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Chapter 0, Mathematical Prerequisites: Problem Solutions

Problem 1

Recall that
k∑

i=0

zk =

{
1−zk+1

1−z for z 6= 1
N + 1 for z = 1 .

Proof for z 6= 0 (for z = 1 is trivial)

s = 1 + z + z2 + . . . + zN ,

−zs = −z − z2 − . . .− zN − zN+1 .

Summing the above two equations gives

(1− z)s = 1− zN+1 ⇒ s =
1− zN+1

1− z
.

Similarly
N2∑

k=N1

zk = zN1

N2−N1∑
k=0

zk =
zN1 − zN2 + 1

1− z
.

1. We have

N∑
n=1

s[n] =
N∑

n=1

2−n + j

N∑
n=1

3−n

=
1
2
· 1− 2−N

1− 2−1
+ j

1
3
· 1− 3−N

1− 3−1
= (1− 2−N ) + j

1
2
(1− 3−N ) .

Now,
lim

N→∞
2−N = lim

N→∞
3−N = 0 .

Therefore,
∞∑

n=1

s[n] = 1 +
1
2
j .

2. We can write
N∑

k=1

s[k] =
j

3
· 1− (j/3)N

1− j/3
.

Since
∣∣∣ j
3

∣∣∣ = 1
3 < 1, we have limN→∞(j/3)N = 0. Therefore,

∞∑
k=1

s[k] =
1

3j − 1
= − 1

10
+ j · 3

10
.
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3. From z∗ = z−1 with z ∈ C, we have

zz∗ = 1, ∀ z 6= 0.

Therefore, |z|2 = 1 and, consequently, |z| = 1. It follows that all the z such that z∗ = z−1

describe the unit circle.

4. Remark that e2kπ = 1, for all k ∈ Z. Therefore, zk = e
2kπ
3 is such that z3

k = 1. Now zk is
periodic of period 3, i.e. zk = zk+3l, for all l ∈ Z. Therefore the (only) three different complex
numbers are

z0 = 1, z1 = e
2π
3 and z2 = e

4kπ
3 .

5. We have
N∏

n=1

ej π
2n = ejπ

PN
n=1 2−n

= e
jπ 1

2
· 1−2−N

1−1/2 .

Since limN→∞ 2−N = 0,
∞∏

n=1

ej π
2n = ejπ = −1 .

Problem 2

[GEOMETRIC SERIES]

(a)

•
S[n + 1] = S[n] + x[n + 1]

•

S̃[n] = rS[n] = r ·
n∑

k=0

a · rk =
n+1∑
k=1

a · rk = S[n + 1]− a

• {
rS[n] = S[n + 1]− a
S[n + 1] = S[n] + a · rn+1

=⇒ rS[n] = S[n] + a · rn+1 − a

=⇒ S[n] = a
1− rn+1

1− r

(b)

S =
∞∑

k=0

x[k] = lim
n→∞

S[n] = lim
n→∞

a
1− rn+1

1− r
=

a

1− r

(c)
m∑

k=n+1

x[k] =
m∑

k=0

x[k]−
n∑

k=0

x[k] = S[m]− S[n]

= a
1− rm+1

1− r
− a

1− rn+1

1− r
= a

rn+1 − rm+1

1− r

Based on part(a), we have

m∑
k=n+1

s[k] =
a(m− n)

1− r
+ arn+2 1− rm−n

1− r
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To be more precise, If we set a′ = arn+2

1−r we have,

m∑
k=n+1

ark+1

1− r
=

m−n−1∑
k=0

a′rk = a′
1− rm−n

1− r
= arn+2 1− rm−n

(1− r)2

(d)

t[k] =
1
3k

+ (
1
2j

)k =⇒
∞∑

k=0

t[k] =
∞∑

k=0

1
3k

+
∞∑

k=0

(
1
2j

)k =
1

1− 1
3

+
1

1− 1
2j

=
23− 4j

10

(e) Define P = Π∞
n=1e

jπ/2n
, and consider the fact that ln(ab) = ln(a) + ln(b). Based on part (b) we

have
∑∞

n=1
1
2n = 1

ln(P ) =
∞∑

n=1

ln(ejπ/2n
) =

∞∑
n=1

jπ

2n
= jπ

So we have
P = ejπ = −1

Problem 3

[COMPLEX NUMBERS]

(a) Remark: If the summation over all coefficients in polynomial is zero then x = 1 is a root of that
polynomial. If the summation over all coefficients of odd degree is equal to the summation of
cooefficient of even degree (e. g., the given polynomial in this problem) then x = −1 is a root.
Remark: In every polynomial of order n in the general form P (x) =

∑n
k=0 akx

k , an = 1 the
summation of the roots is −an−1. So, the summation of the roots is −2 in this problem. We can
also solve the equation as the following.

x3 + 2x2 + 2x + 1 = (x + 1)(x2 + x + 1) =⇒ x1 = −1.

In order to solve the remaining degree 2 polynomial, we can write

∆ = b2 − 4ac = 1− 4 = −3, x2, x3 =
−b±

√
∆

2a
=
−1±

√
3

2

In this case, the summation of the roots is −1 + −1−
√

3
2 + −1+

√
3

2 = −2.

(b) We know that j = ej π
2

jj = (e
jπ
2 )j = e

−π
2

(c) Suppose z = rejθ , r > 0
arg(z) = |z|

θ = r

z = θejθ 0 ≤ θ ≤ 2π

z = θ(cos θ + j sin θ)

Fig. 1 illustrates all the point in the complex plane with this property.
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(d) Characterize the set of complex numbers satisfying z∗ = z−1. Suppose z = rejθ , r > 0

z∗ = z−1

re−jθ =
1
r
e−jθ

r =
1
r

r = 1 θ ∈ [0, 2π]

These numbers form a circle in the complex plane shown in Fig. 2.

Figure 1: Problem 2(c): z = θejθ Figure 2: Problem 2(d): z = ejθ

Problem 4

[LINEAR ALGEBRA]

(a) Compute the determinant for the following matrix.

A =


2 0 −1 0
1 0 2 1
0 0 2 1
−1 −3 2 0


Since the second column of A has only one non-sero element, it is easier to expand the determi-
nant with respect to this column.

det(A) = (−1)4+2(−3) det

 2 −1 0
1 2 1
0 2 1

 =

By expanding with respect to the first column of the remaining matrix, we have

det(A) = (−3)
[
(−1)1+1(2) det

[
2 2
1 1

]
+ (−1)2+1(1) det

[
−1 0
2 1

] ]
= (−3)[(+1)(2)(2− 2) + (−1)(1)(−1− 0)] = −3

(b) Consider the matrices

B =


j −1 4
0 2− 3j 1
−1 2j 0
3 0 4− j

 C =

 0 0 j 1
1− 5j 1 4j 2 + 2j

1 3− j 0 −7

 .

Which of the following operations are well-defined (Note that you do NOT have to compute)?
C + B, C ·A−1, B · C, A− C, B + BT , A + AT , C−1 ·B−1, C∗ + B,
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Remark: Suppose matrice A is n×m and matrice B is p×q. A+B and A−B are well-defined
if and only if p = n and q = m. A · B is well defined if and only if m = p. A−1 exists if and
only if n = m and det(A) 6= 0. AT and A∗ are m× n matrices.
So, the following matrices are well-defined. C ·A−1, B · C, A + AT , C∗ + B,

(c) Let x = [1, 2j, 1 + j, 0]. Compute AxT and xB. AxT = [1 − j, 3 + 2j, 2 + 2j, 1 − 4j]T

xB = [−1, 3 + 6j, 4 + 2j]

(d) Compute the determinant of D = xxT and E = xT x.

E = [7]

D =


1 0− 2.j 1− 1j 0
2j 4 2 + 2j 0

1 + 1j 2− 2j 2 0
0 0 0 0

 .

Because the fourth column of D is zero, the determinant should be zero.

det(D) = 0

det(E) = det(7) = 7
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