Chapter 11, Multirate Signal Processing: Problem Solutions

Problem 1

(a) **down-sampler and filtering:** We denote the systems and signals on the left and right hand sides by indices L and R, respectively.

$$x[n] \longrightarrow \bigcup N \xrightarrow{u_L[n]} H(z) \xrightarrow{y_L[n]} x[n] \longrightarrow H(z^N) \xrightarrow{u_R[n]} U_R[n]$$

For the z-transform of the down-sampled signals on the left, we can write

$$U_L(z) = \frac{1}{N} \sum_{k=0}^{N-1} X(e^{-j\frac{2\pi}{N}k} z^{\frac{1}{N}}),$$

and after filtering

$$Y_L(z) = H(z)U_L(z) = \frac{1}{N} \sum_{k=0}^{N-1} X(e^{-j\frac{2\pi}{N}k} z^{\frac{1}{N}})H(z).$$

For the system on the right we have

$$U_{R}(z) = X(z)H(z^{N})$$

$$\implies Y_{R}(z) = \frac{1}{N} \sum_{k=0}^{N-1} U(e^{-j\frac{2\pi}{N}k} z^{\frac{1}{N}})$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} X(e^{-j\frac{2\pi}{N}k} z^{\frac{1}{N}})H(\underbrace{(e^{-j\frac{2\pi}{N}k})^{N}}_{1}\underbrace{(z^{\frac{1}{N}})^{N}}_{z})$$

$$= Y_{L}(z)$$

(b) **up-sampling and interpolation:** As in the part (a), we use the indices L and R for signals on the left and right hand sides, respectively.

The z-transform of the system on the left is

$$U_L(z) = X(z)H(z),$$

 $Y_L(z) = U_L(z^L) = X(z^L)H(z^L),$

while the output of the system on the right corresponds to

$$U_R(z) = X(z^L) Y_R(z) = U(z)H(z^L) = X(z^L)H(z^L) = Y_L(z).$$

This shows that both of the systems have the same output for identical input, and they are equivalent.

Problem 2

(a) v[n] is the up-sampled version of the input. So,

$$v[n] = \begin{cases} x[n/L] & n = kL \text{ for } k \in \mathbb{Z} \\ 0 & \text{else.} \end{cases}$$

Therefore, for $y = sL, s \in \mathbb{Z}$ we have

$$y[sL] = h[sL] * v[sL] = \sum_{m=-\infty}^{\infty} h[m]v[sL-m]$$

$$\stackrel{(*)}{=} h[0]v[sL] + 2\sum_{m=1}^{RL} h[m]v[sL-m]$$

$$\stackrel{(**)}{=} h[0]x[s] + 2\sum_{k=1}^{R} h[(s-k)L]v[kL]$$

$$= h[0]x[s] + 2\sum_{k=1}^{R} h[(s-k)L]x[k]$$

which should be equal to x[s], for any arbitrary input x[n] and arbitrary integer s. In the equalities above, (*) follows form the fact the h[n] = h[-n] and h[n] = 0 for |n| > RL-1, and (**) is true because v[n] is non-zero only for n = kL, where $L \in \mathbb{Z}$. By feeding $x[n] = \delta[n]$, it is clear that h[0] = 1, and similarly, by feeding $x[n] = \delta[n + m - s]$ it follows that h[mL] = 0 for any $m \in \mathbb{Z}$.

(b) We can write

$$z[n] = y[2Ln] = x[2Ln/L] = x[2n]$$

which means z[n] is the down-sampled version of x[n] by down-sampling factor of 2.

Problem 3

(b) Recall the relationship between the spectrum of a continuous-time signal, the DTFT of the sampled version, and the FFT of the sampled version. It is known that if we sample from a continuous-time signal of bandwidth Ω_N at sampling frequency $f_s = \frac{1}{T_s}$, the original spectrum would be the repeated with period $2\pi f_s$ in the spectrum of the sampled version signal. The DTFT would be the same as the spectrum of the sampled signal, unless the ω -axis will be scaled by factor of T_s . This can be seen in Fig. 1. FFT is also can be considered as a discrete version of one period of DTFT as

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}k} = \sum_{n=0}^{N-1} x[n] e^{-j\omega k} \Big|_{\omega = \frac{2\pi}{N}} = X\left(e^{j\omega}\right) \Big|_{\omega = \frac{2\pi}{N}}$$

There fore one just has to find the cut tone form FFT, convert it to the cut frequency in DTFT and then using $\omega_n = 2\pi \frac{\Omega_N}{\Omega_s}$, in which $\Omega_s = 2\pi f_s$, where $f_s = 8192$ can be obtained for [a,fs]=wavread('hw6.wav').

Figure 1: Relationship between the spectrum of a continuous-time signal and the sampled version.

The FFT of the signal is shown in Fig. 2 and which can be used to plot the approximated DTFT as in Fig. 3. For Fig.3 it is clear that the we have non-zero elements in the DTFT up to the frequency $\omega_N = \pi$ (bandwith in the minimum positive ω_N for which $X(e^{j\omega}) = 0$ for $\omega_N < |\omega| < \pi$). Therefore we have $\Omega_N = \omega_N f_s = 8192\pi$.

Figure 2: FFT of the signal

- (c) The Matlab function downsample(X,N,P) downsamples input signal X by keeping every N-th sample starting with element in position P+1. So in order to produce b[n] = a[3n], we can use
 b=downsample(a,3,2);
- (d) FFT of b[n] is shown in Fig. 4.

Figure 3: Approximated DTFT of the signal

Figure 4: FFT of b[n] = a[3n].

Problem 4

The spectrum of $y_1[n]$, $y_2[n]$, $y_3[n]$, and $y_4[n]$ are shown in the following figures.

Problem 5

(a) We introduce u[n] and v[n] as illustrated in Figure 5. As done in class we introduce

$\begin{array}{c} x[n] \\ \hline \uparrow 2 \end{array} \longrightarrow H(e^{j\omega}) \\ \downarrow 2 \end{array} \begin{array}{c} y[x] \\ \downarrow 2 \end{array}$	<i>i</i>]
---	------------

Figure 5: Problem 1. We introduce u[n] and v[n].

$$V'(e^{j\omega}) = \frac{1}{2} \left[V(e^{j\omega}) + V(e^{j(\omega-\pi)}) \right].$$

Based on this we have $Y((e^{j\omega}) = V'(e^{j\omega/2})$. We now develop $Y((e^{j\omega})$ in Figures 6(a) till 6(d).

(b) We know from class that for upsampling we have the following relation

$$U\left(e^{j\omega}\right) = X\left(e^{j2\omega}\right).$$

Also after filtering we trivially have

$$V(e^{j\omega}) = X(e^{j2\omega}) H(e^{j\omega}).$$

After downsampling we get

$$\begin{split} Y(\left(e^{j\omega}\right) &= \frac{1}{2} \left[V\left(e^{j\omega/2}\right) + V\left(e^{j(\omega/2-\pi)}\right) \right] \\ &= \frac{1}{2} \left[X\left(e^{j\omega}\right) H\left(e^{j\omega/2}\right) + X\left(e^{j(\omega-2\pi)}\right) H\left(e^{j(\omega/2-\pi)}\right) \right] \\ &= X\left(e^{j\omega}\right) \frac{1}{2} \left[H\left(e^{j\omega/2}\right) + H\left(e^{j(\omega/2-\pi)}\right) \right] \\ &= X\left(e^{j\omega}\right) G\left(e^{j\omega}\right), \end{split}$$

where we have used that $X((e^{j(\omega-2\pi)}) = X(e^{j\omega})$, since the DTFT is 2π periodic. The thing to observe now is that $G(e^{j\omega}) = \frac{1}{2} \left[H((e^{j\omega/2}) + H((e^{j\omega/2-\pi})) \right]$ is a downsampled version of the filter. In other words we have

$$g[n] = h[2n].$$

(c) We compute $G(e^{j\omega})$. The first step is to compute $\frac{1}{2} \left[H((e^{j\omega}) + H((e^{j\omega-\pi}))) \right]$, which we start in Figure 6. We immediately see that the after summing the two components we

Figure 6: The first step in downsampling $H(e^{j\omega})$. In solid lines we have $\frac{1}{2}H(e^{j\omega/2})$, in the dashed lines $\frac{1}{2}H(e^{j(\omega/2-\pi)})$.

 get

$$H'\left(e^{j\omega}\right) := \frac{1}{2}\left[H(\left(e^{j\omega}\right) + H(\left(e^{j\omega-\pi}\right)\right)] = \frac{1}{2}$$

After scaling in frequency we have $G(e^{j\omega}) = H'(e^{j\omega/2}) = \frac{1}{2}$, which is an all-pass filter. If we now apply the result from Part (b) we have

$$Y(e^{j\omega}) = X(e^{j\omega}) G(e^{j\omega})$$
$$= \frac{1}{2}X(e^{j\omega}),$$

as was found in Part (a).

Problem 6

No solution available

Problem 7

No solution available