Chapter 4, Signals and Hilbert Spaces: Problem Solutions

Problem 1

1. Recall that the set of N non-zero orthogonal vectors in an N-dimensional subspace is a basis for the subspace. Therefore, we need to prove the orthogonality across the vectors $\left\{\mathbf{w}^{(k)}\right\}_{k=0, \ldots, N-1}$. Let us compute the inner product, that is:

$$
\begin{aligned}
\left\langle\mathbf{w}^{(k)}, \mathbf{w}^{(h)}\right\rangle & =\sum_{n=0}^{N-1} \mathbf{w}^{(k)} \mathbf{w}^{*(h)}=\sum_{n=0}^{N-1} e^{-j \frac{2 \pi}{N} n k} e^{j \frac{2 \pi}{N} n h} \\
& =\sum_{n=0}^{N-1} e^{-j \frac{2 \pi}{N} n(k-h)}= \begin{cases}N & \text { if } k=h \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Since the inner product of the vectors is equal to zero, we conclude that they are orthogonal. However, they do not have a unit norm and therefore are not the orthonormal vectors.
2. In order to obtain the orthonormal basis we normalize the vectors with the factor $1 / \sqrt{N}$, having:

$$
\begin{aligned}
\left\langle\mathbf{w}_{\text {norm }}^{(k)}, \mathbf{w}_{\text {norm }}^{(h)}\right\rangle & =\sum_{n=0}^{N-1} \frac{1}{\sqrt{N}} e^{-j \frac{2 \pi}{N} n k} \frac{1}{\sqrt{N}} e^{j \frac{2 \pi}{N} n h} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} e^{-j \frac{2 \pi}{N} n(k-h)}= \begin{cases}1 & \text { if } k=h \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

