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Chapter 11, Multirate Signal Processing: Problem Solutions

Problem 1

(a) down-sampler and filtering: We denote the systems and signals on the left and right
hand sides by indices L and R, respectively.

H(z) H(zN )
x[n]

↓ N
uL[n] yL[n] x[n] uR[n]

↓ N
yR[n]

For the z-transform of the down-sampled signals on the left, we can write

UL(z) =
1

N

N−1∑

k=0

X(e−j 2π
N

kz
1
N ),

and after filtering

YL(z) = H(z)UL(z) =
1

N

N−1∑

k=0

X(e−j 2π
N

kz
1
N )H(z).

For the system on the right we have

UR(z) = X(z)H(zN )

=⇒ YR(z) =
1

N

N−1∑

k=0

U(e−j 2π
N

kz
1
N )

=
1

N

N−1∑

k=0

X(e−j 2π
N

kz
1
N )H((e−j 2π

N
k)N

︸ ︷︷ ︸

1

(z
1
N )N

︸ ︷︷ ︸

z

)

= YL(z)

(b) up-sampling and interpolation: As in the part (a), we use the indices L and R for
signals on the left and right hand sides, respectively.

H(z)
x[n] uL[n]

↑ L
yL[n]

H(zL)
x[n]

↑ L
uR[n] yR[n]

The z-transform of the system on the left is

UL(z) = X(z)H(z),

YL(z) = UL(zL) = X(zL)H(zL),

while the output of the system on the right corresponds to

UR(z) = X(zL)

YR(z) = U(z)H(zL) = X(zL)H(zL) = YL(z).

This shows that both of the systems have the same output for identical input, and they
are equivalent.
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Problem 2

(a) v[n] is the up-sampled version of the input. So,

v[n] =

{
x[n/L] n = kL for k ∈ Z

0 else.

Therefore, for y = sL, s ∈ Z we have

y[sL] = h[sL] ∗ v[sL] =
∞∑

m=−∞

h[m]v[sL − m]

(∗)
= h[0]v[sL] + 2

RL∑

m=1

h[m]v[sL − m]

(∗∗)
= h[0]x[s] + 2

R∑

k=1

h[(s − k)L]v[kL]

= h[0]x[s] + 2
R∑

k=1

h[(s − k)L]x[k]

which should be equal to x[s], for any arbitrary input x[n] and arbitrary integer s. In the
equalities above, (∗) follows form the fact the h[n] = h[−n] and h[n] = 0 for |n| > RL−1,
and (∗∗) is true because v[n] is non-zero only for n = kL, where L ∈ Z. By feeding
x[n] = δ[n], it is clear that h[0] = 1, and similarly, by feeding x[n] = δ[n + m − s] it
follows that h[mL] = 0 for any m ∈ Z.

(b) We can write

z[n] = y[2Ln] = x[2Ln/L] = x[2n],

which means z[n] is the down-sampled version of x[n] by down-sampling factor of 2.
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Problem 3

(b) Recall the relationship between the spectrum of a continuous-time signal, the DTFT
of the sampled version, and the FFT of the sampled version. It is known that if we
sample from a continuous-time signal of bandwidth ΩN at sampling frequency fs = 1

Ts
,

the original spectrum would be the repeated with period 2πfs in the spectrum of the
sampled version signal. The DTFT would be the same as the spectrum of the sampled
signal, unless the ω-axis will be scaled by factor of Ts. This can be seen in Fig. 1. FFT
is also can be considered as a discrete version of one period of DTFT as

X[k] =
N−1∑

n=0

x[n]e−j 2π
N

k =
N−1∑

n=0

x[n]e−jωk
∣
∣
∣
ω= 2π

N

= X
(
ejω

)
∣
∣
∣
ω= 2π

N

There fore one just has to find the cut tone form FFT, convert it to the cut frequency
in DTFT and then using ωn = 2πΩN

Ωs
, in which Ωs = 2πfs, where fs = 8192 can be

obtained for [a,fs]=wavread(’hw6.wav’).
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Figure 1: Relationship between the spectrum of a continuous-time signal and the sampled
version.

The FFT of the signal is shown in Fig. 2 and which can be used to plot the approximated
DTFT as in Fig. 3. For Fig.3 it is clear that the we have non-zero elements in the DTFT
up to the frequency ωN = π (bandwith in the minimum positive ωN for which X(ejω) = 0
for ωN < |ω| < π). Therefore we have ΩN = ωNfs = 8192π.

0 1 2 3 4 5 6 7

x 10
4

0

100

200

300

400

500

600

700

800

K

|X
[k

]|

Figure 2: FFT of the signal

(c) The Matlab function downsample(X,N,P) downsamples input signal X by keeping every
N -th sample starting with element in position P +1. So in order to produce b[n] = a[3n],
we can use
b=downsample(a,3,2);

(d) FFT of b[n] is shown in Fig. 4.
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Figure 3: Approximated DTFT of the signal
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Figure 4: FFT of b[n] = a[3n].

Problem 4

The spectrum of y1[n], y2[n], y3[n], and y4[n] are shown in the following figures.
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Problem 5

(a) We introduce u[n] and v[n] as illustrated in Figure 5. As done in class we introduce

H(ejω) ↓ 2↑ 2
x[n] y[n]

Figure 5: Problem 1. We introduce u[n] and v[n].

V ′
(
ejω

)
=

1

2

[

V
(
ejω

)
+ V

(

ej(ω−π)
)]

.

Based on this we have Y (
(
ejω

)
= V ′

(
ejω/2

)
. We now develop Y (

(
ejω

)
in Figures 6(a)

till 6(d).
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(a) U(ejω), being X(ejω) upsampled with a fac-
tor 2.
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(b) V (ejω), which is U(ejω) filtered with H(ejω).
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(d) Y (ejω), which we get by taking Y (ejω) =
V

′(ejω/2).

(b) We know from class that for upsampling we have the following relation

U
(
ejω

)
= X

(
ej2ω

)
.
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Also after filtering we trivially have

V
(
ejω

)
= X

(
ej2ω

)
H

(
ejω

)
.

After downsampling we get

Y (
(
ejω

)
=

1

2

[

V
(

ejω/2
)

+ V
(

ej(ω/2−π)
)]

=
1

2

[

X
(
ejω

)
H

(

ejω/2
)

+ X
(

ej(ω−2π)
)

H
(

ej(ω/2−π)
)]

= X
(
ejω

) 1

2

[

H
(

ejω/2
)

+ H
(

ej(ω/2−π)
)]

= X
(
ejω

)
G

(
ejω

)
,

where we have used that X(
(
ej(ω−2π)

)
= X

(
ejω

)
, since the DTFT is 2π periodic. The

thing to observe now is that G(ejω) = 1
2

[
H(

(
ejω/2

)
+ H(

(
ejω/2−π

)]
is a downsampled

version of the filter. In other words we have

g[n] = h[2n].

(c) We compute G(ejω). The first step is to compute 1
2

[
H(

(
ejω

)
+ H(

(
ejω−π

)]
, which we

start in Figure 6. We immediately see that the after summing the two components we
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Figure 6: The first step in downsampling H(ejω). In solid lines we have 1
2H

(
ejω/2

)
, in the

dashed lines 1
2H

(
ej(ω/2−π)

)
.

get

H ′
(
ejω

)
:=

1

2

[
H(

(
ejω

)
+ H(

(
ejω−π

)]
=

1

2
.

After scaling in frequency we have G(ejω) = H ′
(
ejω/2

)
= 1

2 , which is an all-pass filter.
If we now apply the result from Part (b) we have

Y
(
ejω

)
= X

(
ejω

)
G

(
ejω

)

=
1

2
X

(
ejω

)
,

as was found in Part (a).

Problem 6

No solution available

Problem 7

No solution available
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