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Chapter 8, The Z-Transform: Problem Solutions

Problem 1

(a) Yes, it can be BIBO stable. For stability, the unit circle has to lie in the ROC, i.e.,
rmin < 1 < rmax.

(b) The system y[n] = α−nx[n] is linear, because if x[n] = ax1[n] + bx2[n], then

v[n] = α−n(ax1[n] + bx2[n]) = aα−nx1[n] + bα−nx2[n].

However, the system is not time-invariant, because if we define x̃[n] = x[n− n0], then

ṽ[n] = α−nx̃[n] = α−nx[n− n0] 6= v[n− n0].

(c) Since the overall system is the interconnection of 3 linear systems, it is also linear (by
the linearity of the convolution). To find out whether it is time-invariant, we derive the
impulse response:

v[n] = α−nx[n]

w[n] =
(
α−nx[n]

)
∗ h[n]

y[n] = αn
((

α−nx[n]
)
∗ h[n]

)

= αn

(
∞∑

k=−∞

α−kx[k]h[n − k]

)

=

∞∑

k=−∞

αn−kx[k]h[n − k]

= x[n] ∗ (αnh[n]) .

Hence, we see that the overall impulse response is αnh[n]. Now, we see that the overall
system is actuall time-invariant, because if x̃[n] = x[n− n0], then

x̃[n] ∗ (αnh[n]) =
∞∑

k=−∞

x̃[n− k]αkh[k]

=
∞∑

k=−∞

x[n− k − n0]α
kh[k]

=

∞∑

k=−∞

x[(n− n0)− k]αkh[k]

= (x ∗ (α·h)) [n− n0].

(d) If H(z) has a ROC that is the ring rmin < |z| < rmax, then we know that H(z) has at
least one pole plow,1 with absolute value |plow,1| = rmin, at least one pole phigh,1 such that
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|phigh,1| = rmax, and that there are no poles with absolute value in (rmin, rmin). Hence,
we can write

h[n] =

Nlow∑

i=1

(plow,i)
nu[n] +

Nhigh∑

k=1

(phigh,k)
nu[−n− 1] + additional terms,

where we assumed that there are Nlow poles plow,i with |plow,i| = rmin (lying on the
smaller circle) and that there are Nhigh poles phigh,k with |phigh,k| = rmax (lying on the
larger circle). The additional terms indicated correspond to poles that are located away
from the ROC.

Now,

αnh[n] =

Nlow∑

i=1

(plow,iα)nu[n] +

Nhigh∑

k=1

(phigh,kα)nu[−n− 1] + αnadditional terms,

and one can see that the ROC will now be ring |α|rmin < |z| < |α|rmax. Hence, the
system is stable if |α|rmin < 1 < |α|rmax.

Problem 2

[DFT and z-Transform]

X(z) =
N−1∑

n=0

x[n]z−n =
N−1∑

n=0

[

1

N

N−1∑

k=0

X[k]ejωn 2π

N

]

z−n

=
1

N

N−1∑

k=0

[

X[k]

N−1∑

n=0

ejωn 2π

N z−n

]

=
1

N

N−1∑

k=0

X[k]
1− z−N

1 − ejω 2π

N z−1

=
1− z−N

N

N−1∑

k=0

X[k]

1− ejω 2π

N z−1

Problem 3

[Mimimum Phase System]

(a-i) Since |c| > 1, the transfer function has a zero outside the unit circle and it is not a
minimum phase system. In order to make it minimum phase we add a zero at z = 1/c∗

instead of z = c and then compensate it in the all-pass filter:

H(z) =
1− cz−1

1− dz−1

=
z−1 − c∗

1− dz−1
·
1− cz−1

z−1 − c∗

=
z−1 − c∗

1− dz−1
︸ ︷︷ ︸

|z| = 1/|c∗| < 1
|p| = |d| < 1

·
( c

c∗

) z−1 − 1
c

1−
(

1
c

)
∗

z−1

︸ ︷︷ ︸

causal all-pass filter
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So we have

Hmin(z) =
z−1 − c∗

1− dz−1

and

Hap(z) =
c

c∗
z−1 − 1

c

1−
(

1
c

)
∗

z−1
=

1− cz−1

z−1 − c∗

By plug in eiω we have

Hap(e
iω) =

1− ce−iω

e−iω − c∗
=

1− |c|eiθe−iω

e−iω − |c|e−iθ

The group-delay is the negative derivation of the phase. The phase of the transfer
function can be computed as the following:

arg Hap(e
iω) = arg

(
1− |c|eiθe−iω

e−iω − |c|e−iθ

)

= arg

(

eiω 1− |c|eiθe−iω

1− |c|e−iθeiω

)

= arg
[
eiω
]
+ arg

[

1− |c|eiθe−iω
]

− arg
[

1− |c|e−iθeiω)
]

= ω + arg
[

(1− |c| cos(ω − θ)) + i(|c| sin(ω − θ))
]

− arg
[

(1− |c| cos(ω − θ)) + i(−|c| sin(ω − θ))
]

= ω + tan−1 |c| sin(ω − θ)

1− |c| cos(ω − θ)
− tan−1 −|c| sin(ω − θ)

1− |c| cos(ω − θ)

= ω + 2 tan−1 |c| sin(ω − θ)

1− |c| cos(ω − θ)

Note that d
dx tan−1 x = 1

1+x2 . Therefore

grdHap(e
iω) = −

d

dω
arg Hap(e

iω)

= −
d

dω
ω −

d

dω
2 tan−1 |c| sin(ω − θ)

1− |c| cos(ω − θ)

= −1− 2
(1− |c| cos(ω − θ))2

(1− |c| cos(ω − θ))2 + (|c| sin(ω − θ))2
·
−|c|2 + |c| cos(ω − θ)

(1− |c| cos(ω − θ))2

= −1−
−|c|2 + |c| cos(ω − θ)

1 + |c|2 − 2|c| cos(ω − θ)

=
|c|2 − 1

1 + |c|2 − 2|c| cos(ω − θ)
> 0

where the inequality follows from |c| > 1 and holds for any ω.

(a-ii) Since the group delay of any all-pass system is positive, we have

grd [H(z)] = grd [Hmin(z)] + grd [Hap(z)]

> grd [Hmin(z)]

which proves that the minimum phase system has the minimum group-delay among all
the systems with the same frequency response.
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(b-i) From the causality of the systems, we have hmin[n] = h[n] = 0 for n < 0. Using the
Parseval’s theorem we can write

∞∑

n=0

|hmin[n]|2 =
1

2π

∫ π

−π
|Hmin(e

iω)|2dω

(a)
=

1

2π

∫ π

−π
|H(eiω)|2dω

=
∞∑

n=0

|h[n]|2

where (a) follows form |H(z)| = |Hmin(z)|.

(b-ii) By the definition of H(z), it should be of the form

H(z) = cQ(z)(1 −
1

α∗
z−1)

where the constant c should be determined such that |H(z)| = |Hmin(z)|, which yields
|c| = |α|. Therefore H(z) = |α|Q(c)(1 − 1

α∗
z−1)

(b-iii)

Hmin(z) = Q(z)(1 − αz−1)

=⇒ hmin[n] = q[n] ∗ (δ[n]− αδ[n − 1])

= q[n]− αq[n− 1]

and

H(z) = |α|Q(z)(1 −
1

α∗
z−1)

=⇒ hmin[n] = q[n] ∗

(

|α|δ[n] −
|α|

α∗
δ[n − 1]

)

= |α|q[n]−
|α|

α∗
q[n− 1]

(b-iv) We can write

Dm =
m∑

n=0

|hmin[n]|2 −
m∑

n=0

|h[n]|2

=

m∑

n=0

|q[n]− αq[n− 1]|2 −

m∑

n=0

||α|q[n]−
|α|

α∗
q[n− 1]|2

=
m∑

n=0

[
|q[n]|2 + |α|2|q[n− 1]|2 − 2ℜ{αq[n − 1]q[n]}[

]

−

m∑

n=0

[

|α|2|q[n]|2 +
|α|2

|α∗|2
|q[n− 1]|2 − 2ℜ{

|α|2

α∗
q[n− 1]q[n]}

]

=

m∑

n=0

[
|q[n]|2 − |q[n− 1]|2

]
− |α|2

m∑

n=0

[
|q[n]|2 − |q[n− 1]|2

]

(a)
= (1− |α|2|)|q[m]|2

(b)
> 0

where (a) and (b) follows from the causality of q[n] and the fact |α| < 1, respectively.

(b-v) We have seen in part (b-iv) that
∑m

n=0 |hmin[n]|2 >
∑m

n=0 |h[n]|2. This means although
hmin[n] and h[n] have the same total energy, the energy of hmin[n] will be appear earlier
than the energy of h[n] and the minimum phase system has the minimum energy-delay
among all the systems with the same magnitude response.
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Problem 4

1. Let H(z) = Σnh[n]z−n. We have that

d

dz
H(z) =

d

dz

(
Σnh[n]z−n

)

= Σn(−n)h[n]z−n−1

= −z−1Σnnh[n]z−n

and the relation follows directly.

2. We have that

αnu[n]
Z
←→

1

1− αz−1
.

Using (a) we find

nαnu[n]
Z
←→ −z

d

dz

(
1

1− αz−1

)

=
αz−1

(1− αz−1)2
.

Thus,

(n + 1)αn+1u[n + 1]
Z
←→ z

αz−1

(1− αz−1)2

and

(n + 1)αnu[n + 1]
Z
←→

1

(1− αz−1)2
.

The relation follows by noticing that

(n + 1)αnu[n + 1] = (n + 1)αnu[n]

since when n = −1 both sides are equal to zero.

3. The system is causal since the ROC corresponds to the outside of a circle of radius α
(or equivalently since the impulse response is zero when n < 0). The system is stable
when the unit circle lies inside the ROC, i.e. when |α| ≤ 1.

4. When α = 0.8, the angular frequency of the pole is ω = 0. Thus the filter is lowpass.
When α = −0.8, ω = π and the filter is highpass.

Problem 5

1. The transfer function of the system is given by:

Y (z)(1 − 3.25z−1 + 0.75z−2) = X(z)(z−1 + 3z−2)

H(z) =
Y (z)

X(z)
=

z−1 + 3z−2

1− 3.25z−1 + 0.75z−2
=

z−1(1 + 3z−1)

(1− 0.25z−1)(1 − 3z−1)
=

z + 3

(z − 0.25)(z − 3)

Since the system is causal, the convergence region is |z| > 3. We can see that there is
the pole z = 3 that is out of the unit circle and therefore the system is unstable (Figure
1).

>> zplane ([0 1 3], [1 -3.25 0.75])
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Figure 1: Pole zero plot.

2. Z-transform of the output signal is:

Y (z) = H(z)X(z) =
z−1(1 + 3z−1)

(1− 0.25z−1)(1 − 3z−1)
(1− 3z−1) =

z−1 + 3z−2

1− 0.25z−1
.

From Y (z) we can see that the unstable pole z = 3 is canceled and only the pole z = 0.25
of Y (z) is left. Since the system is causal, even from the unstable system we can get the
stable output if the unstable pole is canceled by the input signal.

3. >> x=[1 -3 2 -1 zeros(1,25)];

>> y=filter( [0 1 3], [1 -3.25 0.5], x);

subplot(211), stem(x), title (’input signal x[n]’) subplot(212),

stem(y), title(’output signal y[n]’)
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Figure 2: Solution 4 (c).

On Figure 2 we can see that the unstable pole is not canceled and the output signal is
therefore Y (z) is unstable function.

Problem 6

1. We have clearly:

X(z) =
∞∑

n=−∞

h[n]z−2n + g[n]z−(2n+1)

= H(z2) + z−1G(z2)
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2. The ROC is determined by the zeros of the transform. Since the sequence is two sided,
the ROC is a ring bounded by two poles zL and zR such that |zL| < |zR| and no other
pole has magnitude between |zL| and |zR|. Consider H(z); if z0 is a pole of H(z), H(z2)
will have two poles at ±z1/2; however, the square root preserves the monotonicity of the
magnitude and therefore no new poles will appear between the circles |z| =

√

|zL| and
|z| =

√

|zR|. Therefore the ROC for H(z2) is the ring |zL| < |z| < |zR|. The ROC of
the sum H(z2) + z−1G(z2) is the intersection of the ROCs, and so

ROC = 0.8 < |z| < 2.
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