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Chapter 7, Linear Systems: Problem Solutions

Problem 1

[Filter Design: Parks-McClellan Algorithm]

(a) It is clear that h[n] = he[n] + ho[n] by the definition. We also have

he[−n] =
1

2
(h[−n] + h[n]) =

1

2
(h[n] + h[−n]) = he[n]

and

ho[−n] =
1

2
(h[−n]− h[n]) = −

1

2
(−h[n] + h[n]) = −ho[n]

which show he[n] and ho[n] are even and odd sequences, respectively.

If h[n] is causal, then h[n] = 0 for n < 0, and

he[n] =
1

2
(h[−n] + h[n]) =

1

2
(0 + h[n]) =

1

2
h[n] for n > 0

and

he[0] =
1

2
(h[0] + h[0]) = h[0],

which yields in
h[n] = 2he[n]u[n]− he[0]δ[n]

which is true for general n.

For a real value sequence h[n], the function H(z) is a real function and is the same as

its complex conjugate. Using the property h[−n]
DTFT
←→ H(ej(−ω)), we have

he[n] =
1

2
(h[n] + h[−n])

DTFT
←→

1

2

(

H(ejω) + H(e−jω)
)

and
1

2

(

H(ejω) + H(e−jω)
)

=
1

2

(

H(ejω) + (H(e−jω))∗
)

= ℜ{H(ejω)}

(b) Starting from the set of equations

W (ejωn)(Hdr(e
jωn)− P (ejωn)) = (−1)nδ2 for n = 0, 1, 2, ..., L + 1,

we have

Hdr(e
jωn) =

(−1)nδ2

W (ejωn)
+ P (ejωn) =

(−1)nδ2

W (ejωn)
+

L
∑

k=0

a [k] cos(ωnk),

which can be easily rewritten in matrix form as











1 cos(ω0) cos(2ω0) ... cos(Lω0)
1

W (ω0)

1 cos(ω1) cos(2ω1) ... cos(Lω1)
−1

W (ω1)

...

1 cos(ωL+1) cos(2ωL+1) ... cos(LωL+1)
(−1)L+1

W (ωL+1)























a [0]
a [1]
...

a [L]
δ2













=









Hdr(e
jω0)

Hdr(e
jω1)

...

Hdr(e
jωL+1)
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Figure 1: Impulse response.
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Figure 2: Frequency response..

where the first L+1 columns of the matrix are corresponding to the term
∑L

k=0 a [k] cos(ωnk)

and the last column is the contribution of the term (−1)nδ2
W (ejωn )

.

c You can use the follwing MATLAB code to plot the impulse response and frequency response
of the desired filter.

[h,err]=firpm(20,[0 0.45 0.55 1],[1 1 0 0],[5 1]);

subplot(2,1,1);

stem(h);

H=fft(h,500);

subplot(2,1,2);

plot([0:499]*2*pi/500,abs(H));

axis([0 pi 0 1.2]);

xlabel(’

omega’);

ylabel(’|H(

omega)|’);
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Problem 2

1. D{αx[n]} = αx[n− 1] = αD{x[n]}
D{x[n] + y[n]} = x[n− 1] + y[n− 1] = D{x[n]}+ D{y[n]}.

2. ∆ is a linear combination of the original signal with the linear operator D, therefore it
is also linear.

3. S{αx[n]} = α2x2[n− 1] = α2S{x[n]} 6= αS{x[n]}.

4.

∆ = I−D =









1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1









.

5. The matrix realizes an integration operation over a vector in C
4.

Problem 3

1. y[n] = x[−n]

Linear: H{ax1[n] + bx2[n]} = ax1[−n] + bx2[−n] = aH{x1[n]}+ bH{x2[n]}. Therefore,
H is linear.

Time Invariant: H{x[n − n0]} = x[−n − n0] 6= y[n − n0]. Therefore, H is NOT time
invariant.

Stable: If |x[n]| ≤M , then |H{x[n]}| ≤M . Therefore, H is BIBO stable.

Causal: H is not causal.

Impulse response: H is not LTI, therefore h[n] does not characterize the system.

2. y[n] = e−jωnx[n]

Linear: H{ax1[n] + bx2[n]} = e−jωn(ax1[n] + bx2[n]) = aH{x1[n]}+ bH{x2[n]}. There-
fore, H is linear.

Time Invariant: H{x[n − n0]} = e−jωnx[n − n0] = ejωn0y[n − n0]. Therefore, H is not
time invariant (only for ω = 0).

Stable: If |x[n]| ≤M , then |H{x[n]}| = |x[n]| ≤M . Therefore, H is BIBO stable.

Causal: H is causal.

Impulse response: H is not LTI, therefore h[n] does not characterize the system.

3. y[n] =
∑n+n0

k=n−n0
x[k]

Linear: H{ax1[n] + bx2[n]} =
∑n+n0

k=n−n0
(ax1[k] + bx2[k]) = aH{x1[n]} + bH{x2[n]}.

Therefore, H is linear.

Time Invariant: H{x[n − n0]} =
∑n+n0

k=n−n0
x[k − n0] =

∑n
k=n−2n0

x[k] = y[n − n0].
Therefore, H is time invariant.

Stable: If |x[n]| ≤M , then H{x[n]} ≤ |2n0 + 1|M . Therefore, H is BIBO stable.

Causal: H is not causal.

Impulse response: If x[n] = δ[n], y[n] = h[n]:

h[n] =

{

1 if |n| ≤ |n0|,

0 otherwise.
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4. y[n] = ny[n− 1] + x[n], such that if x[n] = 0 for n < n0, then y[n] = 0 for n < n0.

Since H is recursive, we can not use the same technique as before. Note that all
inputs x[n] can be expressed as a linear combination of delayed impulses: x[n] =
∑

∞

k=−∞
x[k]δ[n − k]. Therefore, to show that H is linear or time invariant, we can

restrict the input to delayed impulses.

If x[n] = δ[n], we can obtain y[n] by recursion:

h[n] = y[n] = n!u[n].

If x[n] = aδ[n] + bδ[n]:

y[n] = (a + b)n!u[n].

Therefore, H is linear.

To check if H is time invariant, consider x[n] = δ[n − 1]. It is easy to check that
H{δ[n − 1]}! = h[n− 1].

Stable: The system is non stable.

Causal: H is causal.

Impulse response: H is not LTI, therefore h[n] does not characterize the system.

Problem 4

1. Consider the sequence x[n] = δ[n− 1]; we should have R{x[n]}[n] = R{δ[n]}[n− 1] but
instead it is

R{x[n]}[n] = x[−n] = δ[−(n + 1)] = δ[n + 1]

R{δ[n]}[n − 1] = δ[n − 1]

2. First of all recall that the DTFT of x[−n] is X(e−jω); if x[n] is real, we also have
X(ejω) = X∗(e−jω). In the frequency domain we therefore have:

(a) S(ejω) = H(ejω)X(ejω)

(b) R(ejω) = S(e−jω) = H∗(ejω)X(e−jω) since h[n] is real.

(c) W (ejω) = H(ejω)R(ejω) = |H(ejω)|2X(e−jω)

(d) Y (ejω) = W (e−jω) = |H(ejω)|2X(ejω)

Therefore the chain of transformations defines an LTI filter G with frequency response
G(ejω) = |H(ejω)|2. The corresponding impulse response is simply

g[n] = h[n] ∗ h[−n]

What is interesting to note here is that, even though R is not time invariant, we can
combine time variant operators into an overall time-invariant transformation.

3. G(ejω) is a real function, therefore its phase is zero.
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