Chapter 5, The DTFT (Discrete-Time Fourier Transform): Problem Solutions

Problem 1

1. The inner product in $l_{2}(\mathbb{Z})$ is defined as

$$
\langle x[n], y[n]\rangle=\Sigma_{n} x^{*}[n] y[n],
$$

and in $L_{2}([-\pi, \pi])$ as

$$
\left\langle X\left(e^{j w}\right), Y\left(e^{j w}\right)\right\rangle=\int_{-\pi}^{\pi} X^{*}\left(e^{j w}\right) Y\left(e^{j w}\right) d w
$$

Thus,

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} X^{*}\left(e^{j w}\right) Y\left(e^{j w}\right) d w & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\Sigma_{n} x[n] e^{-j w n}\right)^{*} \Sigma_{m} y[m] e^{-j w m} d w \\
& \stackrel{(1)}{=} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \Sigma_{n} x^{*}[n] e^{j w n} \Sigma_{m} y[m] e^{-j w m} d w \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \Sigma_{n} \Sigma_{m} x^{*}[n] y[m] e^{j w(n-m)} d w \\
& \stackrel{(2)}{=} \frac{1}{2 \pi} \Sigma_{n} \Sigma_{m} x^{*}[n] y[m] \int_{-\pi}^{\pi} e^{j w(n-m)} d w \\
& \stackrel{(3)}{=} \Sigma_{n} x^{*}[n] y[n]
\end{aligned}
$$

where (1) follows from the properties of the complex conjugate, (2) follows from swapping the integral and the sums and (3) from the fact that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j w(n-m)} d w= \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

2. If $x[n]=y[n]$, then $\langle x[n], x[n]\rangle$ corresponds to the energy of the signal in the time domain and $\left\langle X\left(e^{j w}\right), X\left(e^{j w}\right)\right\rangle$ to the energy of the signal in the frequency domain. In this case, the Plancherel-Parseval equality illustrates an energy conservation property from the time domain to the frequency domain. This property is known as the Parseval theorem.

Problem 2

[DFT and DTFT]

Figure 1: Problem 5(a).
(a)

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& =\sum_{n=3}^{9} e^{-j \omega n}-\sum_{n=10}^{14} e^{-j \omega n} \\
& =e^{-j \omega 3} \frac{1-e^{-j \omega 7}}{1-e^{-j \omega}}-e^{-j \omega 10} \frac{1-e^{-j \omega 5}}{1-e^{-j \omega}} \\
& =\frac{e^{-j \omega 3}-2 e^{-j \omega 10}+e^{-j \omega 15}}{1-e^{-j \omega}},
\end{aligned}
$$

for $\omega \neq 0$. For $\omega=0$ we have $X\left(e^{j 0}\right)=\sum_{n=3}^{9} 1-\sum_{n=10}^{14} 1=2$.
(b) See Figure 1 that was obtained by

```
>> w = linspace(0,2*pi,1e3+1);
>> w = w(1:end-1); % we don't want 2*pi itself
>> X = (exp(-i*W*3)-2*exp(-i*w*10)+exp(-i*W*15))./(1-exp(-i*W));
Warning: Divide by zero.
>> X(1) = 2;
>> plot(w,abs(X))
>> xlim([0 2*pi])
>> xlabel('\omega')
>> ylabel('|X(e^{j\omega})|')
```

(c)-(d) See Figure 2, where we give the result for $N=100$ only:

Figure 2: Problem 6(c)-(d).

```
>> N=1e2;
>> Xe2 = myDFT(x,N);
>> plot(w,abs(X))
>> xlim([0 2*pi])
>> hold on
>> plot([0:N-1]/N*2*pi,abs(Xe2),'or');
>> xlabel('\omega')
>> legend('|X(e^{j\omega})|','DFT for N=100');
```

We see that the the DFT sequence corresponds exactly to points on the DTFT curve.

Problem 3

1. The discrete-time sequence $x[n]$ can be written as the convolution of $x_{1}[n]$ and $x_{2}[n]$ defined as

$$
x_{1}[n]=x_{2}[n]= \begin{cases}1 & -(M-1) / 2 \leq n \leq(M-1) / 2 \\ 0 & \text { otherwise }\end{cases}
$$

In fact,

$$
\begin{aligned}
x_{1}[n] * x_{2}[n] & =\Sigma_{k} x_{1}[k] x_{2}[n-k] \\
& \stackrel{(1)}{=} \Sigma_{k} x_{1}[k] x_{1}[k-n] \\
& \stackrel{(2)}{=} x[n]
\end{aligned}
$$

Figure 3: The discrete-time sequence $x[n]$ for $M=11$.
where (1) follows from the fact that $x_{1}[n]=x_{2}[n]$ and from the symmetry of $x_{1}[n]$ and (2) noticing that the sum corresponds to the size of the overlapping area between $x_{1}[k]$ and its n-shifted version $x_{1}[k-n]$. When $|n| \geq M$ the two sequences do not overlap whereas the size of the overlapping area reaches its maximum M when $n=0$.

Using Matlab, we can easily verify the above result for $M=11$ using the following code:

```
>> M = 11;
>> x1 = ones(1,M);
>> x2 = x1;
>> x = conv(x1,x2);
>> stem([-M+1:M-1], x);
```

The result is shown in Figure 3.
2. Note that $x_{1}[n]=u[n+(M-1) / 2]-u[n-(M+1) / 2]$. We can thus compute its DTFT as

$$
\begin{aligned}
X_{1}\left(e^{j \omega}\right) & \stackrel{(1)}{=}\left(\frac{1}{1-e^{-j \omega}}+\frac{1}{2} \tilde{\delta}(\omega)\right)\left(e^{j \omega(M-1) / 2}-e^{-j \omega(M+1) / 2}\right) \\
& \stackrel{(2)}{=} \frac{e^{j \omega(M-1) / 2}-e^{-j \omega(M+1) / 2}}{1-e^{-j \omega}}=\frac{e^{-j \omega / 2}\left(e^{j \omega M / 2}-e^{-j \omega M / 2}\right)}{e^{-j \omega / 2}\left(e^{j \omega / 2}-e^{-j \omega / 2}\right)} \\
& =\frac{\sin (\omega M / 2)}{\sin (\omega / 2)}
\end{aligned}
$$

where (1) follows from the DTFT of $u[n]$ and (2) from the fact that

$$
e^{j w(M-1) / 2} \tilde{\delta}(w)=e^{-j w(M+1) / 2} \tilde{\delta}(w)=\tilde{\delta}(w)
$$

Using the convolution theorem, we can write

$$
\begin{aligned}
X\left(e^{j w}\right) & =X_{1}\left(e^{j w}\right) X_{2}\left(e^{j w}\right) \\
& =X_{1}\left(e^{j w}\right) X_{1}\left(e^{j w}\right) \\
& =\left(\frac{\sin (\omega M / 2)}{\sin (\omega / 2)}\right)^{2}
\end{aligned}
$$

Problem 4

1. $\mathcal{H}\{\delta[n]\}=\delta[n]$; but $\mathcal{H}\{a \delta[n]\}=a^{2} \delta[n] \neq a \mathcal{H}\{\delta[n]\}$.
2. Let $y[n]=\mathcal{H}\{x[n]\} ;$ let $w[n]=x\left[n-n_{0}\right] ; \mathcal{H}\{w[n]\}=w^{2}[n]=x^{2}\left[n-n_{0}\right]=y\left[n-n_{0}\right]$. QED.
3. First of all, $y[n]=\cos ^{2}\left(\omega_{0} n\right)=\left(1+\cos \left(2 \omega_{0} n\right)\right) / 2$ from the well-known trigonometric identity. So $y[n]$ contains a sinusoid at double the original frequency (but be careful: double in the 2π-periodic sense: if ω_{0} is larger than $\pi / 2$, then $2 \omega_{0}$ will wrap around the $[-\pi, \pi]$ interval).
If $\omega_{0}=3 \pi / 8$, then $y[n]=(1+\cos ((3 \pi / 4) n)) / 2$; since \mathcal{G} is a highpass with cutoff frequency $\pi / 2$, it will kill the frequency components below $\pi / 2$ and therefore it will kill the constant. The only component that passes through is the cosine at $3 \pi / 4$. The final output is therefore $v[n]=\frac{1}{2} \cos ((3 \pi / 4) n)$.
4. If $\omega_{0}=7 \pi / 8$, then $2 \omega_{0}=7 \pi / 4>\pi$. We can therefore bring back the frequency into the $[-\pi, \pi]$ interval. We have that $7 \pi / 4=2 \pi-\pi / 4$ and therefore $\cos ((7 \pi / 4) n)=$ $\cos ((2 \pi-\pi / 4) n)=\cos ((\pi / 4) n)$. So in the end $y[n]=(1+\cos ((\pi / 4) n)) / 2$. Now the frequency of the cosine is below $\pi / 2$ and therefore $v[n]=1+\cos ((\pi / 4) n)$. Note that, as for most nonlinear systems, the frequency of the input sinusoid is different from the frequency of the output sinusoids: sinusoids are no longer eigenfunctions!
