to zero.

Finally, we note the following basic relations:

• det(AB) = det(A) det(B).

• det
(

A−1
)

= det (A)−1.

• det(A∗) = det(A)∗.

0.4.4 Eigenvalues and Eigenvectors

The eigenvalues of a matrix A are the solutions for λ in the equation

det(A − λI) = 0,

which is called the characteristic equation. Given that λ̃ is an eigenvalue of A, we call the
vector x for which

Ax = λ̃x.

the eigenvector corresponding to λ̃.
One can verify that the eigenvalues of A and A∗ are the same. The eigenvectors for a

matrix and it’s conjugate transpose are however different.
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0.5 Problems

Problem 0.1 1. Let s[n] := 1
2n + j 1

3n . Compute
∑∞

n=1 s[n].

2. Same question with s[n] := ( j
3)n.

3. Characterize the set of complex numbers satisfying z∗ = z−1.

4. Find 3 complex numbers {z0, z1, z2} which satisfy z3
i = 1, i = 1, 2, 3.

5. What is the following infinite product
∏∞

n=1 ejπ/2n

?

Problem 0.2 (Geometric Series) Consider the sequence x[n] = a · rn for some real r.
Let S[n] =

∑n
k=0 x[k].

(a) The goal is to find a closed expression for S[n].

• Compare the two sequences S[n] and S[n + 1].

• Multiply each term in S[n] by r and obtain S̃[n] = rS[n]. Compare S̃[n] to
S[n + 1].

• We have obtained a system of two equations in the unknowns S[n] and S[n+1].
Solve this system and find the expression of S[n] in terms of a, r and n.

(b) Let |r| < 1 and find S[n] when n goes to infinity, i.e., S =
∑∞

k=0 x[k].

(c) Find an expression for the summation
∑m

k=n+1 x[k].

(d) Apply the obtained formula and compute
∑∞

k=0 t[k], where t[k] = 1
3k + ( 1

2j )
k.

(e) How can we use this formula to compute Π∞
n=1e

jπ/2n

?

Problem 0.3 (Complex Numbers) (a) Find all the roots of x3 + 2x2 + 2x + 1 = 0.
What is the summation of the roots?
Hint: Try to check small integers and find one of the roots and then solve the re-
maining degree 2 polynomial

(b) Compute jj , where j =
√
−1.

(c) Consider the polar representation of the complex numbers and find all which satisfy
arg(z) = |z|. (Note that 0 ≤ arg(z) ≤ 2π)

(d) Characterize the set of complex numbers satisfying z∗ = z−1.
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Problem 0.4 (Linear Algebra) (a) Compute the determinant for the following ma-
trix.

A =









2 0 −1 0
1 0 2 1
0 0 2 1
−1 −3 2 0









.

(b) Consider the matrices

B =









j −1 4
0 2 − 3j 1
−1 2j 0
3 0 4 − j









C =





0 0 j 1
1 − 5j 1 4j 2 + 2j

1 3 − j 0 −7



 .

Which of the following operations are well-defined (Note that you do NOT have to
compute)? C + B, C · A−1, B · C, A − C, B + BT , A + AT , C−1 · B−1, C∗ + B,

(c) Let x = [1, 2j, 1 + j, 0]. Compute AxT and xB.

(d) Compute the determinant of D = xxT and E = xT x.



Chapter 1

What Is Signal Processing ?

1.1 Introduction

As implied by the name, signal processing deals with signals on the one hand, and opera-
tions on signals on the other hand. That is, the “black box” view of signal processing is
as shown in this scheme:

Input Signal Processing Output Signal

The purpose of these notes is to understand what a signal is, how it relates to the world
around us, and how we can manipulate it. That is, we want to understand what to put
inside the “black box” of the previous figure in order to be able to treat relevant signals
from the real world, and produce output signals as required by applications, in particular
in the context of communication systems.

As stated above, the realm of signal processing might seem too vague, or too all-
encompassing. Any physical quantity evolving over time or space qualifies as a signal,
and any possible computation performed on such a signal is a signal processing operation.
That is, in many areas of applied sciences and engineering, people run what are essentially
“signal processing” algorithms, not always knowingly. Or, to paraphrase Molière’s Mon-
sieur Jourdain, many people “font du traitement du signal sans le savoir”. Our aim will
not be to claim as large a field as possible, but to clearly specify that there are many other
possible applications beyond those which we will study in detail; in our case, the focus will
be mostly on telecommunications and related fields in electrical engineering and computer

19
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sciences. Whenever relevant, we will also try to illustrate the overlapping between signal
processing and other scientific disciplines such as acoustics, statistics, geophysics, applied
and computational harmonic analysis, and so on.

The outline of this introductory chapter is as follows. First, we will showcase a “gallery
of signals”, from the floods of the Nile to the stock market, in order to point out the
common traits and the differences between various signals. Next we will describe a series
of prototypical “black box” systems, ranging from the very simple to the very complicated,
all of which perform some meaningful signal processing task. We will then discuss the
idea of an “underlying model” for a signal, which can be put to advantage in the design
of signal processing algorithms. We will then sketch a very brief history of modern signal
processing, highlighting the main achievements and their impact. Finally we will conclude
the chapter with an overview of the structure of these notes. But before moving on, we
need to introduce at some initial, elementary technical concepts, which will then be refined
along the way.

1.2 Elementary Concepts

Let Z, R, C denote the set of integer, real, and complex numbers respectively. Most real
world signals can be modeled as real or complex functions of one or more real arguments.
Signals of this type are called continuous-time signals and will be indicated by the familiar
lowercase notation used for real function, e.g. f(t), x(t), and so on. Signals which are
functions of a single real argument are called one-dimensional signal and in this case
the real argument usually represents time, while the signal is the evolution of a given
quantity (often an electrical signal) over time. Functions of two arguments are called
two-dimensional signals and the two arguments usually represent a coordinate pair in the
plane; this is for instance the case of a signal representing an image. For most continuous-
time signals, considered as functions on the real line, the Fourier transform (as defined
in the standard calculus course) is a well defined operator; we will indicate the Fourier
transform of a signal f(t) as F (jΩ).

A discrete-time signal is a sequence of numbers (real or complex) indexed by one or
more integer arguments. Again, a lower case letter will represent a given sequence but, in
order to make explicit the discrete nature of the argument, the latter is enclosed in square
brackets: f [n], x[n], and so on. This somewhat unusual notation is actually quite standard
in the signal processing literature. Now, discrete-time signals are very often obtained from
“sampling” a continuous-time signal. By sampling, we mean taking the value of a signal at
regular intervals, or integer multiples of a sampling period T . This process will be studied
in detail in Chapter 10, but we shall note right away that sampling a continuous-time
signal f(t) leads to a discrete-time signal f [n] (please note the round parenthesis and the
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square brackets):

f [n] = f(nT ) n ∈ Z (1.1)

where T is a real number greater than 0. A key question is of course whether we can recover
f(t) from its samples f [n], a question we will settle in the aforementioned Chapter 10. A
Fourier representation indeed exists for most discrete-time signals as well, and its study
will be the subject of Chapter 3. In general, the Fourier transform of a discrete-time
sequence f [n] will be indicated by F (ejω).

Sometimes, one considers a finite-length signal, with indexes 0 . . . N − 1 where N
denotes the length. It is then natural to consider such a signal as a vector in R

N or C
N ,

the N -dimensional real and complex Euclidean spaces. In such a case, we will use linear
algebra notation, that is, vectors will be denoted by lower case bold letters, e.g. f ,x, etc.
Linear transforms are given by matrices, denoted by bold upper case matrices, e.g. M. For
example, a finite-dimensional version for the Fourier transform, called the discrete Fourier
transform (DFT) and discussed in Section 3.3, will map an N -dimensional “signal” x into
its N -dimensional transform y with a special matrix W as:

y = W · x (1.2)

This concludes our elementary notations, where we have introduced three types of
objects central to signal processing; these are summarized in the Table 1.1, which will be
our rudimentary road map for the rest of the chapter.

Signal Type Time-domain Notation Frequency-domain Notation

Continuous-time x(t), t ∈ R X(jΩ)

Discrete-time x[n], n ∈ N X(ejω)

Finite-length x, x ∈ C
N X = Wx

Table 1.1: Fundamental signal types.

1.3 Examples of Signals

We will now present a series of signals drawn from our everyday experience. Most of
these are signals which are “processed” by our senses (hearing, vision). Others are more
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Figure 1.1: Speech signals. (a) Voiced sound, corresponding to the

sound “a”, (b) Unvoiced sound corresponding to “shh...”.

abstract and represent our analysis of real-world phenomena.

1.3.1 Speech

For a human being, the most natural signal is depicted in Figure 1.1. It is a speech signal
in two of its typical forms, i.e. voiced speech in part (a) and unvoiced speech in part
(b). It is fairly obvious from the picture that voiced sounds look almost periodic, while
unvoiced speech possesses a noise-like character. One fact is immediately obvious from
Figure 1.1: most of us would not recognize the vowel “a” or the sound “sh” from the plot
of the signal, yet all of us will instantly recognize the sounds when played to our ears.
Welcome to signal processing! A task which is trivial for the human ear and its attached
processor (the brain) becomes a very hard problem for a computer. In particular, computer
recognition of continuous speech (as opposed to isolated words like digits for example) from
an unknown speaker (that is, without training tuned for a particular speaker) is still an
open problem, even though a child can master it easily. Speech has fascinated signal
processing researchers for decades, and due to its obvious economical importance, vast
amounts of work have gone into ”understanding” the speech signal; the two main lines of
research involve studying speech production, i.e. how humans produce speech signals, and
speech recognition, i.e. how humans perceive and analyze speech.

Speech can clearly be modeled as a continuous-time signal, corresponding to sound
waves produced by the vocal cords and filtered by the trachea and mouth. Yet, most of



1.3. Examples of Signals 23

speech processing (except in “old” analog telephony) is done in discrete-time, typically at
a sampling rate of 8kHz, or a sampling interval of T = 0.125 ms. As we will see, such
sampling does not impair the signal very much, and is thus standard in “digital” telephony.

1.3.2 Music

Next to speech, musical sounds are the most ancient signals produced by humans. Fig-
ure 1.2 shows several examples of signals produced by musical instruments, ranging from
the “simplest” to the most “complex”. As quite obvious from looking at the picture (and
even more so by listening to the sound!), there is a wide variety of musical sounds, from the
simple, sinusoidal flute to the polyphonic complexity of a full orchestra. Music through the
ages has been about synthesizing interesting sounds, and signal processing has added many
new “instruments” to the toolbox in the last decades. From vocoders (to help aspiring
singers stay in tune...) to full blown synthesizers able to imitate almost any instrument to
near perfection, examples abound where sophisticated signal processing techniques create
“new sounds”. Most are based on prior fine analysis of actual instruments, in order to
best imitate them, while others are completely “artificial”. Depending on one’s musical
taste, some of the achievements have been a mixed blessing for music. A few examples
are given in Figure 1.3.

Besides producing music, signal processing is also involved in the more mundane task
of recording, storage, transmission, etc. Again, while the signal is a sound wave, a discrete-
time version with sampling at 44 KHz is most often used, with little degradation.

1.3.3 Other One-Dimensional Signals

So far, we have looked at the two most natural signals, namely speech and music. Many
other examples are possible, and we will pick a few outstanding examples. Figure 1.4 shows
two key signals for humans, namely the electro-cardiogram, and the electro-encephalogram.
These indicate heart and brain activity, respectively. Such signals have been studied by
doctors for decades in order to monitor illness, or predict future problems. Continuous
monitoring by means of automatic analysis is becoming a reality as processing has become
sophisticated and reliability has increased (e.g. automatic defibrillation devices for heart
patients).

Mother nature is a great producer of interesting signals, from seismic activity to solar
spots. A famous example is what is considered to be on many accounts the oldest discrete-
time signal on record. It is actually a time-series, with a sampling interval of one year
which, amongst other things, indicates the height of the floods of the Nile in ancient Egypt
from 2925 BC to 2325 BC. The floods of the Nile were studied in modern times by Hurst in
order to spot any regularity. Instead, he found the “Hurst parameter”, a fractal measure of
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Figure 1.2: Examples of musical sounds. (a) Flute (beginning of Ravel’s
Bolero), (b) Full orchestra (ending of Ravel’s Bolero), (c) Piano (from Bach’s

Goldberg Variations), (d) String quartet (from Schubert’s Op.29).
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Figure 1.3: Examples of musical sounds from synthetic instruments. (a) Flute
(with additive synthesis), (b) Trumpet (with FM modulation), (c) Violin (with

physical modeling), (d) Piano (with digital waveguide).
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Figure 1.4: Medical signals of vital importance.
(a) Electro-cardiogram (ECG), (b) Electro-encephalogram (EEG).

long-range dependence that is used today in the analysis of internet traffic; see Figure 1.5
for examples of both.

A famous time series that has obsessed many people is the stock market index, which
is known for its trends but also its unpredictability due to abrupt changes (e.g. 1929...).
The million dollar question is: What is the market value tomorrow? Yet another view
of human activity is at the center of an intense scientific and political controversy. The
signal at the heart of the debate is fairly simple, since it is the measure of the temperature
on planet earth over the last hundred years or so. But there is much more at stake than
in the stock market question: is there a global warming phenomenon, that could wipe out
civilization as we know it? You can try your guess on Figure 1.6!

1.3.4 Images

So far, all signals we considered were functions of a single variable, typically time. If we
look at signals of two variables, say f(x, y) or f [n,m], we get in the realm of image pro-
cessing. Of course, long before the advent of photography and image processing, humans
had “projected” images of the real world onto a two-dimensional surface, from Lascaux
to Giza and more. Yet the modern age started with the invention of photography in the
19th century, which soon produced “scientific” images of the world around us.

A few particularities should be noted about images. Typically, images are of finite
extent, whereas many one-dimensional signals had infinite length (ignoring the big-bang
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(a) (b)

Figure 1.5: Long range dependent time-series. (a) The floods of the Nile in

modern times, (b) Internet traffic.

for a moment, and hoping the best for the future...). Images are either black and white
(f(x, y) is real and positive) or color (f(x, y) is a vector function depending on a color
space). Finally, until recently, images were continuous in the space dimension, whereas
now, many images are ”digital” right from the start. An image in digital form is typically
an array of 512 by 512 or 1024 by 1024 picture elements ( pixels). It is to be noted that a
high quality photograph on chemical film is of much higher quality, even though the gap
is constantly narrowing.

1.3.5 Other Types of Images

Besides “classic” photographs, many other types of images are possible. For example,
in the medical field, X-ray pictures and ultrasound images are very common, examples
of which are shown in Figure 1.7. Clearly, such images have very different characteristics
from “natural” images, a fact that obviously will influence the signal processing techniques
used on such data.

1.3.6 Higher-Dimensional Signals

Stepping up from two to three dimensions, the dominant signal is certain video and film,
that is “moving pictures”. An important point to notice right away is that in such three-
dimensional data, the time dimension is always discrete, e.g. 24 frames/sec in movies,
50 or 60 fields/sec in television. This is shown schematically in Figure 1.8.
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Figure 1.6: A vital signal about the health of planet earth: temperature

evolution from 1830 to 2000.

Moving pictures have fascinated viewers ever since their invention late in the 19th
century. Because of the sampling in the time dimension, they are also one of the first
examples of a sampled data system. This sampling can also cause some artifacts that
are well known to fans of “western” movies (among others). It is the famous backward
turning wagon-wheel effect, shown schematically in Figure 1.9. This is an example of
aliasing, a phenomenon typical of sampling. The reason for the “visual illusion” of the
wheel turning backward is that there are several possible continuous time events that map
to the same sampled sequence, and the human eye will pick out the most likely. In the
example above, let’s say that the wheel turns clockwise by 3π/4 between each sampling
instant. The sampled version is as in Figure 1.9. However, because of symmetry, the

Figure 1.7: Medical images. (a) X-ray image (details), (b) Ultrasound image (details).
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x

y

Figure 1.8: Three dimensional signal as in film or video. While the spatial
dimension x and y can be continuous (film) or partly discrete (video where
there is a line structure) the time dimension is always discrete (given by the

number of images per second that are captured).

same wheel turning backward (or counter clockwise) by −π/4 leads to the same sampled
sequence. This motion being smaller, it will be the ”most likely” explanation that the
viewer will see. The issue of aliasing in sampling will be studied in detail in Chapter 10.

While film and video is the most common and visible three-dimensional data set, there
are many other examples of such signals, e.g. geophysical data (representation of the earth
interior for oil exploration purposes), tomographic data (interior of the human body for
medical analysis), etc. Finally, let us mention an example of a four-dimensional data set,
used in medical signal processing. While its importance is clear, its acquisition is very
difficult: it is the “image” of the beating heart. That is, using tomographic techniques,
one reconstructs a three-dimensional image of the heart, and this over time.

In conclusion for this section on signals, let us simply remark that signals are every-
where. Wherever you look, listen or sense, signals are to be found. Humans are very good
at processing signals for which they are equipped. But there are also many key signals
beyond the “natural” ones, beyond the reach of humans. And all of these signals are of
interest to signal processing systems.
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t=0 t=1 t=2 t=3

Figure 1.9: The wagonwheel ”illusion”. Is this wheel turning forward or backward?

Processing

Figure 1.10: The “naive” view of a signal processing task: transforming a
given signal (here a picture) into a desired signal.

1.4 Systems

A system, in our view of the world, is a box that takes a signal in, and produces an output,
typically another signal. Such a general view, applied to the many signals we have seen,
produces a wealth of possible signal processing systems. Instead of an exhaustive list, we
will pick a few examples that are emblematic signal processing tasks. A “naive” picture
of such systems is shown in Figure 1.10, where a given signal is transformed into a desired
signal.

1.4.1 Speech Recognition

Given a speech signal, a speech recognition system tries to “understand” the words as a
human would do. This seemingly elementary task (as seen from a human perspective)
is actually dauntingly difficult for a computer in its full generality. While recognizing
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Figure 1.11: A signal x[n] is corrupted by independent additive noise w[n],
followed by a denoising algorithm that produces an estimate x̂[n] given the

observed signal y[n] = x[n] + w[n].

individual elementary sounds spoken by a known speaker is easy, understanding a con-
tinuous stream of speech by an unknown speaker is still not solved satisfactorily as of
today. Signal processing plays a key role in the first stages of a speech recognition system,
that is in pre-processing (e.g. creating a compact representation of the speech waveform,
for example through a local analysis of the spectrum) and in the modelization of speech
(e.g. linear predictive models, hidden Markov models). After such signal processing based
pre-processing, higher level methods are used (e.g. grammatical models for the structure
of sentences). Speech recognition is even more complex in real environments, e.g. when
noise is involved, as in a car for example.

1.4.2 Denoising

Very often, instead of getting the signal we want, we get a signal corrupted by noise. An
obvious signal processing task is therefore to clean out the noise as well as possible without
”damaging” the signal. To solve this problem, we need a model for the signal and the
noise, so as to best estimate the signal given the observed signal. One such simple model
is the additive noise model, where the noise is assumed to be independent of the signal,
as shown in Figure 1.11. Many methods exist for attacking this problem, from filtering
methods to non-linear denoising algorithms.

1.4.3 Inverse Problems

Numerous signal processing problems belong to the class of inverse problems. A generic
example, which is also quite intuitive, is the following: assume you take a picture with
your camera, but unfortunately, you take it out of focus. The result is a blurred image,
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Figure 1.12: Example of an inverse problem. The original image (on the left)
is blurred by the acquisition procedure; the image on the right is obtained

digitally by “inverting” the blur operator ( c© Los Alamos National Laboratory)

and you would like to undo the blur and recover a sharp picture1. If and how to solve this
is a typical inverse problem. In our example, the blurring operator is typically singular
(which means certain components of the original image are forever lost) and thus its
inverse is badly behaved (or ill-conditioned). Fig. 1.12 shows schematically the situation,
where the inverse of the blur operator needs to be “regularized” so it is well-conditioned.
There are many other instances of such inverse problems, like for example tomographic
reconstruction in medical imaging or equalization for communication channels.

An additional reason why inverse problems are difficult is that very often, noise is
present. That is, in our scheme shown in Figure 1.12, instead of y, we get y + w where w
is some noise signal. In that case, the inverse of the blur function can amplify the noise,
and so, while the result might be sharper, it may also be very noisy. Then, combined
“deblurring” and “denoising” is needed, a much more complex task.

1.4.4 Decision Systems

In many cases, a system takes a signal as its input, but produces just a binary output. For
example, in the electrocardiogram case shown in Figure 1.7, a monitoring system simply
needs to decide if the patient is healthy or not, but obviously, such a decision can be a
matter of life or death. Similarly, a system monitoring the stock market index needs only
to decide on buying or selling a particular stock. The characteristic of such systems is

1You may think that only total amateurs would run into such problems, but actually professionals
can run into similar problems: NASA set up a rather expensive space telescope called Hubble, that was
unfortunately “out of focus”.
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Figure 1.13: The original, continuous-time speech signal is first sampled
at 8kHz, leading to a discrete-time signal x[n]. Each sample value is then

approximated by 1 out of 256 values, and thus represented by an 8 bit number.
This 64 kbits/sec digital stream is used in a complex compression system, that

creates an approximate representation using only 2.4 kbits/sec.

that huge amounts of data are available, and all of it might be relevant to take the right
decision. Such systems typically analyze time-series, and are thus under study in that
particular field of statistics. Yet, similar problems exist in communication systems, where
for example particular waveforms have to be detected, but are typically buried in noise.

1.4.5 Compression Systems

For storage and communication purposes, signals need to be represented by binary digits.
That is, a discrete-time signal with real values x[n] ∈ R needs to be represented by a finite
precision approximation so as to be representable by a binary number. For example, the
voice samples are typically approximated using an 8 bit number, i.e 256 different values.
This seems coarse, but is normally sufficient. But, beyond such simple sample by sample
approximation, compression systems try to remove as much redundancy as possible from a
given sampled and quantized representation. For speech, an original stream of 64 kbits/sec
(corresponding to 8000 samples per sec.), each with an 8 bit representation) can be “com-
pressed”to 8 kbits/sec, or even down to 2.4 kbits/sec, using sophisticated representation
methods. A block diagram of such a compression system is shown in Figure 1.13.

Other well known compression systems are used for digital audio and video and such
compression methods are key in all digital applications, from multi-media on CD-ROM’s to
video over the internet. The ubiquitous MP3 audio format, for example, is a sophisticated
compression scheme which exploits a perceptual model of human hearing together with
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highly optimized quantization techniques. The perceptual model analyzes the audio input
and determines which portions of the signal cannot be heard anyway due to masking
effects (masking occurs when a strong spectral component “saturates” the ear around
its frequency location, thereby making nearby components inaudible). Furthermore, the
number of bits allotted to quantization is a time-varying quantity, determined so as to
push the quantization noise below the masking threshold for the signal under analysis.

Image compression, on the other hand, exploits the high spatial redundancy of digital
pictures and the fact that the eye is more sensitive to sharp edges than to color gradients.
In the JPEG compression standard, the image is divided into a grid of square blocks and
each block is processed individually. In the MPEG video compression standard (and in
its derivative, DiVX), the former approach is complemented by a sophisticated prediction
mechanism called motion compensation, so that the correlation between neighboring blocks
in successive video frames is exploited to reduce the number of bits used to encode each
image in the sequence of frames.

1.4.6 A Communication Systems Example

As an example of the ubiquity of signal processing in communication systems, consider
Figure 1.14. Depicted is an interconnected system of networks of different kinds, with
many different services that utilize signal processing in one way or another. As can be
seen, signal processing is an enabling technology for communication systems, since it sits
at the heart of the communication links (e.g. equalization, modulation), as well as at
the heart of many applications, from voice to image and video communication, but also
medical applications, multimedia databases, etc.

1.5 World Models

In many cases, we have prior knowledge about the signal we are processing or else, we can
acquire knowledge about the signal as we process it. In both cases, there is a notion of a
model behind the signal, and having good models for given signals is at the heart of signal
processing. This leads to model based processing as shown in Figure 1.15. To be more
specific consider a speech processing application. Speech (see Figure 1.1) is a very partic-
ular signal. It is usually produced by humans (we ignore for the moment talking parrots)
and the speech production system is very well understood. Roughly speaking, speech is
either voiced (in which case it has a harmonic or almost periodic structure) or unvoiced
(that is noise-like). On top of this basic structure, the trachea, mouth, lip and nose filter
the signal, producing a spectral shaping. Thus, an elementary speech production model
is as shown in Figure 1.16. Now, any speech processing task can be helped by referring to
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Figure 1.14: Signal processing in communication systems. In an
interconnected world, with many applications using signals, signal processing is

ubiquitous.

this model. In speech recognition, determining the voiced/unvoiced nature is a key task,
as is the recovery of the fundamental frequency of the voiced part and the spectral shaping
parameters. All these parameters feed into a ”pattern matching” algorithm that performs
the actual recognition. In speech compression, recovering the fundamental parameters
like voiced/unvoiced nature, pitch period, and spectral parameters leads to a very efficient
representation, much more so than trying to approximate the original waveform. Finally,
in speech synthesis (e.g. in text-to-speech synthesis systems), the model of Figure 1.16 is
used to generate speech that sounds fairly natural.

Yet, there are potential problems with models. The first is complexity: models could
become arbitrarily complex, thus difficult to estimate. The second is model mismatch: in
our speech example, if the sound was actually from a parrot (unlikely but possible), one
would have a hard time to find the parameters that are specific to humans!
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building a model

Processingx y

Figure 1.15: Model building and model based signal processing.

spectral
shaping

voiced

unvoiced

Figure 1.16: Basic speech production model, where two modes are considered
(voiced/unvoiced) and time-varying spectral shaping is applied.

1.6 Analog and Digital Worlds

Signal processing is at the intersection of the analog and digital worlds. These worlds
are very different, and are linked by sampling, quantization, and interpolation. After
reviewing briefly these two worlds, we discuss advantages of each.

1.6.1 The Analog World (Continuous Time, Continuous Amplitude)

The world of analog signals is the world of functions on the real line, where the function
is typically real valued. Thus, the time axis is continuous, and so is the amplitude. Most
signals from the physical world are of this type: sound waves, electrical signals, physical
measurements, etc. But also many man-made signals are of this type, like the output
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of a loudspeaker or the image on a video screen. Many systems from the physical world
process such analog signals to produce other analog signals. For example, a physical
communication channel takes an analog input (the signaling waveform) and produces
an analog output (the received signal), even if the goal is to transmit a purely discrete
information (like a bit from a file transfer). Analog signal processing, which has a long
history, is typically performed with analog circuits that perform operations like filtering,
amplifying, clipping etc. Analog filter design is a very well studied topic, with many
“classic” designs. Nevertheless, it remains true that “good” analog filters are typically
expensive, since they require high quality analog components. It’s main advantage is that
analog processing is “instantaneous” (at least in principle), that is, there is no time lag
between input and output (other than phase factors or group delays).

1.6.2 Discrete-Time, Analog Worlds (Discrete Time, Continuous Amplitude)

In certain applications, continuous-time signals are sampled, but the real-valued samples
are not further digitized (see next section). In that case, discrete-time analog circuits are
used for the processing. An example is found in charge-coupled devices (CCD’s), used for
example in video cameras. While this type of processing corresponds mathematically to
the “sampled system” case, it is rather the exception than the rule.

1.6.3 Digital Worlds (Discrete Time, Discrete Amplitude)

After sampling as in the previous section, the analog values are discretized to a countable
set (typically a finite set). That is, both the time dimension and the amplitude dimension
are now discrete. So we have the cascade of two operations:

x(t) −→ x[n] −→ x̂[n]

the first being sampling, the second being quantization. The second operation cannot be
undone, since quantization is a many-to-one mapping. Figure 1.17 shows the 3 types of
signals we have just seen. Now, why would one give up the real, continuous amplitude
world for this discretized and approximate representation? The reason lies of course in
the fact that such discretized values can be represented in computer memory, and that if
the discretization is fine enough, the representation is adequate. Because of the dominant
position of digital computers in the technological world, the digital representation of signals
is by now the most common. Note that both fixed point and floating point arithmetic2

2Fixed point arithmetic uses a fixed and finite set of values to represent amplitude, e.g. [−N1,−N1 +
1, . . . − 1, 0, 1, . . . N2 − 1, N2] where Ni ∈ Z. The major problem is under and overflow during arithmetic
operations. Floating point arithmetic uses a mantissa (similar to the fixed point numbers we just saw)
and a scale factor given by an exponent with respect to the basis used (e.g. 2k). While this allows a much
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Figure 1.17: Various forms of signals between the analog and digital worlds.
(a) Analog, continuous-time signal. Both axes are continuous.

(b) Discrete-time, continuous-amplitude signal. The time axis is discrete.
(c) Discrete-time and quantized signal. Both axes are now discrete.
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Figure 1.18: Multiple conversions between analog and digital representations

in an end-to-end wireless phone communication.

are possible for such digital signal representation, but that both are discrete and finite
amplitude representations.

1.6.4 Analog versus Digital

In many signal processing tasks, a key question is often: how much processing should be
“analog”, how much should be “digital”. Take the design of a mobile phone system: clearly,
input (voice) and output (loudspeaker) are analog, but inside, the system will probably
go several times between analog and digital representations. Processing inside the mobile
phone is digital, the digital communication over the wireless connection is analog, the
base station converts back to digital, which goes over wireline backbone networks. From
there, to reach another user, the reverse process is done, until an analog, acoustic signal
is generated to reach the recipient’s ear. Schematically, this is shown in Figure 1.18.

Another example is at the same time the best explanation of the amazing advance
of digital communication systems and a paradigm for the pervasiveness of “digital” pro-
cessing: analog versus digital telephony as seen over transatlantic links; this example is
very simple and intuitive, but is at the heart of the digital “revolution”. Given a transat-
lantic cable, should you use analog or digital transmission? In the analog case, you need
repeaters, but these will boost signal and noise almost equally (See Figure 1.19-(a)). In

better approximation of the real numbers R, it is still a finite representation, and underflows and round
off errors are still problematic.
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the digital case, there is an inital “noise” due to quantization, but then, as long as the
noise added by the channel can be corrected by digital techniques (error correction codes
as used in CD’s), the noise gets annihilated, maintaining a reliable end-to-end quality
(see Figure 1.19-(b)). The same phenomenon can be seen in copying analog signals (e.g.
audio cassettes) versus digital signals (CD’s). While a few cascaded copies from cassette
to cassette will be too noisy to use, an arbitrary number of copies of CD’s is no problem
at all. (Except of course for the copyright owner !)

Analog Digital

World mostly analog Digital computers dominate
+ Precision in principle ∞ Calculations exact, reproducible

Speed is arbitrary Storage easy
Arbitrary signals are possible No noise

Computing mostly digital World is analog, so need interface
- Noise difficult to control Initial imprecision due to quantization

Storage difficult Speed limit
Restricted signals

Table 1.2: Analog versus digital.

Finally, Table 1.2 summarizes some of the positive and negative points of analog versus
digital representations and processing. From this table we can see that the comparison
offers a mixed picture. Yet, in reality, the techniques of digital processing have advanced
more and more and, at the same time, the devices used to implement digital signal process-
ing algorithms have become more and more powerful and inexpensive. Today’s standard
desktop computers can easily perform in real time extremely complex tasks such as de-
coding DVD data, compress voice for internet telephony and modulate data for dial-up
connections, and often in parallel. What’s more, the time required for the industry to de-
velop and test such algorithms is immensely inferior to what would be necessary to design
their analog counterparts, admitting that that were at all possible. The global picture
is that of an increasingly digital world with analog processing confined to the extreme
boundaries, i.e. to the places where an interface to the physical mediums is necessary.
This is why the stress of this course is on discrete-time processing techniques.
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Figure 1.19: Comparison between analog and digital transmission over a
transatlantic cable. (a) In the analog case, both the signal and the noise are

amplified at the repeaters; (b) In the digital case, if the noise is not too much
at the first repeater, a perfect reconstruction can be achieved, and the same

holds for subsequent repeaters: the noise does not grow.
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1.7 Overview of the Course

In this chapter we presented a general overview of signal processing and we tried to show
the broad range of signals and systems where signal processing methods can be used.
Interestingly, a number of methods are common to this vast array of applications, and
these are at the center of our study. The rest of the course will try to lay a solid foundation
for the mathematical basis of signal processing and proceed from there to illustrate more
in details desigh techniques and applications. Here is a short description of each of the
next chapters:

Chapter 2 will introduce more formally the classes of discrete-time signals which we
will use in the course. It will also give an informal description of the sampling
theorem that describes how to obtain discrete-time signals from continuous-time
signal without information loss.

Chapter 3 will explain the different representations of periodic and finite block-lenght
discrete-time sequences. Representations in terms of the discrete-time Fourier series
(DFS) and the discrete Fourier transform (DFT) are introduced.

Chapter 4 will review of background material from applied mathematics and linear al-
gebra, with an emphasis on geometric intuition via the concept of Hilbert spaces. In
particular, this background is useful in extending the representations in Chapter 3
to infinite length discrete-time sequences.

Chapter will be devoted to the discrete-time Fourier transform (DTFT) which is a
representation of discrete-time sequences. We will also study the properties of DTFT
and relate it to the DFS and DFT studied in Chapter 3.

Chapter 6 will develop the ideas of how the Fourier representations can be used in prac-
tice. In particular, applications to spectral analysis, time-frequency analysis etc.,
are introduced.

Chapter 7 will introduce the notion of system, with an emphasis on linear time invariant
systems. We will introduce the concept of convolution sum and its application to
filtering, both in the time and the frequency domain. The concepts of stability and
causality of a system are also introduced.

Chapter 8 will introduce the z-transform and its properties. The z-transform is the
generalization of the Fourier transform to the complex plane in the discrete-time
domain, just as the Laplace transform is the generalization of the Fourier transform
in the continuous-time domain.
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Chapter 9 will study the problem of digital filter design and filter implementation, with
particular emphasis on FIR filters.

Chapter 10 deals with the fundamental operation of sampling, by which a continuous-
time signal is converted into a discrete-time sequence, and interpolation, by which a
discrete-time signal is converted to a continuous-time signal.

Chapter 11 will develop a generalization of standard, single sampling rate signal pro-
cessing to deal with multiple sampling rates, which could be needed for sampling
rate conversions. We develop the basic concepts of this rich topic by introducing
filterbanks, sub-band decomposition and basic ideas of wavelets.

Chapter 12 will tackle quantization, or approximate representations. In particular, the
problem of analog-to-digital conversion is studied in detail, including oversampling.
We also study analog-to-digital conversion and its counterpart, digital-to-analog con-
version.

Chapter 13 contains some application ideas such as denoising and a small project on
multicarrier communications.

Appendix 1.A Historical Notes

The roots of signal processing are to be found in mathematics and applied mathematics,
but the driving force behind its development lies in technological advances.

The idea of signal processing is probably as old as science itself (e.g. prediction of an
eclipse based on past observations). Closer to us, the founding father of harmonic analysis,
Joseph Fourier (1768-1830), is usually considered an important historical figure, given that
Fourier series are central in signal processing. The importance of Fourier analysis is due
to several facts, including the eigenfunction property of complex exponentials in linear
time-invariant systems and the orthogonal expansion given by Fourier bases. Convergence
questions (e.g. the Gibbs phenomenon) are also still important today, as they were when
leading mathematicians questioned Fourier’s claim that any periodic function could be
written as a linear combination of harmonic sine and cosine waves.

A cornerstone result for discrete-time signal processing is the sampling theorem, often
attributed to Shannon. While the theorem is indeed shown in Shannon’s 1948 landmark
paper on communication theory , it was due earlier to Whittaker and Kotelnikov. That
bandlimited functions can be represented uniquely by its samples taken at twice the max-
imum frequency is one example of an interpolation formula, in this case using the sinc
function. Another view of this result is that sinc functions and their translates form an



44 Chapter 1.

orthonormal basis for the space of bandlimited functions. This view has been generalized
recently with the theory of wavelets.

The sampling theorem of the mid 1940’s lead to sampled data systems, which allowed
to use the first computers for applications like ballistics. Such military applications also
motivated Wiener to study the problem of prediction and noise removal, leading to Wiener
filtering and its variants, some of which are still in use today. The key is that sampled
systems allow the use of computers to implement sophisticated algorithms.

The 1950’s and 1960’s saw a lot of theoretical and practical research in fields like speech
analysis and synthesis (e.g. the Vocoder) and very early image processing.

But the real “digital signal processing” revolution starts in 1965, with the publication
by Cooley and Tukey of an efficient algorithm for the computation of Fourier series, the
fast Fourier transform (FFT). Together with the availability of better computers and
dedicated hardware, signal processing became a reality outside of the laboratory setting
where it was confined until then. In particular, digital signal processing is a key element
in making communication systems move into the digital age: speech moves from analog to
digital, digital communications uses equalization, teleconferencing is demonstrated, etc.

The late 1960’s and the following two decades are periods of intense developments. In
particular, image and later video processing come of age, for example with the definition of
compression standards that allow digital communication of images and moving pictures.
But also medical imaging, with tomography and echography moving from research to
actual usage, is revolutionized by digital processing. The most audible digitalization is of
course the introduction of compact discs in 1984, which in a short time replaced analog
records by a digital version.

In parallel, the microprocessor revolution leads to the introduction of specialized ma-
chines called signal processors, that is, microprocessors optimized for signal, image or
even video processing tasks. Specialized chips using VLSI technology also become com-
mon place for particular, high end signal processing tasks.

The end of the 20th century sees signal processing everywhere, from personal computers
with multimedia capabilities to complete, end-to-end digital communication for all forms
of signals. While many of the techniques studied in the last decades are now part of
everyday objects (e.g. portable phones), new questions constantly arise. To make an
exhaustive list is difficult as well as a moving target, but a few topics that come to mind
are the following:

• fundamental limits in compression

• joint source-channel coding, e.g. for channels like internet and mobile

• security issues, like watermarking of signals for copyright protection
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• recognition, especially for very large data sets, e.g. image databases.

While standard signal processing tools are well understood, new tools are needed for
some of the challenges listed above.

Appendix 1.B Literature

Because signal processing is both a popular and a useful topic, it has spawned many
publications. An exhaustive list of books would take pages, and therefore we will only
mention a subset that is either directly related to our notes, or which we feel is part of
the general culture around signal processing.

On basic signal processing, there are several good books, including the recommended
textbook for the class, which is Discrete-Time Signal Processing, by A. V. Oppenheim
and R. W. Schafer (Prentice-Hall, 1989). As advanced signal processing, we can mention
A Wavelet Tour of Signal Processing, by S. Mallat (Academic Press, 1999), and Wavelets
and Subband Coding, by M. Vetterli and J. Kovacevic (Prentice Hall, 1995).

For background in signals and systems, we suggest Signals and Systems by Oppenheim,
Wilsky and Nawab (Prentice Hall, 1997). For Fourier analysis, a nice engineering book is
The Fourier Transform and Its Applications, by R. Bracewell (McGraw-Hill, 1999), while
there are many mathematics textbooks on the topic such as Fourier Analysis, by T. W.
Korner (Cambridge University Press, 1989).

The research literature on signal processing is published by the Institute of Electronics
and Electrical Engineers (IEEE) in several transactions, but mainly in the one on Signal
Processing, on Image Processing, and on Speech and Audio Processing. Several for profit
publishers also run signal processing journals (e.g. Elsevier’s Signal Processing magazine).
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