Chapter 7, Linear Systems: Problem Solutions

Problem 1

[Filter Design: Parks-McClellan Algorithm]
(a) It is clear that $h[n]=h_{e}[n]+h_{o}[n]$ by the definition. We also have

$$
h_{e}[-n]=\frac{1}{2}(h[-n]+h[n])=\frac{1}{2}(h[n]+h[-n])=h_{e}[n]
$$

and

$$
h_{o}[-n]=\frac{1}{2}(h[-n]-h[n])=-\frac{1}{2}(-h[n]+h[n])=-h_{o}[n]
$$

which show $h_{e}[n]$ and $h_{o}[n]$ are even and odd sequences, respectively.
If $h[n]$ is causal, then $h[n]=0$ for $n<0$, and

$$
h_{e}[n]=\frac{1}{2}(h[-n]+h[n])=\frac{1}{2}(0+h[n])=\frac{1}{2} h[n] \quad \text { for } n>0
$$

and

$$
h_{e}[0]=\frac{1}{2}(h[0]+h[0])=h[0],
$$

which yields in

$$
h[n]=2 h_{e}[n] u[n]-h_{e}[0] \delta[n]
$$

which is true for general n.
For a real value sequence $h[n]$, the function $H(z)$ is a real function and is the same as its complex conjugate. Using the property $h[-n] \stackrel{D T F T}{\longleftrightarrow} H\left(e^{j(-\omega)}\right)$, we have

$$
h_{e}[n]=\frac{1}{2}(h[n]+h[-n]) \stackrel{D T F T}{\longleftrightarrow} \frac{1}{2}\left(H\left(e^{j \omega}\right)+H\left(e^{-j \omega}\right)\right)
$$

and

$$
\frac{1}{2}\left(H\left(e^{j \omega}\right)+H\left(e^{-j \omega}\right)\right)=\frac{1}{2}\left(H\left(e^{j \omega}\right)+\left(H\left(e^{-j \omega}\right)\right)^{*}\right)=\Re\left\{H\left(e^{j \omega}\right)\right\}
$$

(b) Starting from the set of equations

$$
W\left(e^{j \omega_{n}}\right)\left(H_{d r}\left(e^{j \omega_{n}}\right)-P\left(e^{j \omega_{n}}\right)\right)=(-1)^{n} \delta_{2} \text { for } n=0,1,2, \ldots, L+1
$$

we have

$$
H_{d r}\left(e^{j \omega_{n}}\right)=\frac{(-1)^{n} \delta_{2}}{W\left(e^{j \omega_{n}}\right)}+P\left(e^{j \omega_{n}}\right)=\frac{(-1)^{n} \delta_{2}}{W\left(e^{j \omega_{n}}\right)}+\sum_{k=0}^{L} a[k] \cos \left(\omega_{n} k\right)
$$

which can be easily rewritten in matrix form as

$$
\left[\begin{array}{llllll}
1 & \cos \left(\omega_{0}\right) & \cos \left(2 \omega_{0}\right) & \ldots & \cos \left(L \omega_{0}\right) & \frac{1}{W\left(\omega_{0}\right)} \\
1 & \cos \left(\omega_{1}\right) & \cos \left(2 \omega_{1}\right) & \ldots & \cos \left(L \omega_{1}\right) & \frac{-1}{W\left(\omega_{1}\right)} \\
\ldots & & & & & \\
1 & \cos \left(\omega_{L+1}\right) & \cos \left(2 \omega_{L+1}\right) & \ldots & \cos \left(L \omega_{L+1}\right) & \frac{(-1)^{L+1}}{W\left(\omega_{L+1}\right)}
\end{array}\right]\left[\begin{array}{l}
a[0] \\
a[1] \\
\ldots \\
a[L] \\
\delta_{2}
\end{array}\right]=\left[\begin{array}{l}
H_{d r}\left(e^{j \omega_{0}}\right) \\
H_{d r}\left(e^{j \omega_{1}}\right) \\
\ldots \\
H_{d r}\left(e^{j \omega_{L+1}}\right)
\end{array}\right]
$$

Figure 1: Impulse response.

Figure 2: Frequency response..
where the first $L+1$ columns of the matrix are corresponding to the term $\sum_{k=0}^{L} a[k] \cos \left(\omega_{n} k\right)$ and the last column is the contribution of the term $\frac{(-1)^{n} \delta_{2}}{W\left(e^{j \omega_{n}}\right)}$.
c You can use the follwing MATLAB code to plot the impulse response and frequency response of the desired filter.

```
        [h,err]=firpm(20,[0 0.45 0.55 1],[1 1 0 0],[5 1]);
    subplot(2,1,1);
    stem(h);
    H=fft(h,500);
    subplot(2,1,2);
    plot([0:499]*2*pi/500,abs(H));
    axis([0 pi 0 1.2]);
    xlabel('
    omega');
    ylabel('|H(
    omega)|');
```


Problem 2

1. $D\{\alpha x[n]\}=\alpha x[n-1]=\alpha D\{x[n]\}$
$D\{x[n]+y[n]\}=x[n-1]+y[n-1]=D\{x[n]\}+D\{y[n]\}$.
2. Δ is a linear combination of the original signal with the linear operator D, therefore it is also linear.
3. $S\{\alpha x[n]\}=\alpha^{2} x^{2}[n-1]=\alpha^{2} S\{x[n]\} \neq \alpha S\{x[n]\}$.
4.

$$
\boldsymbol{\Delta}=\mathbf{I}-\mathbf{D}=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

5. The matrix realizes an integration operation over a vector in \mathbb{C}^{4}.

Problem 3

1. $y[n]=x[-n]$

Linear: $\mathcal{H}\left\{a x_{1}[n]+b x_{2}[n]\right\}=a x_{1}[-n]+b x_{2}[-n]=a \mathcal{H}\left\{x_{1}[n]\right\}+b \mathcal{H}\left\{x_{2}[n]\right\}$. Therefore, \mathcal{H} is linear.

Time Invariant: $\mathcal{H}\left\{x\left[n-n_{0}\right]\right\}=x\left[-n-n_{0}\right] \neq y\left[n-n_{0}\right]$. Therefore, \mathcal{H} is NOT time invariant.

Stable: If $|x[n]| \leq M$, then $|\mathcal{H}\{x[n]\}| \leq M$. Therefore, \mathcal{H} is BIBO stable.
Causal: \mathcal{H} is not causal.
Impulse response: \mathcal{H} is not LTI, therefore $h[n]$ does not characterize the system.
2. $y[n]=e^{-j \omega n} x[n]$

Linear: $\mathcal{H}\left\{a x_{1}[n]+b x_{2}[n]\right\}=e^{-j \omega n}\left(a x_{1}[n]+b x_{2}[n]\right)=a \mathcal{H}\left\{x_{1}[n]\right\}+b \mathcal{H}\left\{x_{2}[n]\right\}$. Therefore, \mathcal{H} is linear.
Time Invariant: $\mathcal{H}\left\{x\left[n-n_{0}\right]\right\}=e^{-j \omega n} x\left[n-n_{0}\right]=e^{j \omega n_{0}} y\left[n-n_{0}\right]$. Therefore, \mathcal{H} is not time invariant (only for $\omega=0$).
Stable: If $|x[n]| \leq M$, then $|\mathcal{H}\{x[n]\}|=|x[n]| \leq M$. Therefore, \mathcal{H} is BIBO stable.
Causal: \mathcal{H} is causal.
Impulse response: \mathcal{H} is not LTI, therefore $h[n]$ does not characterize the system.
3. $y[n]=\sum_{k=n-n_{0}}^{n+n_{0}} x[k]$

Linear: $\mathcal{H}\left\{a x_{1}[n]+b x_{2}[n]\right\}=\sum_{k=n-n_{0}}^{n+n_{0}}\left(a x_{1}[k]+b x_{2}[k]\right)=a \mathcal{H}\left\{x_{1}[n]\right\}+b \mathcal{H}\left\{x_{2}[n]\right\}$. Therefore, \mathcal{H} is linear.
Time Invariant: $\mathcal{H}\left\{x\left[n-n_{0}\right]\right\}=\sum_{k=n-n_{0}}^{n+n_{0}} x\left[k-n_{0}\right]=\sum_{k=n-2 n_{0}}^{n} x[k]=y\left[n-n_{0}\right]$. Therefore, \mathcal{H} is time invariant.
Stable: If $|x[n]| \leq M$, then $\mathcal{H}\{x[n]\} \leq\left|2 n_{0}+1\right| M$. Therefore, \mathcal{H} is BIBO stable.
Causal: \mathcal{H} is not causal.
Impulse response: If $x[n]=\delta[n], y[n]=h[n]$:

$$
h[n]= \begin{cases}1 & \text { if }|n| \leq\left|n_{0}\right| \\ 0 & \text { otherwise }\end{cases}
$$

4. $y[n]=n y[n-1]+x[n]$, such that if $x[n]=0$ for $n<n_{0}$, then $y[n]=0$ for $n<n_{0}$.

Since \mathcal{H} is recursive, we can not use the same technique as before. Note that all inputs $x[n]$ can be expressed as a linear combination of delayed impulses: $x[n]=$ $\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$. Therefore, to show that \mathcal{H} is linear or time invariant, we can restrict the input to delayed impulses.
If $x[n]=\delta[n]$, we can obtain $y[n]$ by recursion:

$$
h[n]=y[n]=n!u[n] .
$$

If $x[n]=a \delta[n]+b \delta[n]:$

$$
y[n]=(a+b) n!u[n] .
$$

Therefore, \mathcal{H} is linear.
To check if \mathcal{H} is time invariant, consider $x[n]=\delta[n-1]$. It is easy to check that $\mathcal{H}\{\delta[n-1]\}!=h[n-1]$.
Stable: The system is non stable.
Causal: \mathcal{H} is causal.
Impulse response: \mathcal{H} is not LTI, therefore $h[n]$ does not characterize the system.

Problem 4

1. Consider the sequence $x[n]=\delta[n-1]$; we should have $\mathcal{R}\{x[n]\}[n]=\mathcal{R}\{\delta[n]\}[n-1]$ but instead it is

$$
\begin{aligned}
\mathcal{R}\{x[n]\}[n] & =x[-n]=\delta[-(n+1)]=\delta[n+1] \\
\mathcal{R}\{\delta[n]\}[n-1] & =\delta[n-1]
\end{aligned}
$$

2. First of all recall that the DTFT of $x[-n]$ is $X\left(e^{-j \omega}\right)$; if $x[n]$ is real, we also have $X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right)$. In the frequency domain we therefore have:
(a) $S\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) X\left(e^{j \omega}\right)$
(b) $R\left(e^{j \omega}\right)=S\left(e^{-j \omega}\right)=H^{*}\left(e^{j \omega}\right) X\left(e^{-j \omega}\right)$ since $h[n]$ is real.
(c) $W\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) R\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right|^{2} X\left(e^{-j \omega}\right)$
(d) $Y\left(e^{j \omega}\right)=W\left(e^{-j \omega}\right)=\left|H\left(e^{j \omega}\right)\right|^{2} X\left(e^{j \omega}\right)$

Therefore the chain of transformations defines an LTI filter \mathcal{G} with frequency response $G\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right|^{2}$. The corresponding impulse response is simply

$$
g[n]=h[n] * h[-n]
$$

What is interesting to note here is that, even though \mathcal{R} is not time invariant, we can combine time variant operators into an overall time-invariant transformation.
3. $G\left(e^{j \omega}\right)$ is a real function, therefore its phase is zero.

