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Chapter 9, Filter Design: Problem Solutions

Problem 1

1. First of all note that 1 − 2−k = (2k − 1)/2k. With this we find that

z1 = ej 1

2
π

z2 = ej 3

4
π

z3 = ej 7

8
π

z4 = ej 15

16
π

which are simply four points in the second quadrant on the unit circle.

2. Each couple of complex-conjugate zeros contributes a factor of the form (1−2z−1 cos θ+
z−2) to the transfer function, where θ is the angle of the complex zero. We have in the
end:

H(z) = (1 + z−1)(1 + z−2)(1 − 2 cos(
3

4
π) z−1 + z−2)

3. H(z) is a 5th degree polynomial in z−1 and therefore it has at most 6 nonzero coefficients.
The impulse response will have 6 nonzero taps.

4. You don’t even need Matlab to do this. First of all, the impulse response is real and
therefore the magnitude of H(ejω) is symmetric. Consider now the values of the fre-
quency response at zero and π; these are computed from the z-transform for z = 1 and
z = −1 respectively; we have:

H(ej0) = H(1) = 2 · 2 · 2(1 − cos(
3

4
π)) ≈ 13.6

H(ejπ) = H(−1) = 0

Next, you need to consider that H(z) is zero on the unit circle at z1 and z2, i.e. at
ω = π/2 and ω = 3π/4. Now you can plot the magnitude:
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(a) Diagram 1
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(b) Diagram 2
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(c) Diagram 3

Figure 1: Zeros and Poles Diagrams

5. First of all, is the filter linear phase? You can compute the coefficient of the transfer
function and verify that h[n] = 1, 2.4142, 3.4142, 3.4142, 2.4142, 1 for n = 0, . . . , 5. In
a simpler way, you can simply notice that H(z−1) = z5 H(z) and therefore the filter
is linear phase, symmetric. The filter has an even number of taps and therefore it is
Type II.

Because of the zero in π and the large value in zero, the filter is lowpass. However, it is
not equiripple since the magnitude at the peak of the first sidelobe in the stopband is
higher than the peak of the second sidelobe.

The filter is clearly not a good filter: the transition band is very large, it is not flat in
the passband and the magnitude is rather large in the stopband.

Problem 2

To obtain the frequency response of a filter, we analyze the z-transform in the unit circle, that
is, in z = ejω. Figure 1 shows the exact magnitude of each frequency response:

1. The first filter is a low-pass filter. Note that there are three poles located in low frequency
(near ω = 0), while there is a zero located in high frequency (ω = π).

2. The second filter is just the opposite. The zero is located in low frequency, while the
influence of the three poles is maximum in high frequency (ω = π). Therefore, it is a
high-pass filter.

3. In the third system, there are poles which affect low and high frequency and two zeros
close to w = π/2. Therefore, this system is a stop-band filter.
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Fig. 2: The zero-pole plot of H(z) for φ = 0. Fig. 3: The zero-pole plot of H(z) for φ = π.

Problem 3

(a) Clearly, c = 1
2ej(φ+π) and d = 1

2ejφ are the zero and the pole of H(z), respectively (see
Figures 2 and 3).

(b) Since the system is LTI, the output of the system can be written as

y[n] = h[n] ∗ x[n]

in terms of the input and impulse response. Therefore, we have

Y
(

ejω
)

= H
(

ejω
)

X
(

ejω
)

and by taking logarithm of the magnitude,

20 log10 |Y
(

ejω
)

| = 20 log10 |H
(

ejω
)

| + 20 log10 |X
(

ejω
)

|

(c) Using the property |A|2 = AA∗, we have

20 log10 |1 − rejθ| = 10 log10(1 − rejθ)(1 − rejθ)∗

= 10 log10(1 − rejθ)(1 − re−jθ)

= 10 log10

(

1 − r cos(−θ) − r sin(−θ) − r cos(θ) − r sin(θ) + r2
)

= 10 log10(1 + r2 − 2r cos(θ))
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(d)

20 log10

∣

∣H
(

ejω
)∣

∣ = 20 log10

∣

∣

∣

∣

1 − ce−jω

1 − de−jω

∣

∣

∣

∣

= 20 log10

∣

∣1 − ce−jω
∣

∣− 20 log10

∣

∣1 − de−jω
∣

∣

= 20 log10

∣

∣

∣

∣

1 −
1

2
ej(φ+π)e−jω

∣

∣

∣

∣

− 20 log10

∣

∣

∣

∣

1 −
1

2
ejφe−jω

∣

∣

∣

∣

= 10 log10(1 +
1

4
− 2

1

2
cos(φ + π − ω)) − 10 log10(1 +

1

4
− 2

1

2
cos(φ − ω))

= 10 log10(
5

4
+ cos(φ − ω)) − 10 log10(

5

4
− cos(φ − ω))

= 10 log10

(

5
4 + cos(φ − ω)
5
4 − cos(φ − ω)

)

For ω = φ, we have

20 log10

∣

∣H
(

ejω
)
∣

∣

∣

∣

∣

∣

∣

ω=π

= 10 log10

(

5
4 + cos(0)
5
4 − cos(0)

)

= 10 log10(9) = 9.542

which is a large magnitude and shows that system amplify the input at this frequency.

For ω = φ + π,

[20 log10

∣

∣H
(

ejω
)∣

∣

∣

∣

∣

∣

∣

ω=φ+π

= 10 log10

(

5
4 + cos(π)
5
4 − cos(π)

)

= 10 log10(
1

9
) = −9.542

which shows that the system is behaves as a filter and pass only a small amount of the
energy of the input at this frequency.

(e) Here is the MATLAB code

phi=0;

c=0.5*exp(i*(pi+phi));

d=0.5*exp(i*phi);

w=0:0.01:2*pi;

z=exp(i*w);

H=(1-c*z.(̂-1))./(1-d*z.(̂-1));

plot(w,20*log10(abs(H)));

which results in the plot given in Fig. 4, and shows that the filter is low-pass.

(f) The same code (except phi=pi;) can be used. The plot is illustrated in Fig. 5, and shows
that the filter is high-pass.

(g)

H(z) =
1 − cz−1

1 − dz−1

(∗)
= (1 − cz−1) ·

∞
∑

n=0

(

dz−1
)n

where (∗) follows from the region of convergence of H(z). Therefore,

h[n] =







0 if n < 0
1 if n = 0
dn−1(d − c) if n ≥ 1
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Figure 4: 20 log10 |H(ejω)| for φ = 0.
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Figure 5: 20 log10 |H(ejω)| for φ = π.

5



Problem 4

1. First, read in the signal, compute its DFT and plot the amplitude of the spectrum:

>> [s,fs]=wavread(’santa_corrupt.wav’)

>> S=fft(s);

>> set(axes(’FontSize’,32))

>> plot(2*pi*[0:20093]/20094,abs(S))

>> xlabel(’\omega’)

>> ylabel(’S(e^{j\omega})’)

The resulting plot is shown in Fig. 6. It can clearly be seen that noise at a frequency
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Figure 6: Spectrum of the santa corrupt sequence

slightly above π
2 corrupts the signal.

2. We will use the Parks-Mclellan algorithm to design a 21-tap lowpass filter with cutoff
frequency around 0.4π. Then, we filter the sequence to denoise it.

>> [h,err]=firpm(20,[0 0.35 0.45 1],[1 1 0 0],[1 20]);

>> x=filter(h’,1,s’);

>> soundsc(x,fs)

We allow larger ripples in the passband than in the stopband to make sure that we
strongly attenuate the noise. In Fig. 7, we show the spectrum of the denoised signal,
while in Fig. 8, we show the time and amplitude response of the filter we designed.
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Figure 7: Spectrum of the denoised sequence
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(a) Amplitude response
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(b) Time response

Figure 8: Amplitude and responses of the filter we designed using the Parks-McLellan algo-
rithm
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