Chapter 4, Signals and Hilbert Spaces: Problem Solutions

Problem 1

1. Recall that the set of N non-zero orthogonal vectors in an N-dimensional subspace is a basis for the subspace. Therefore, we need to prove the orthogonality across the vectors $\{\mathbf{w}^{(k)}\}_{k=0,\ldots,N-1}$. Let us compute the inner product, that is:

$$\langle \mathbf{w}^{(k)}, \mathbf{w}^{(h)} \rangle = \sum_{n=0}^{N-1} \mathbf{w}^{(k)} \mathbf{w}^{*(h)} = \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}nk} e^{j\frac{2\pi}{N}nh}$$
$$= \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}n(k-h)} = \begin{cases} N & \text{if } k = h \\ 0 & \text{otherwise.} \end{cases}$$

Since the inner product of the vectors is equal to zero, we conclude that they are orthogonal. However, they do not have a unit norm and therefore are not the orthonormal vectors.

2. In order to obtain the *orthonormal basis* we normalize the vectors with the factor $1/\sqrt{N}$, having:

$$\langle \mathbf{w}_{norm}^{(k)}, \mathbf{w}_{norm}^{(h)} \rangle = \sum_{n=0}^{N-1} \frac{1}{\sqrt{N}} e^{-j\frac{2\pi}{N}nk} \frac{1}{\sqrt{N}} e^{j\frac{2\pi}{N}nh}$$
$$= \frac{1}{N} \sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}n(k-h)} = \begin{cases} 1 & \text{if } k = h \\ 0 & \text{otherwise.} \end{cases}$$