Signal Processing for Communications EPFL Winter Semester 2007,/2008
Prof. Suhas Diggavi Handout # 16, Wednesday, October 24th, 2007

Chapter 5, The DTFT (Discrete-Time Fourier Transform): Problem
Solutions

Problem 1

1. The inner product in l3(Z) is defined as
(x[n], y[n]) = Spa*[n]yln],

and in Lo([—m,7]) as

Thus,
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where (1) follows from the properties of the complex conjugate, (2) follows from swapping
the integral and the sums and (3) from the fact that
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2m _We dw {0 if m # n.

2. If z[n] = y[n], then (x[n], z[n]) corresponds to the energy of the signal in the time domain
and (X (e?"), X (e?")) to the energy of the signal in the frequency domain. In this case,
the Plancherel-Parseval equality illustrates an energy conservation property from the
time domain to the frequency domain. This property is known as the Parseval theorem.

Problem 2

[DFT AND DTFT]
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Figure 1: Problem 5(a).
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for w # 0. For w = 0 we have X (/%) = 22:3 1— 27114:10 1=2.

(b) See Figure 1 that was obtained by

>>w
>> w
>> X

linspace(0,2*pi,1e3+1);
w(l:end-1); % we don’t want 2*pi itself
(exp (-i*w*3)-2xexp (—i*wx10)+exp (-i*wx15)) ./ (1-exp(-i*w));

Warning: Divide by zero.

>> X(1) = 2;

>> plot(w,abs (X))

>> x1im ([0 2*pil)

>> xlabel(’\omega’)

>> ylabel(’ |X(e"{j\omegal})|’)

(c)-(d) See Figure 2, where we give the result for N = 100 only:
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Figure 2: Problem 6(c)-(d).

>> N=1e2;

>> Xe2 = myDFT(x,N);

>> plot(w,abs(X))

>> x1im ([0 2xpi])

>> hold on

>> plot([0:N-1]/N*2*pi,abs(Xe2),’or’);

>> xlabel(’\omega’)

>> legend(’ |X(e"{j\omegal})|’,’DFT for N=100’);

We see that the the DFT sequence corresponds exactly to points on the DTFT curve.

Problem 3
1. The discrete-time sequence z[n] can be written as the convolution of z1[n| and x3[n]
defined as ( y ( y
1 —-M-1)/2<n<(M—-1)/2
za[n] = 22ln] = { 0 otherwise.
In fact,

x1[n] * x2[n] = Sgzq[k|xe[n — K]

1
Y sz [k [k — n]



12

10

0
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 3: The discrete-time sequence x[n| for M = 11.

where (1) follows from the fact that x1[n] = z2[n] and from the symmetry of x[n| and
(2) noticing that the sum corresponds to the size of the overlapping area between x1[k]
and its m-shifted version z1[k — n]. When |n| > M the two sequences do not overlap
whereas the size of the overlapping area reaches its maximum M when n = 0.

Using Matlab, we can easily verify the above result for M = 11 using the following
code:

> M = 11;
>> x1 = ones(1,M);
>> x2 = x1;

>> x = conv(xl,x2);
>> stem([-M+1:M-1], x);

The result is shown in Figure 3.

. Note that z1[n] = u[n+ (M —1)/2] —u[n — (M +1)/2]. We can thus compute its DTFT
as

Xy () © <; N lg(w)> (ci12 _ =it 112)

1—edv 2
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where (1) follows from the DTFT of u[n] and (2) from the fact that

TV M=1/25 (1) = e~ TWMFD/25(1) = §(w).

Using the convolution theorem, we can write
X (7)) = X1(e7") Xo(e?™)
= X1 (/) X1 (e7?)
2
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Problem 4
1. H{8[n]} = &[n]; but H{ad[n]} = a®d[n] # aH{5[n]}.

2. Let y[n] = H{z[n]}; let wn] = x[n — no); H{w[n]} = w?[n] = 2%[n — ng] = y[n — no).
QED.

3. First of all, y[n] = cos?(won) = (1 + cos(2wpn))/2 from the well-known trigonometric
identity. So y[n| contains a sinusoid at double the original frequency (but be careful:
double in the 27-periodic sense: if wy is larger than /2, then 2wy will wrap around the
[—7, m] interval).

If wg = 37/8, then y[n] = (1 + cos((3w/4)n))/2; since G is a highpass with cutoff
frequency 7/2, it will kill the frequency components below 7/2 and therefore it will kill
the constant. The only component that passes through is the cosine at 37 /4. The final
output is therefore vn] = 1 cos((3m/4)n).

4. If wg = 7n/8, then 2wy = 7n/4 > w. We can therefore bring back the frequency into
the [—m,m| interval. We have that 7r/4 = 27 — w/4 and therefore cos((7r/4)n) =
cos((2m — m/4)n) = cos((w/4)n). So in the end y[n] = (1 + cos((7/4)n))/2. Now the
frequency of the cosine is below 7/2 and therefore v[n] = 1 + cos((w/4)n). Note that,
as for most nonlinear systems, the frequency of the input sinusoid is different from the
frequency of the output sinusoids: sinusoids are no longer eigenfunctions!



