Chapter 8, The Z-Transform: Problem Solutions

Problem 1

(a) Yes, it can be BIBO stable. For stability, the unit circle has to lie in the ROC, i.e., $r_{\text {min }}<1<r_{\text {max }}$.
(b) The system $y[n]=\alpha^{-n} x[n]$ is linear, because if $x[n]=a x_{1}[n]+b x_{2}[n]$, then

$$
v[n]=\alpha^{-n}\left(a x_{1}[n]+b x_{2}[n]\right)=a \alpha^{-n} x_{1}[n]+b \alpha^{-n} x_{2}[n] .
$$

However, the system is not time-invariant, because if we define $\tilde{x}[n]=x\left[n-n_{0}\right]$, then

$$
\tilde{v}[n]=\alpha^{-n} \tilde{x}[n]=\alpha^{-n} x\left[n-n_{0}\right] \neq v\left[n-n_{0}\right] .
$$

(c) Since the overall system is the interconnection of 3 linear systems, it is also linear (by the linearity of the convolution). To find out whether it is time-invariant, we derive the impulse response:

$$
\begin{aligned}
v[n] & =\alpha^{-n} x[n] \\
w[n] & =\left(\alpha^{-n} x[n]\right) * h[n] \\
y[n] & =\alpha^{n}\left(\left(\alpha^{-n} x[n]\right) * h[n]\right) \\
& =\alpha^{n}\left(\sum_{k=-\infty}^{\infty} \alpha^{-k} x[k] h[n-k]\right) \\
& =\sum_{k=-\infty}^{\infty} \alpha^{n-k} x[k] h[n-k] \\
& =x[n] *\left(\alpha^{n} h[n]\right) .
\end{aligned}
$$

Hence, we see that the overall impulse response is $\alpha^{n} h[n]$. Now, we see that the overall system is actuall time-invariant, because if $\tilde{x}[n]=x\left[n-n_{0}\right]$, then

$$
\begin{aligned}
\tilde{x}[n] *\left(\alpha^{n} h[n]\right) & =\sum_{k=-\infty}^{\infty} \tilde{x}[n-k] \alpha^{k} h[k] \\
& =\sum_{k=-\infty}^{\infty} x\left[n-k-n_{0}\right] \alpha^{k} h[k] \\
& =\sum_{k=-\infty}^{\infty} x\left[\left(n-n_{0}\right)-k\right] \alpha^{k} h[k] \\
& =\left(x *\left(\alpha^{*} h\right)\right)\left[n-n_{0}\right] .
\end{aligned}
$$

(d) If $H(z)$ has a ROC that is the ring $r_{\text {min }}<|z|<r_{\text {max }}$, then we know that $H(z)$ has at least one pole $p_{\text {low }, 1}$ with absolute value $\left|p_{\text {low }, 1}\right|=r_{\text {min }}$, at least one pole $p_{\text {high, } 1}$ such that
$\left|p_{\text {high }, 1}\right|=r_{\max }$, and that there are no poles with absolute value in $\left(r_{\min }, r_{\min }\right)$. Hence, we can write

$$
h[n]=\sum_{i=1}^{N_{\text {low }}}\left(p_{\text {low }, i}\right)^{n} u[n]+\sum_{k=1}^{N_{\text {high }}}\left(p_{\text {high }, k}\right)^{n} u[-n-1]+\text { additional terms }
$$

where we assumed that there are $N_{\text {low }}$ poles $p_{\text {low }, i}$ with $\left|p_{\text {low }, i}\right|=r_{\text {min }}$ (lying on the smaller circle) and that there are $N_{\text {high }}$ poles $p_{\text {high }, k}$ with $\left|p_{\text {high }, k}\right|=r_{\max }$ (lying on the larger circle). The additional terms indicated correspond to poles that are located away from the ROC.

Now,

$$
\alpha^{n} h[n]=\sum_{i=1}^{N_{\text {low }}}\left(p_{\text {low }, i} \alpha\right)^{n} u[n]+\sum_{k=1}^{N_{\text {high }}}\left(p_{\text {high }, k} \alpha\right)^{n} u[-n-1]+\alpha^{n} \text { additional terms },
$$

and one can see that the ROC will now be ring $|\alpha| r_{\min }<|z|<|\alpha| r_{\max }$. Hence, the system is stable if $|\alpha| r_{\min }<1<|\alpha| r_{\max }$.

Problem 2

[DFT And z-TRANSFORM]

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{N-1} x[n] z^{-n}=\sum_{n=0}^{N-1}\left[\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \omega n \frac{2 \pi}{N}}\right] z^{-n} \\
& =\frac{1}{N} \sum_{k=0}^{N-1}\left[X[k] \sum_{n=0}^{N-1} e^{j \omega n \frac{2 \pi}{N}} z^{-n}\right] \\
& =\frac{1}{N} \sum_{k=0}^{N-1} X[k] \frac{1-z^{-N}}{1-e^{j \omega \frac{2 \pi}{N}} z^{-1}} \\
& =\frac{1-z^{-N}}{N} \sum_{k=0}^{N-1} \frac{X[k]}{1-e^{j \omega \frac{2 \pi}{N}} z^{-1}}
\end{aligned}
$$

Problem 3

[Mimimum Phase System]
(a-i) Since $|c|>1$, the transfer function has a zero outside the unit circle and it is not a minimum phase system. In order to make it minimum phase we add a zero at $z=1 / c^{*}$ instead of $z=c$ and then compensate it in the all-pass filter:

$$
\begin{aligned}
H(z)= & \frac{1-c z^{-1}}{1-d z^{-1}} \\
= & \frac{z^{-1}-c^{*}}{1-d z^{-1}} \cdot \frac{1-c z^{-1}}{z^{-1}-c^{*}} \\
= & \underbrace{\frac{z^{-1}-c^{*}}{1-d z^{-1}}} \cdot \underbrace{\left(\frac{c}{c^{*}}\right) \frac{z^{-1}-\frac{1}{c}}{1-\left(\frac{1}{c}\right)^{*} z^{-1}}}_{\text {causal all-pass filter }} \\
& |z|=1 /\left|c^{*}\right|<1 \\
& |p|=|d|<1
\end{aligned}
$$

So we have

$$
H_{\min }(z)=\frac{z^{-1}-c^{*}}{1-d z^{-1}}
$$

and

$$
H_{a p}(z)=\frac{c}{c^{*}} \frac{z^{-1}-\frac{1}{c}}{1-\left(\frac{1}{c}\right)^{*} z^{-1}}=\frac{1-c z^{-1}}{z^{-1}-c^{*}}
$$

By plug in $e^{i \omega}$ we have

$$
H_{a p}\left(e^{i \omega}\right)=\frac{1-c e^{-i \omega}}{e^{-i \omega}-c^{*}}=\frac{1-|c| e^{i \theta} e^{-i \omega}}{e^{-i \omega}-|c| e^{-i \theta}}
$$

The group-delay is the negative derivation of the phase. The phase of the transfer function can be computed as the following:

$$
\begin{aligned}
\arg H_{a p}\left(e^{i \omega}\right)= & \arg \left(\frac{1-|c| e^{i \theta} e^{-i \omega}}{e^{-i \omega}-|c| e^{-i \theta}}\right) \\
= & \arg \left(e^{i \omega} \frac{1-|c| e^{i \theta} e^{-i \omega}}{1-|c| e^{-i \theta} e^{i \omega}}\right) \\
= & \left.\arg \left[e^{i \omega}\right]+\arg \left[1-|c| e^{i \theta} e^{-i \omega}\right]-\arg \left[1-|c| e^{-i \theta} e^{i \omega}\right)\right] \\
= & \omega+\arg [(1-|c| \cos (\omega-\theta))+i(|c| \sin (\omega-\theta))] \\
& -\arg [(1-|c| \cos (\omega-\theta))+i(-|c| \sin (\omega-\theta))] \\
= & \omega+\tan ^{-1} \frac{|c| \sin (\omega-\theta)}{1-|c| \cos (\omega-\theta)}-\tan ^{-1} \frac{-|c| \sin (\omega-\theta)}{1-|c| \cos (\omega-\theta)} \\
= & \omega+2 \tan ^{-1} \frac{|c| \sin (\omega-\theta)}{1-|c| \cos (\omega-\theta)}
\end{aligned}
$$

Note that $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$. Therefore

$$
\begin{aligned}
\operatorname{grd} H_{a p}\left(e^{i \omega}\right) & =-\frac{d}{d \omega} \arg H_{a p}\left(e^{i \omega}\right) \\
& =-\frac{d}{d \omega} \omega-\frac{d}{d \omega} 2 \tan ^{-1} \frac{|c| \sin (\omega-\theta)}{1-|c| \cos (\omega-\theta)} \\
& =-1-2 \frac{(1-|c| \cos (\omega-\theta))^{2}}{(1-|c| \cos (\omega-\theta))^{2}+(|c| \sin (\omega-\theta))^{2}} \cdot \frac{-|c|^{2}+|c| \cos (\omega-\theta)}{(1-|c| \cos (\omega-\theta))^{2}} \\
& =-1-\frac{-|c|^{2}+|c| \cos (\omega-\theta)}{1+|c|^{2}-2|c| \cos (\omega-\theta)} \\
& =\frac{|c|^{2}-1}{1+|c|^{2}-2|c| \cos (\omega-\theta)}>0
\end{aligned}
$$

where the inequality follows from $|c|>1$ and holds for any ω.
(a-ii) Since the group delay of any all-pass system is positive, we have

$$
\begin{aligned}
\operatorname{grd}[H(z)] & =\operatorname{grd}\left[H_{\min }(z)\right]+\operatorname{grd}\left[H_{a p}(z)\right] \\
& >\operatorname{grd}\left[H_{\min }(z)\right]
\end{aligned}
$$

which proves that the minimum phase system has the minimum group-delay among all the systems with the same frequency response.
(b-i) From the causality of the systems, we have $h_{\min }[n]=h_{[n]}=0$ for $n<0$. Using the Parseval's theorem we can write

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|h_{\min }[n]\right|^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|H_{\min }\left(e^{i \omega}\right)\right|^{2} d \omega \\
& \stackrel{(a)}{=} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|H\left(e^{i \omega}\right)\right|^{2} d \omega \\
& =\sum_{n=0}^{\infty}|h[n]|^{2}
\end{aligned}
$$

where (a) follows form $|H(z)|=\left|H_{\min }(z)\right|$.
(b-ii) By the definition of $H(z)$, it should be of the form

$$
H(z)=c Q(z)\left(1-\frac{1}{\alpha^{*}} z^{-1}\right)
$$

where the constant c should be determined such that $|H(z)|=\left|H_{\min }(z)\right|$, which yields $|c|=|\alpha|$. Therefore $H(z)=|\alpha| Q(c)\left(1-\frac{1}{\alpha^{*}} z^{-1}\right)$
(b-iii)

$$
\begin{aligned}
H_{\min }(z) & =Q(z)\left(1-\alpha z^{-1}\right) \\
\Longrightarrow h_{\min }[n] & =q[n] *(\delta[n]-\alpha \delta[n-1]) \\
& =q[n]-\alpha q[n-1]
\end{aligned}
$$

and

$$
\begin{aligned}
\left.H_{(} z\right) & =|\alpha| Q(z)\left(1-\frac{1}{\alpha^{*}} z^{-1}\right) \\
\Longrightarrow h_{\min }[n] & =q[n] *\left(|\alpha| \delta[n]-\frac{|\alpha|}{\alpha^{*}} \delta[n-1]\right) \\
& =|\alpha| q[n]-\frac{|\alpha|}{\alpha^{*}} q[n-1]
\end{aligned}
$$

(b-iv) We can write

$$
\begin{aligned}
D_{m}= & \sum_{n=0}^{m}\left|h_{\min }[n]\right|^{2}-\sum_{n=0}^{m}\left|h_{[n]}\right|^{2} \\
= & \sum_{n=0}^{m}|q[n]-\alpha q[n-1]|^{2}-\sum_{n=0}^{m}| | \alpha\left|q[n]-\frac{|\alpha|}{\alpha^{*}} q[n-1]\right|^{2} \\
= & \sum_{n=0}^{m}\left[|q[n]|^{2}+|\alpha|^{2}|q[n-1]|^{2}-2 \Re\{\alpha q[n-1] q[n]\}[]\right. \\
& -\sum_{n=0}^{m}\left[|\alpha|^{2}|q[n]|^{2}+\frac{|\alpha|^{2}}{\left|\alpha^{*}\right|^{2}}|q[n-1]|^{2}-2 \Re\left\{\frac{|\alpha|^{2}}{\alpha^{*}} q[n-1] q[n]\right\}\right] \\
= & \sum_{n=0}^{m}\left[|q[n]|^{2}-|q[n-1]|^{2}\right]-|\alpha|^{2} \sum_{n=0}^{m}\left[|q[n]|^{2}-|q[n-1]|^{2}\right] \\
\stackrel{(a)}{=} & \left(1-|\alpha|^{2} \mid\right)|q[m]|^{2} \stackrel{(b)}{>} 0
\end{aligned}
$$

where (a) and (b) follows from the causality of $q[n]$ and the fact $|\alpha|<1$, respectively.
(b-v) We have seen in part (b-iv) that $\sum_{n=0}^{m}\left|h_{\min }[n]\right|^{2}>\sum_{n=0}^{m}|h[n]|^{2}$. This means although $h_{\min }[n]$ and $h[n]$ have the same total energy, the energy of $h_{\text {min }}[n]$ will be appear earlier than the energy of $h[n]$ and the minimum phase system has the minimum energy-delay among all the systems with the same magnitude response.

Problem 4

1. Let $H(z)=\Sigma_{n} h[n] z^{-n}$. We have that

$$
\begin{aligned}
\frac{d}{d z} H(z) & =\frac{d}{d z}\left(\Sigma_{n} h[n] z^{-n}\right) \\
& =\Sigma_{n}(-n) h[n] z^{-n-1} \\
& =-z^{-1} \Sigma_{n} n h[n] z^{-n}
\end{aligned}
$$

and the relation follows directly.
2. We have that

$$
\alpha^{n} u[n] \stackrel{Z}{\longleftrightarrow} \frac{1}{1-\alpha z^{-1}}
$$

Using (a) we find

$$
n \alpha^{n} u[n] \stackrel{Z}{\longleftrightarrow}-z \frac{d}{d z}\left(\frac{1}{1-\alpha z^{-1}}\right)=\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}
$$

Thus,

$$
(n+1) \alpha^{n+1} u[n+1] \stackrel{Z}{\longleftrightarrow} z \frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}
$$

and

$$
(n+1) \alpha^{n} u[n+1] \stackrel{Z}{\longleftrightarrow} \frac{1}{\left(1-\alpha z^{-1}\right)^{2}}
$$

The relation follows by noticing that

$$
(n+1) \alpha^{n} u[n+1]=(n+1) \alpha^{n} u[n]
$$

since when $n=-1$ both sides are equal to zero.
3. The system is causal since the ROC corresponds to the outside of a circle of radius α (or equivalently since the impulse response is zero when $n<0$). The system is stable when the unit circle lies inside the ROC, i.e. when $|\alpha| \leq 1$.
4. When $\alpha=0.8$, the angular frequency of the pole is $\omega=0$. Thus the filter is lowpass. When $\alpha=-0.8, \omega=\pi$ and the filter is highpass.

Problem 5

1. The transfer function of the system is given by:

$$
\begin{aligned}
& Y(z)\left(1-3.25 z^{-1}+0.75 z^{-2}\right)=X(z)\left(z^{-1}+3 z^{-2}\right) \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{z^{-1}+3 z^{-2}}{1-3.25 z^{-1}+0.75 z^{-2}}=\frac{z^{-1}\left(1+3 z^{-1}\right)}{\left(1-0.25 z^{-1}\right)\left(1-3 z^{-1}\right)}=\frac{z+3}{(z-0.25)(z-3)}
\end{aligned}
$$

Since the system is causal, the convergence region is $|z|>3$. We can see that there is the pole $z=3$ that is out of the unit circle and therefore the system is unstable (Figure 1).

```
>> zplane ([[0 1 1 3], [1 -3.25 0.75])
```


Figure 1: Pole zero plot.
2. Z-transform of the output signal is:

$$
Y(z)=H(z) X(z)=\frac{z^{-1}\left(1+3 z^{-1}\right)}{\left(1-0.25 z^{-1}\right)\left(1-3 z^{-1}\right)}\left(1-3 z^{-1}\right)=\frac{z^{-1}+3 z^{-2}}{1-0.25 z^{-1}} .
$$

From $Y(z)$ we can see that the unstable pole $z=3$ is canceled and only the pole $z=0.25$ of $Y(z)$ is left. Since the system is causal, even from the unstable system we can get the stable output if the unstable pole is canceled by the input signal.
3. >> $x=\left[\begin{array}{llll}1 & -3 & 2 & -1 \\ \operatorname{zeros}(1,25)\end{array}\right]$;
>> y=filter ($\left[\begin{array}{ll}0 & 1\end{array}\right]$, [1 -3.25 0.5], x);
subplot(211), stem(x), title ('input signal $x[n] ')$ subplot(212), stem(y), title('output signal y[n]')

Figure 2: Solution 4 (c).
On Figure 2 we can see that the unstable pole is not canceled and the output signal is therefore $Y(z)$ is unstable function.

Problem 6

1. We have clearly:

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} h[n] z^{-2 n}+g[n] z^{-(2 n+1)} \\
& =H\left(z^{2}\right)+z^{-1} G\left(z^{2}\right)
\end{aligned}
$$

2. The ROC is determined by the zeros of the transform. Since the sequence is two sided, the ROC is a ring bounded by two poles z_{L} and z_{R} such that $\left|z_{L}\right|<\left|z_{R}\right|$ and no other pole has magnitude between $\left|z_{L}\right|$ and $\left|z_{R}\right|$. Consider $H(z)$; if z_{0} is a pole of $H(z), H\left(z^{2}\right)$ will have two poles at $\pm z^{1 / 2}$; however, the square root preserves the monotonicity of the magnitude and therefore no new poles will appear between the circles $|z|=\sqrt{\left|z_{L}\right|}$ and $|z|=\sqrt{\left|z_{R}\right|}$. Therefore the ROC for $H\left(z^{2}\right)$ is the ring $\left|z_{L}\right|<|z|<\left|z_{R}\right|$. The ROC of the sum $H\left(z^{2}\right)+z^{-1} G\left(z^{2}\right)$ is the intersection of the ROCs, and so

$$
\mathrm{ROC}=0.8<|z|<2
$$

