MIDTERM

Wednesday, November 14, 2007, 10:15-13:15
This exam has 5 problems and 100 points in total

- You have 3 hours.
- You are allowed to use 3 sheets of paper (6 pages) for reference.
- No other materials are allowed. No mobile phones or calculators are allowed.
- Do not spend too much time on each problem but try to collect as many points as possible.
- Write only what is relevant to the question!

Good Luck!

Name: \qquad

Prob I	$/ 20$
Prob II	$/ 20$
Prob III	$/ 20$
Prob IV	$/ 20$
Prob V	$/ 20$
Total	$/ 100$

Problem 1 [Hypothesis Testing - 20 pts]
Consider a channel whose input X and output Y are related by

$$
Y=X+Z
$$

The input X is uniformly distributed on the set $\{-1,+1\}$, i.e.,

$$
\operatorname{Pr}[X=-1]=\operatorname{Pr}[X=+1]=1 / 2 .
$$

The noise Z is independent from X. Given the output Y, we want to guess X.
(8 pts) (a) Suppose that Z is given by

$$
Z=\left\{\begin{array}{lll}
W & \text { with probability } & 1 / 2 \tag{1}\\
W+1 & \text { with probability } & 1 / 2
\end{array}\right.
$$

where W is a random variable with density

$$
f_{W}(w)= \begin{cases}\frac{1}{2}-\frac{|w|}{4} & \text { if }|w| \leq 2 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Find the decision rule that minimizes the probability of error.
(12 pts) (b) Suppose now that

$$
\begin{equation*}
Z=W \quad \text { or } \quad Z=W+1 \tag{3}
\end{equation*}
$$

where W is the same as in part (a), but (1) is not valid anymore. Instead, we want to find a decision rule that works well in both the cases in (3). For a given decision scheme H, define the error probability in each case by

$$
\begin{aligned}
& P_{e, 0}(H)=\operatorname{Pr}[\operatorname{error} \mid Z=W] \\
& P_{e, 1}(H)=\operatorname{Pr}[\operatorname{error} \mid Z=W+1] .
\end{aligned}
$$

Find the decision rule that minimizes the error probability in the worst case. That is, find H that minimizes

$$
\begin{equation*}
\max \left\{P_{e, 0}(H), P_{e, 1}(H)\right\} . \tag{4}
\end{equation*}
$$

Hint 1: Your decision rule should take the form of a threshold scheme.
Hint 2: What do the plots of $P_{e, 0}(t)$ and $P_{e, 1}(t)$ look like as a function of the threshold t of the decision scheme?

Problem 2 [Proper Vectors - 20pts]

(4 pts) (a) Consider an arbitrary real-valued signal $x(t)$ and define $\hat{x}(t)$ to be the signal with the Fourier transform

$$
\hat{x}_{\mathcal{F}}(f)=\sqrt{2} x_{\mathcal{F}}(f) h_{>, \mathcal{F}}(f)
$$

where

$$
h_{>, \mathcal{F}}(f)= \begin{cases}1 & \text { for } f>0 \\ 1 / 2 & \text { for } f=0 \\ 0 & \text { for } f<0\end{cases}
$$

and $x_{\mathcal{F}}(f)$ is the Fourier transform of $x(t), x_{\mathcal{F}}(f)=\mathcal{F}\{x(t)\}$.
Derive the relation that allows to go back from $\hat{x}(t)$ to $x(t)$, i.e., find $x(t)$ as a function of $\hat{x}(t)$.
(4 pts) (b) Let $\hat{Z}(f)=\sqrt{2} Z_{\mathcal{F}}(f) h_{>, \mathcal{F}}(f)$ where $Z_{\mathcal{F}}(f)=\mathcal{F}\{Z(t)\}$ and $Z(t)$ is a zero-mean, real-valued Gaussian and wide sense stationary process. Using the definition of a proper vector, show that $\hat{Z}(t)=\mathcal{F}^{-1}\{\hat{Z}(f)\}$ is proper.
(4 pts) (c) Show that $Z_{E}(t)=\hat{Z}(t) e^{-j 2 \pi f_{0} t}$ is also proper. (f_{0} is a positive real number.)
(4 pts) (d) Use the previous results to show that the real and imaginary components of $Z_{E}(t)$ have the same autocorrelation function.
(4 pts) (e) Assume that $S_{Z}\left(f_{0}-f\right)=S_{Z}\left(f_{0}+f\right)$ where $S_{Z}(f)$ is the Fourier transform of the autocorrelation function of $Z_{E}(t)$. Show that the real and imaginary parts of $Z_{E}(t)$ are independent.

Problem 3 [Viterbi Decoder - 20pts]

Let $\left\{U_{1}, \ldots, U_{n}\right\}$ be a sequence of i.i.d. random variables over $\{0,1\}$ with probability distribution $\mathrm{P}(0)=\mathrm{P}(1)=1 / 2$. Consider the following channel. The input and output of the channel are binary $\{0,1\}$ with the following transition probabilities

$$
\begin{aligned}
& \mathrm{P}_{Y \mid X}(1 \mid 1)=1-\epsilon, \\
& \mathrm{P}_{Y \mid X}(0 \mid 1)=\epsilon, \\
& \mathrm{P}_{Y \mid X}(0 \mid 0)=1-\epsilon, \\
& \mathrm{P}_{Y \mid X}(1 \mid 0)=\epsilon .
\end{aligned}
$$

Let $f(x, y)$ denote the transition probability $\mathrm{P}_{Y \mid X}(y \mid x)$.

Figure 1: The graph showing transmission between source and receiver

Let $U_{0}=0$. For each bit $U_{i}, 1 \leq i \leq n$ we transmit two bits $X_{2 i-1}=U_{i}$ and $X_{2 i}=U_{i}+U_{i-1}$, where the addition here means XOR (modulo 2 addition). Let the source vector be $\left\{U_{1}, \ldots, U_{n}\right\}$, the transmitted vector be $\left\{X_{1}, \ldots, X_{2 n}\right\}$ and the received vector be $\left\{Y_{1}, \ldots, Y_{2 n}\right\}$.
(5 pts) (a) Write the MAP rule for decoding the sequence $\left\{U_{1} \ldots, U_{n}\right\}$ from $\left\{Y_{1}, \ldots, Y_{2 n}\right\}$ in terms of the function f.
(10 pts) (b) Construct a Viterbi decoder for this MAP rule. Use log domain calculation. Let $y_{2 i-1}=0, y_{2 i}=1$. Draw the trellis section related to the bit U_{i} and compute the branch metrics in terms of ϵ.
(5 pts) (c) Consider the case where the priors are not uniform. Let $\mathrm{P}(0)=p_{0}$, $\mathrm{P}(1)=p_{1}=1-p_{0}$. What are the new branch metrics?

Problem 4 [Estimation - 20pts]

Suppose we observe the sequence $\{y(k)\}$ and we want to estimate $\{x(k)\}$. For this purpose, we use a linear filter $w(k)$. Let $\hat{x}(k)$ be the estimate of $x(k)$:

$$
\hat{x}(k)=w(k) * y(k) .
$$

Let $w_{o p t}(k)$ be the optimal estimator according to the MMSE criterion, i.e. the estimator minimizing $\mathbb{E}\left[|e(k)|^{2}\right]$, where $e(k)=x(k)-\hat{x}(k)$.
Show that the optimal estimator $w_{\text {opt }}(k)$ is minimizing $\mathbb{E}\left[|e(k)|^{2}\right]$ if and only if the following condition is met:

$$
\mathbb{E}\left[e_{\text {opt }}(k) y^{*}(k-n)\right]=0, \text { for all } n
$$

where $e_{\text {opt }}(k)=x(k)-\hat{x}_{\text {opt }}(k)$ and $\hat{x}_{\text {opt }}(k)=w_{\text {opt }}(k) * y(k)$.
Provide a complete proof, i.e., prove both "if" and "only if" parts.
Hint: start by evaluating the performance on an estimator which does not satisfy the condition above.

Problem 5 [Equalization - 20pts]
Consider the channel:

$$
y(k)=\|p\| x(k) * q(k)+z(k)
$$

where the input symbols $\{x(k)\}$ are i.i.d. and independent of the noise samples $\{z(k)\}$. We denote the energy of the transmitted symbols by $\mathcal{E}_{x}=\mathbb{E}\left[|x(k)|^{2}\right]$. The noise samples $\{z(k)\}$ have the autocorrelation function $R_{z}(k)=q(k) N_{0}$. The channel coefficients have the property that $(q(n))^{*}=q(-n)$, and p is a constant scalar.
(12 pts) (a) Using time domain calculations, compute $r_{x y}(n)=\mathbb{E}\left[x(k) y^{*}(k-n)\right]$ and $r_{y y}(n)=\mathbb{E}\left[y(k) y^{*}(k-n)\right]$ in terms of $q(n)$.
(3 pts) (b) Compute the cross spectrum and power spectrum $S_{x y}(D)=\mathcal{D}\left\{r_{x y}(n)\right\}$ and $S_{y y}(D)=\mathcal{D}\left\{r_{y y}(n)\right\}$ respectively.
(5 pts) (c) We convolve $y(k)$ with a filter $w(k)$ in order to estimate $x(k)$ and define the estimation error $e(k)=x(k)-w(k) * y(k)$. In order to minimize this error according to the MMSE criterion, we need to satisfy $\mathbb{E}\left[e_{\text {opt }}(k) y^{*}(k-n)\right]=0$ for all n, where $e_{\text {opt }}(k)=x(k)-w_{\text {opt }}(k) * y(k)$. Use this condition to derive the optimal filter $w_{\text {opt }}(k)$. Using the previous parts of the exercise compute the optimal filter in D-transform domain.

