
Signal Processing for Communications EPFL Winter Semester 2007/2008
Prof. Suhas Diggavi Handout # 16, Wednesday, October 24th, 2007

Chapter 5, The DTFT (Discrete-Time Fourier Transform): Problem
Solutions

Problem 1

1. The inner product in l2(Z) is defined as

〈x[n], y[n]〉 = Σnx∗[n]y[n],

and in L2([−π, π]) as

〈X(ejw), Y (ejw)〉 =

∫ π

−π
X∗(ejw)Y (ejw)dw.

Thus,

1

2π

∫ π

−π
X∗(ejw)Y (ejw)dw =

1

2π

∫ π

−π

(

Σnx[n]e−jwn
)

∗

Σmy[m]e−jwmdw

(1)
=

1

2π

∫ π

−π
Σnx∗[n]ejwnΣmy[m]e−jwmdw

=
1

2π

∫ π

−π
ΣnΣmx∗[n]y[m]ejw(n−m)dw

(2)
=

1

2π
ΣnΣmx∗[n]y[m]

∫ π

−π
ejw(n−m)dw

(3)
= Σnx∗[n]y[n],

where (1) follows from the properties of the complex conjugate, (2) follows from swapping
the integral and the sums and (3) from the fact that

1

2π

∫ π

−π
ejw(n−m)dw =

{

1 if m = n
0 if m 6= n.

2. If x[n] = y[n], then 〈x[n], x[n]〉 corresponds to the energy of the signal in the time domain
and 〈X(ejw),X(ejw)〉 to the energy of the signal in the frequency domain. In this case,
the Plancherel-Parseval equality illustrates an energy conservation property from the
time domain to the frequency domain. This property is known as the Parseval theorem.

Problem 2

[DFT and DTFT]
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Figure 1: Problem 5(a).

(a)

X
(

ejω
)

=
∞
∑

n=−∞

x[n]e−jωn

=
9

∑

n=3

e−jωn −
14

∑

n=10

e−jωn

= e−jω3 1 − e−jω7

1 − e−jω
− e−jω10 1 − e−jω5

1 − e−jω

=
e−jω3 − 2e−jω10 + e−jω15

1 − e−jω
,

for ω 6= 0. For ω = 0 we have X(ej0) =
∑9

n=3 1 −
∑14

n=10 1 = 2.

(b) See Figure 1 that was obtained by

>> w = linspace(0,2*pi,1e3+1);

>> w = w(1:end-1); % we don’t want 2*pi itself

>> X = (exp(-i*w*3)-2*exp(-i*w*10)+exp(-i*w*15))./(1-exp(-i*w));

Warning: Divide by zero.

>> X(1) = 2;

>> plot(w,abs(X))

>> xlim([0 2*pi])

>> xlabel(’\omega’)

>> ylabel(’|X(e^{j\omega})|’)

(c)-(d) See Figure 2, where we give the result for N = 100 only:
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Figure 2: Problem 6(c)-(d).

>> N=1e2;

>> Xe2 = myDFT(x,N);

>> plot(w,abs(X))

>> xlim([0 2*pi])

>> hold on

>> plot([0:N-1]/N*2*pi,abs(Xe2),’or’);

>> xlabel(’\omega’)

>> legend(’|X(e^{j\omega})|’,’DFT for N=100’);

We see that the the DFT sequence corresponds exactly to points on the DTFT curve.

Problem 3

1. The discrete-time sequence x[n] can be written as the convolution of x1[n] and x2[n]
defined as

x1[n] = x2[n] =

{

1 −(M − 1)/2 ≤ n ≤ (M − 1)/2
0 otherwise.

In fact,

x1[n] ∗ x2[n] = Σkx1[k]x2[n − k]

(1)
= Σkx1[k]x1[k − n]

(2)
= x[n]
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Figure 3: The discrete-time sequence x[n] for M = 11.

where (1) follows from the fact that x1[n] = x2[n] and from the symmetry of x1[n] and
(2) noticing that the sum corresponds to the size of the overlapping area between x1[k]
and its n-shifted version x1[k − n]. When |n| ≥ M the two sequences do not overlap
whereas the size of the overlapping area reaches its maximum M when n = 0.

Using Matlab, we can easily verify the above result for M = 11 using the following
code:

>> M = 11;

>> x1 = ones(1,M);

>> x2 = x1;

>> x = conv(x1,x2);

>> stem([-M+1:M-1], x);

The result is shown in Figure 3.

2. Note that x1[n] = u[n+(M − 1)/2]−u[n− (M +1)/2]. We can thus compute its DTFT
as

X1(e
jω)

(1)
=

(

1

1 − e−jω
+

1

2
δ̃(ω)

)

(

ejω(M−1)/2 − e−jω(M+1)/2
)

(2)
=

ejω(M−1)/2 − e−jω(M+1)/2

1 − e−jω
=

e−jω/2(ejωM/2 − e−jωM/2)

e−jω/2(ejω/2 − e−jω/2)

=
sin(ωM/2)

sin(ω/2)

where (1) follows from the DTFT of u[n] and (2) from the fact that

ejw(M−1)/2δ̃(w) = e−jw(M+1)/2δ̃(w) = δ̃(w).

Using the convolution theorem, we can write

X(ejw) = X1(e
jw)X2(e

jw)

= X1(e
jw)X1(e

jw)

=

(

sin(ωM/2)

sin(ω/2)

)2

.
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Problem 4

1. H{δ[n]} = δ[n]; but H{aδ[n]} = a2δ[n] 6= aH{δ[n]}.

2. Let y[n] = H{x[n]}; let w[n] = x[n − n0]; H{w[n]} = w2[n] = x2[n − n0] = y[n − n0].
QED.

3. First of all, y[n] = cos2(ω0n) = (1 + cos(2ω0n))/2 from the well-known trigonometric
identity. So y[n] contains a sinusoid at double the original frequency (but be careful:
double in the 2π-periodic sense: if ω0 is larger than π/2, then 2ω0 will wrap around the
[−π, π] interval).

If ω0 = 3π/8, then y[n] = (1 + cos((3π/4)n))/2; since G is a highpass with cutoff
frequency π/2, it will kill the frequency components below π/2 and therefore it will kill
the constant. The only component that passes through is the cosine at 3π/4. The final
output is therefore v[n] = 1

2 cos((3π/4)n).

4. If ω0 = 7π/8, then 2ω0 = 7π/4 > π. We can therefore bring back the frequency into
the [−π, π] interval. We have that 7π/4 = 2π − π/4 and therefore cos((7π/4)n) =
cos((2π − π/4)n) = cos((π/4)n). So in the end y[n] = (1 + cos((π/4)n))/2. Now the
frequency of the cosine is below π/2 and therefore v[n] = 1 + cos((π/4)n). Note that,
as for most nonlinear systems, the frequency of the input sinusoid is different from the
frequency of the output sinusoids: sinusoids are no longer eigenfunctions!
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