EPFL, Winter Semester 2007 Wed, November 14, 2007

MIDTERM

Wednesday, November 14, 2007, 10:15 - 13:15 This exam has 5 problems and 100 points in total

- You have 3 hours.
- You are allowed to use 3 sheets of paper (6 pages) for reference.
- No other materials are allowed. No mobile phones or calculators are allowed.
- Do not spend too much time on each problem but try to collect as many points as possible.
- Write only what is relevant to the question!

Good Luck!

.

Name: _____

Prob I	/ 20
Prob II	/ 20
Prob III	/ 20
Prob IV	/ 20
Prob V	/ 20
Total	/ 100

Problem 1 [Hypothesis Testing -20 pts] Consider a channel whose input X and output Y are related by

$$Y = X + Z.$$

The input X is uniformly distributed on the set $\{-1, +1\}$, i.e.,

$$\Pr[X = -1] = \Pr[X = +1] = 1/2.$$

The noise Z is independent from X. Given the output Y, we want to guess X.

 $(8 \ pts)$ (a) Suppose that Z is given by

$$Z = \begin{cases} W & \text{with probability} \quad 1/2 \\ W + 1 & \text{with probability} \quad 1/2 \end{cases}$$
(1)

where W is a random variable with density

$$f_W(w) = \begin{cases} \frac{1}{2} - \frac{|w|}{4} & \text{if } |w| \le 2\\ 0 & \text{otherwise} \end{cases}.$$
 (2)

Find the decision rule that minimizes the probability of error.

 $(12 \ pts)$ (b) Suppose now that

$$Z = W \qquad \text{or} \qquad Z = W + 1, \tag{3}$$

where W is the same as in part (a), but (1) is not valid anymore. Instead, we want to find a decision rule that works well in both the cases in (3). For a given decision scheme H, define the error probability in each case by

$$P_{e,0}(H) = \Pr[\operatorname{error} | Z = W]$$
$$P_{e,1}(H) = \Pr[\operatorname{error} | Z = W + 1].$$

Find the decision rule that minimizes the error probability in the worst case. That is, find H that minimizes

$$\max\{P_{e,0}(H), P_{e,1}(H)\}.$$
(4)

Hint 1: Your decision rule should take the form of a threshold scheme.

Hint 2: What do the plots of $P_{e,0}(t)$ and $P_{e,1}(t)$ look like as a function of the threshold t of the decision scheme?

Problem 2 [Proper Vectors – 20pts]

(4 pts) (a) Consider an arbitrary real-valued signal x(t) and define $\hat{x}(t)$ to be the signal with the Fourier transform

$$\hat{x}_{\mathcal{F}}(f) = \sqrt{2x_{\mathcal{F}}(f)}h_{>,\mathcal{F}}(f)$$

where

$$h_{>,\mathcal{F}}(f) = \begin{cases} 1 & \text{for } f > 0\\ 1/2 & \text{for } f = 0\\ 0 & \text{for } f < 0 \end{cases}$$

and $x_{\mathcal{F}}(f)$ is the Fourier transform of x(t), $x_{\mathcal{F}}(f) = \mathcal{F}\{x(t)\}$. Derive the relation that allows to go back from $\hat{x}(t)$ to x(t), i.e., find x(t) as a function of $\hat{x}(t)$.

- (4 pts) (b) Let $\hat{Z}(f) = \sqrt{2}Z_{\mathcal{F}}(f)h_{>,\mathcal{F}}(f)$ where $Z_{\mathcal{F}}(f) = \mathcal{F}\{Z(t)\}$ and Z(t) is a zero-mean, real-valued Gaussian and wide sense stationary process. Using the definition of a proper vector, show that $\hat{Z}(t) = \mathcal{F}^{-1}\{\hat{Z}(f)\}$ is proper.
- (4 pts) (c) Show that $Z_E(t) = \hat{Z}(t)e^{-j2\pi f_0 t}$ is also proper. (f_0 is a positive real number.)
- (4 pts) (d) Use the previous results to show that the real and imaginary components of $Z_E(t)$ have the same autocorrelation function.
- (4 pts) (e) Assume that $S_Z(f_0 f) = S_Z(f_0 + f)$ where $S_Z(f)$ is the Fourier transform of the autocorrelation function of $Z_E(t)$. Show that the real and imaginary parts of $Z_E(t)$ are independent.

Problem 3 [Viterbi Decoder – 20pts]

Let $\{U_1, \ldots, U_n\}$ be a sequence of i.i.d. random variables over $\{0, 1\}$ with probability distribution P(0) = P(1) = 1/2. Consider the following channel. The input and output of the channel are binary $\{0, 1\}$ with the following transition probabilities

$$\begin{split} & \mathbf{P}_{Y|X}(1 \mid 1) = 1 - \epsilon, \\ & \mathbf{P}_{Y|X}(0 \mid 1) = \epsilon, \\ & \mathbf{P}_{Y|X}(0 \mid 0) = 1 - \epsilon, \\ & \mathbf{P}_{Y|X}(1 \mid 0) = \epsilon. \end{split}$$

Let f(x, y) denote the transition probability $P_{Y|X}(y \mid x)$.

Figure 1: The graph showing transmission between source and receiver

Let $U_0 = 0$. For each bit U_i , $1 \le i \le n$ we transmit two bits $X_{2i-1} = U_i$ and $X_{2i} = U_i + U_{i-1}$, where the addition here means XOR (modulo 2 addition). Let the source vector be $\{U_1, \ldots, U_n\}$, the transmitted vector be $\{X_1, \ldots, X_{2n}\}$ and the received vector be $\{Y_1, \ldots, Y_{2n}\}$.

- (5 pts) (a) Write the MAP rule for decoding the sequence $\{U_1, \ldots, U_n\}$ from $\{Y_1, \ldots, Y_{2n}\}$ in terms of the function f.
- (10 pts) (b) Construct a Viterbi decoder for this MAP rule. Use log domain calculation. Let $y_{2i-1} = 0, y_{2i} = 1$. Draw the trellis section related to the bit U_i and compute the branch metrics in terms of ϵ .
 - (5 pts) (c) Consider the case where the priors are not uniform. Let $P(0) = p_0$, $P(1) = p_1 = 1 - p_0$. What are the new branch metrics?

Problem 4 [Estimation – 20pts]

Suppose we observe the sequence $\{y(k)\}$ and we want to estimate $\{x(k)\}$. For this purpose, we use a linear filter w(k). Let $\hat{x}(k)$ be the estimate of x(k):

$$\hat{x}(k) = w(k) * y(k).$$

Let $w_{opt}(k)$ be the optimal estimator according to the MMSE criterion, i.e. the estimator minimizing $\mathbb{E}[|e(k)|^2]$, where $e(k) = x(k) - \hat{x}(k)$. Show that the optimal estimator $w_{opt}(k)$ is minimizing $\mathbb{E}[|e(k)|^2]$ if and only if the following condition is met:

$$\mathbb{E}\left[e_{opt}(k)y^*(k-n)\right] = 0, \text{ for all } n$$

where $e_{opt}(k) = x(k) - \hat{x}_{opt}(k)$ and $\hat{x}_{opt}(k) = w_{opt}(k) * y(k)$.

Provide a complete proof, i.e., prove both "if" and "only if" parts.

Hint: start by evaluating the performance on an estimator which does not satisfy the condition above. Problem 5 [Equalization – 20pts]

Consider the channel:

$$y(k) = ||p||x(k) * q(k) + z(k),$$

where the input symbols $\{x(k)\}$ are i.i.d. and independent of the noise samples $\{z(k)\}$. We denote the energy of the transmitted symbols by $\mathcal{E}_x = \mathbb{E}[|x(k)|^2]$. The noise samples $\{z(k)\}$ have the autocorrelation function $R_z(k) = q(k)N_0$. The channel coefficients have the property that $(q(n))^* = q(-n)$, and p is a constant scalar.

- (12 pts) (a) Using time domain calculations, compute $r_{xy}(n) = \mathbb{E}[x(k)y^*(k-n)]$ and $r_{yy}(n) = \mathbb{E}[y(k)y^*(k-n)]$ in terms of q(n).
- (3 pts) (b) Compute the cross spectrum and power spectrum $S_{xy}(D) = \mathcal{D}\{r_{xy}(n)\}$ and $S_{yy}(D) = \mathcal{D}\{r_{yy}(n)\}$ respectively.
- (5 pts) (c) We convolve y(k) with a filter w(k) in order to estimate x(k) and define the estimation error e(k) = x(k) w(k) * y(k). In order to minimize this error according to the MMSE criterion, we need to satisfy $\mathbb{E}\left[e_{opt}(k)y^*(k-n)\right] = 0$ for all n, where $e_{opt}(k) = x(k) w_{opt}(k) * y(k)$. Use this condition to derive the optimal filter $w_{opt}(k)$. Using the previous parts of the exercise compute the optimal filter in D-transform domain.