Chapter 11, Multirate Signal Processing: Problem Solutions

Problem 1

(a) down-sampler and filtering: We denote the systems and signals on the left and right hand sides by indices L and R, respectively.

For the z-transform of the down-sampled signals on the left, we can write

$$
U_{L}(z)=\frac{1}{N} \sum_{k=0}^{N-1} X\left(e^{-j \frac{2 \pi}{N} k} z^{\frac{1}{N}}\right),
$$

and after filtering

$$
Y_{L}(z)=H(z) U_{L}(z)=\frac{1}{N} \sum_{k=0}^{N-1} X\left(e^{-j \frac{2 \pi}{N} k} z^{\frac{1}{N}}\right) H(z) .
$$

For the system on the right we have

$$
\begin{aligned}
U_{R}(z) & =X(z) H\left(z^{N}\right) \\
\Longrightarrow Y_{R}(z) & =\frac{1}{N} \sum_{k=0}^{N-1} U\left(e^{-j \frac{2 \pi}{N} k} z^{\frac{1}{N}}\right) \\
& =\frac{1}{N} \sum_{k=0}^{N-1} X\left(e^{-j \frac{2 \pi}{N} k} z^{\frac{1}{N}}\right) H(\underbrace{\left(e^{-j \frac{2 \pi}{N} k}\right)^{N}}_{1} \underbrace{\left(z^{\frac{1}{N}}\right)^{N}}_{z}) \\
& =Y_{L}(z)
\end{aligned}
$$

(b) up-sampling and interpolation: As in the part (a), we use the indices L and R for signals on the left and right hand sides, respectively.

The z-transform of the system on the left is

$$
\begin{aligned}
U_{L}(z) & =X(z) H(z) \\
Y_{L}(z) & =U_{L}\left(z^{L}\right)=X\left(z^{L}\right) H\left(z^{L}\right)
\end{aligned}
$$

while the output of the system on the right corresponds to

$$
\begin{aligned}
U_{R}(z) & =X\left(z^{L}\right) \\
Y_{R}(z) & =U(z) H\left(z^{L}\right)=X\left(z^{L}\right) H\left(z^{L}\right)=Y_{L}(z) .
\end{aligned}
$$

This shows that both of the systems have the same output for identical input, and they are equivalent.

Problem 2

(a) $v[n]$ is the up-sampled version of the input. So,

$$
v[n]= \begin{cases}x[n / L] & n=k L \text { for } k \in \mathbb{Z} \\ 0 & \text { else }\end{cases}
$$

Therefore, for $y=s L, s \in \mathbb{Z}$ we have

$$
\begin{aligned}
y[s L] & =h[s L] * v[s L]=\sum_{m=-\infty}^{\infty} h[m] v[s L-m] \\
& \stackrel{(*)}{=} h[0] v[s L]+2 \sum_{m=1}^{R L} h[m] v[s L-m] \\
& \stackrel{(* *)}{=} h[0] x[s]+2 \sum_{k=1}^{R} h[(s-k) L] v[k L] \\
& =h[0] x[s]+2 \sum_{k=1}^{R} h[(s-k) L] x[k]
\end{aligned}
$$

which should be equal to $x[s]$, for any arbitrary input $x[n]$ and arbitrary integer s. In the equalities above, $(*)$ follows form the fact the $h[n]=h[-n]$ and $h[n]=0$ for $|n|>R L-1$, and $(* *)$ is true because $v[n]$ is non-zero only for $n=k L$, where $L \in \mathbb{Z}$. By feeding $x[n]=\delta[n]$, it is clear that $h[0]=1$, and similarly, by feeding $x[n]=\delta[n+m-s]$ it follows that $h[m L]=0$ for any $m \in \mathbb{Z}$.
(b) We can write

$$
z[n]=y[2 L n]=x[2 L n / L]=x[2 n]
$$

which means $z[n]$ is the down-sampled version of $x[n]$ by down-sampling factor of 2 .

Problem 3

(b) Recall the relationship between the spectrum of a continuous-time signal, the DTFT of the sampled version, and the FFT of the sampled version. It is known that if we sample from a continuous-time signal of bandwidth Ω_{N} at sampling frequency $f_{s}=\frac{1}{T_{s}}$, the original spectrum would be the repeated with period $2 \pi f_{s}$ in the spectrum of the sampled version signal. The DTFT would be the same as the spectrum of the sampled signal, unless the ω-axis will be scaled by factor of T_{s}. This can be seen in Fig. 1. FFT is also can be considered as a discrete version of one period of DTFT as

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k}=\left.\sum_{n=0}^{N-1} x[n] e^{-j \omega k}\right|_{\omega=\frac{2 \pi}{N}}=\left.X\left(e^{j \omega}\right)\right|_{\omega=\frac{2 \pi}{N}}
$$

There fore one just has to find the cut tone form FFT, convert it to the cut frequency in DTFT and then using $\omega_{n}=2 \pi \frac{\Omega_{N}}{\Omega_{s}}$, in which $\Omega_{s}=2 \pi f_{s}$, where $f_{s}=8192$ can be obtained for [a,fs]=wavread('hw6.wav').

Figure 1: Relationship between the spectrum of a continuous-time signal and the sampled version.

The FFT of the signal is shown in Fig. 2 and which can be used to plot the approximated DTFT as in Fig. 3. For Fig. 3 it is clear that the we have non-zero elements in the DTFT up to the frequency $\omega_{N}=\pi$ (bandwith in the minimum positive ω_{N} for which $X\left(e^{j \omega}\right)=0$ for $\left.\omega_{N}<|\omega|<\pi\right)$. Therefore we have $\Omega_{N}=\omega_{N} f_{s}=8192 \pi$.

Figure 2: FFT of the signal
(c) The Matlab function downsample ($\mathrm{X}, \mathrm{N}, \mathrm{P}$) downsamples input signal X by keeping every N-th sample starting with element in position $P+1$. So in order to produce $b[n]=a[3 n]$, we can use b=downsample (a, 3,2);
(d) FFT of $b[n]$ is shown in Fig. 4.

Figure 3: Approximated DTFT of the signal

Figure 4: FFT of $b[n]=a[3 n]$.

Problem 4

The spectrum of $y_{1}[n], y_{2}[n], y_{3}[n]$, and $y_{4}[n]$ are shown in the following figures.

Problem 5

(a) We introduce $u[n]$ and $v[n]$ as illustrated in Figure 5. As done in class we introduce

Figure 5: Problem 1. We introduce $u[n]$ and $v[n]$.

$$
V^{\prime}\left(e^{j \omega}\right)=\frac{1}{2}\left[V\left(e^{j \omega}\right)+V\left(e^{j(\omega-\pi)}\right)\right] .
$$

Based on this we have $Y\left(\left(e^{j \omega}\right)=V^{\prime}\left(e^{j \omega / 2}\right)\right.$. We now develop $Y\left(\left(e^{j \omega}\right)\right.$ in Figures 6(a) till 6(d).

(a) $U\left(e^{j \omega}\right)$, being $X\left(e^{j \omega}\right)$ upsampled with a fac- (b) $V\left(e^{j \omega}\right)$, which is $U\left(e^{j \omega}\right)$ filtered with $H\left(e^{j \omega}\right)$.

(c) $V^{\prime}\left(e^{j \omega}\right)$. The thin solid line is $\frac{1}{2} V\left(e^{j \omega}\right)$, the (d) $Y\left(e^{j \omega}\right)$, which we get by taking $Y\left(e^{j \omega}\right)=$ dashed line is $\frac{1}{2} V\left(e^{j(\omega-\pi)}\right)$ and the thick line is $V^{\prime}\left(e^{j \omega / 2}\right)$.
$V^{\prime}\left(e^{j \omega}\right)$.
(b) We know from class that for upsampling we have the following relation

$$
U\left(e^{j \omega}\right)=X\left(e^{j 2 \omega}\right) .
$$

Also after filtering we trivially have

$$
V\left(e^{j \omega}\right)=X\left(e^{j 2 \omega}\right) H\left(e^{j \omega}\right)
$$

After downsampling we get

$$
\begin{aligned}
Y\left(\left(e^{j \omega}\right)\right. & =\frac{1}{2}\left[V\left(e^{j \omega / 2}\right)+V\left(e^{j(\omega / 2-\pi)}\right)\right] \\
& =\frac{1}{2}\left[X\left(e^{j \omega}\right) H\left(e^{j \omega / 2}\right)+X\left(e^{j(\omega-2 \pi)}\right) H\left(e^{j(\omega / 2-\pi)}\right)\right] \\
& =X\left(e^{j \omega}\right) \frac{1}{2}\left[H\left(e^{j \omega / 2}\right)+H\left(e^{j(\omega / 2-\pi)}\right)\right] \\
& =X\left(e^{j \omega}\right) G\left(e^{j \omega}\right)
\end{aligned}
$$

where we have used that $X\left(\left(e^{j(\omega-2 \pi)}\right)=X\left(e^{j \omega}\right)\right.$, since the DTFT is 2π periodic. The thing to observe now is that $G\left(e^{j \omega}\right)=\frac{1}{2}\left[H\left(\left(e^{j \omega / 2}\right)+H\left(\left(e^{j \omega / 2-\pi}\right)\right]\right.\right.$ is a downsampled version of the filter. In other words we have

$$
g[n]=h[2 n]
$$

(c) We compute $G\left(e^{j \omega}\right)$. The first step is to compute $\frac{1}{2}\left[H\left(\left(e^{j \omega}\right)+H\left(\left(e^{j \omega-\pi}\right)\right]\right.\right.$, which we start in Figure 6. We immediately see that the after summing the two components we

Figure 6: The first step in downsampling $H\left(e^{j \omega}\right)$. In solid lines we have $\frac{1}{2} H\left(e^{j \omega / 2}\right)$, in the dashed lines $\frac{1}{2} H\left(e^{j(\omega / 2-\pi)}\right)$.
get

$$
H^{\prime}\left(e^{j \omega}\right):=\frac{1}{2}\left[H \left(\left(e^{j \omega}\right)+H\left(\left(e^{j \omega-\pi}\right)\right]=\frac{1}{2}\right.\right.
$$

After scaling in frequency we have $G\left(e^{j \omega}\right)=H^{\prime}\left(e^{j \omega / 2}\right)=\frac{1}{2}$, which is an all-pass filter. If we now apply the result from Part (b) we have

$$
\begin{aligned}
Y\left(e^{j \omega}\right) & =X\left(e^{j \omega}\right) G\left(e^{j \omega}\right) \\
& =\frac{1}{2} X\left(e^{j \omega}\right)
\end{aligned}
$$

as was found in Part (a).

Problem 6

No solution available

Problem 7

No solution available

