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Chapter 10, Sampling and Interpolation: Problem Solutions

Problem 1

(a) Since F̃ (jΩ) is periodic with period 2π/∆, it admits a Fourier series representation as

F̃ (jΩ) =
∞

∑

k=−∞

Ake
j∆kΩ . (1)

Note that here, we are operating “backwards”, i.e. the roles of time and frequency are
reversed. The Fourier coefficients are computed as

Ak =
∆

2π

∫ π/∆

−π/∆
F̃ (jΩ)e−j∆kΩdΩ

=
∆

2π

∫ π/∆

−π/∆

+∞
∑

n=−∞

F (j(Ω +
2π

∆
n))e−j∆kΩdΩ

by inverting integral and summation

=
∆

2π

∑

n

∫ π/∆

−π/∆
F (j(Ω +

2π

∆
n))e−j∆kΩdΩ

and with a change of variable Ω′ = Ω + 2π
∆ n

=
∆

2π

∑

n

∫ (2n+1)π/∆

(2n−1)π/∆
F (jΩ′)e−j∆kΩ′

ej∆ 2π

∆
nkdΩ′ ,

where ej∆ 2π

∆
nk = 1. These integrals are on contiguous, non-overlapping intervals, there-

fore

= ∆
1

2π

∫ +∞

−∞

F (jΩ′)e−j∆kΩ′

dΩ′

= ∆f(−k∆)

so that by replacing the values for the Ak’s in (1) we obtain F̃ (jΩ) = F̂ (jΩ).

(b) The above result shows that the proposed approximation is not a good idea in the general
case, since the resulting periodization of the Fourier transform is not what we had in
mind. This phenomenon is called aliasing and will be studied in detail in the context of
the sampling of continuous-time signals.

(c) The three different cases are depicted in Figure 1.

1



F̂ (jΩ)

−Ω0 Ω0 Ω

F̂ (jΩ)

−2Ω0 −Ω0 Ω0 2Ω0

F̂ (jΩ)

−200Ω0 −Ω0 Ω0 200Ω0

Figure 1: Aliasing for ∆ = 2π/Ω0, π/Ω0 and π/(100Ω0), respectively.

Problem 2

We have that

xs(t) = x(t)

∞
∑

k=−∞

δ(t − kTs)

and, by using the modulation theorem,

Xs(jΩ) = X(jΩ) ∗ P (jΩ)

=

∫

R

X(jΩ̃)P (j(Ω − Ω̃))dΩ̃ =
2π

Ts

∫

R

X(jΩ̃)
∑

k∈Z

δ

(

Ω − Ω̃ − k
2π

Ts

)

dΩ̃

=
2π

Ts

∑

k∈Z

∫

R

X(jΩ̃)δ

(

Ω − Ω̃ − k
2π

Ts

)

dΩ̃ =
2π

Ts

∑

k∈Z

X

(

j

(

Ω − k
2π

Ts

))

.

In other words, the spectrum of the delta-modulated signal is just the periodic repetition
(with period (2π/Ts) of the original spectrum. If the latter is bandlimited to (π/Ts) there
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will be no overlap and therefore x(t) can be obtained simply by lowpass filtering xs(t) (in the
continuous-time domain).

Problem 3

(a) According to our definition of bandlimited functions, the highest nonzero frequency is
2Ω0 and therefore xc(t) is 2Ω0-bandlimited for a total bandwidth of 4Ω0. The maximum
sampling period (i.e. the inverse of the minimum sampling frequency) which satisfies
the sampling theorem is therefore Ts = π/(2Ω0). Note however that the total support
over which the (positive) spectrum is nonzero is the interval [Ω0, 2Ω0] so that one could
say that the total effective positive bandwidth of the signal is just Ω0; this will be useful
later.

(b) The digital spectrum will be the rescaled version of the periodized continuous-time
spectrum

X̃c(jΩ) =

∞
∑

k=−∞

Xc(j(Ω − 2kΩ0)).

The general term Xc(jΩ − j2kΩ0) is nonzero only for

Ω0 ≤ |Ω − 2kΩ0| ≤ 2Ω0 for k ∈ Z.

This translates to

(2k + 1)Ω0 ≤ Ω ≤ (2k + 2)Ω0

(2k − 2)Ω0 ≤ Ω ≤ (2k − 1)Ω0

which are non-overlapping intervals! Therefore, there will be no disruptive superpositions
of the copies of the spectrum. The digital spectrum will be simply

X(ejω) =
1

Ts

∞
∑

k=−∞

Xc(j
ω

Ts
− j

2πk

Ts
)

and it will look like this (with 2π-periodicity, of course):

Xa(e
jω)

ππ

(c) Here’s a possible scheme (verify that it works):

• Sinc-interpolate xa[n] with period Ts to obtain xb(t)

• Multiply xb(t) by cos(2Ω0t) in the continuous time domain to obtain xp(t) (i.e.
modulate by a carrier at frequency (Ω0/π) Hz).

• Bandpass filter xp(t) with an ideal bandpass filter with (positive) passband equal
to [Ω0, 2Ω0] to obtain xc(t).

(d) The effective positive bandwidth of such a signal is Ω∆ = (Ω1 − Ω0). Clearly, the
sampling frequency must be at least equal to the effective total bandwidth so we have a
first condition on the maximum allowable sampling period: Tmax < π/Ω∆.
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Now, to make things simpler, assume that the upper frequency Ω1 is a multiple of the
bandwidth, i.e. Ω1 = MΩ∆ for some integer M (in the previous case, it was M = 2). In
this case, the argument we made in the previous point can be easily generalized: if we
pick Ts = π/Ω∆ and sample we have that

X̃c(jΩ) =

∞
∑

k=−∞

Xc(j(Ω − 2kΩ∆)).

The general term Xc(jΩ − j2kΩ∆) is nonzero only for

Ω0 ≤ |Ω − 2kΩ∆| ≤ Ω1 for k ∈ Z.

Since Ω0 = Ω1 − Ω∆ = (M − 1)Ω∆, this translates to

(2k + M − 1)Ω∆ ≤ Ω ≤ (2k + M)Ω∆

(2k − M)Ω∆ ≤ Ω ≤ (2k − M + 1)Ω∆

which are again non-overlapping intervals.

If Ω1 is not a multiple of the bandwidth, then the easiest thing to do is to change
the lower frequency Ω0 to a new frequency Ω′

0 so that the new bandwidth Ω1 − Ω′

0

divides Ω1 exactly. In other words we set a new lower frequency Ω′

0 so that it will be
Ω1 = M(Ω1 − Ω′

0) for some integer M ; it is easy to see that

M =

⌊

Ω1

Ω1 − Ω0

⌋

.

since this is the maximum number of copies of the Ω∆-wide spectrum which fit with no

overlap in the [0, Ω0] interval. Note also that, if Ω∆ > Ω0 we cannot hope to reduce
the sampling frequency and we have to use normal sampling. This artificial change of
frequency will leave a small empty “gap” in the new bandwidth [Ω′

0, Ω1], but that’s no
problem. Now we can use the previous result and sample with Ts = π/(Ω1−Ω′

0) with no
overlap. Since (Ω1 − Ω′

0) = Ω1/M , we have that, in conclusion, the maximum sampling
period is

Tmax =
π

Ω1

⌊

Ω1

Ω1 − Ω0

⌋

i.e. we can obtain a sampling frequency reduction factor of ⌊Ω1/(Ω1 − Ω0)⌋.
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