Solutions to Homework 5

Problem 1

(a)

$$\mathbb{E}[h_l(t_0)] = \mathbb{E}[C_l e^{j(2\pi \frac{v}{\lambda} \cos \theta_l t + \phi_l)}]$$

$$= \mathbb{E}[C_l] \mathbb{E}[e^{j(2\pi \frac{v}{\lambda} \cos \theta_l t)}] \mathbb{E}[e^{j\phi_l}]$$

$$\mathbb{E}[e^{j\phi_l}] = \int_0^{2\pi} e^{j\phi_l} \frac{1}{2\pi} d\phi_l$$

$$= [-\frac{j}{2\pi} e^{j\phi_l}]_0^{2\pi} = 0$$

$$\mathbb{E}[h_l(t_0)] = 0$$

(b)

$$\operatorname{Var}[h_{l}(t_{0})] = \mathbb{E}[|h_{l}(t_{0})|^{2}] - \underbrace{\mathbb{E}[h_{l}(t_{0})]^{2}}_{=0 \text{ from (a)}}$$
$$= \mathbb{E}[|C_{l}e^{j(2\pi\frac{v}{\lambda}\cos\theta_{l}t+\phi_{l})}|^{2}]$$
$$= \mathbb{E}[|C_{l}|^{2}]\underbrace{\mathbb{E}[|e^{j(2\pi\frac{v}{\lambda}\cos\theta_{l}t)}|^{2}]}_{=1}\underbrace{\mathbb{E}[|e^{j\phi_{l}}|^{2}]}_{=1}$$
$$= \frac{\sigma^{2}}{L} \quad (\text{second moment of } C_{l})$$

(c)

$$X_l = \frac{\sqrt{L}}{\sigma} h_l(t_0), \qquad \mathbb{E}[X_l] = \frac{\sqrt{N}}{\sigma} \underbrace{\mathbb{E}[h_l(t_0)]}_{=0} = 0, \qquad \operatorname{Var}(X_l) = \frac{L}{\sigma^2} \underbrace{\operatorname{Var}(h_l(t_0))}_{=\frac{\sigma^2}{L}} = 1$$

Remember that $h(t) = \sum_{l=1}^{L} h_l(t)$. At time $t = t_0$:

$$h(t_0) = \sum_{l=1}^{L} h_l(t_0) = \sum_{l=1}^{L} X_l \frac{\sigma}{\sqrt{L}} = \sigma \frac{1}{\sqrt{L}} \sum_{l=1}^{L} X_l$$

All X_i 's are i.i.d since $h_i(t_0)$'s are composed of i.i.d variables. Using the central limit theorem we get:

$$\lim_{L \to \infty} \frac{1}{\sqrt{L}} \sum_{l=1}^{L} X_l \sim \mathcal{N}(0, 1)$$
$$\lim_{L \to \infty} \sigma \frac{1}{\sqrt{L}} \sum_{l=1}^{L} X_l \sim \mathcal{N}(0, \sigma^2)$$

Thus for large L, h(t) behaves as a zero mean Gaussian random variable of variance σ^2 .

Problem 7.3

The mobile receiver has a velocity if $v \cos \phi$ towards the transmitter. The received

electric field is hence

$$E[f,t,(r,\theta,\psi)] = \frac{1}{r_0 + vt\cos\phi} \Re[\alpha(\theta,\psi,f)e^{j2\pi f(t-\frac{r_0}{c}+\frac{vt\cos\phi}{c})}]$$

$$= \frac{1}{r_0 + vt\cos\phi} \Re[\alpha(\theta,\psi,f)e^{j2\pi f(1+\frac{v\cos\phi}{c})t}e^{j2\pi f\frac{r_0}{c}}]$$

The Doppler shift is $f \to f(1 + \frac{v \cos \phi}{c})$.

Problem 8.3

1. $\frac{H^*}{|H|}Y$ is an invertible mapping and is given by:

$$\frac{H^*}{|H|}Y = \frac{H^*}{|H|}(HX+W)$$
$$= \frac{|H|^2X}{|H|} + \frac{WH^*}{|H|}$$
$$= |H|X + \frac{WH^*}{|H|}$$

Since |H|X is real, the real part of $\frac{H^*}{|H|}Y$ is a sufficient statistics for detection of X.

Now let's compute the distribution of $\frac{WH^*}{|H|}$:

$$\mathbb{E}\left[\frac{WH^*}{|H|}\frac{HW^*}{|H|}\right] = \mathbb{E}[|W|^2] = N_0.$$

We are interrested in the real part of the noise i.e. $Re\left(\frac{WH^*}{|H|}\right)$. So, it has variance of $\frac{N_0}{2}$. So $W \sim \mathbb{CN}(0, \frac{N_0}{2})$.

2. The exact probability of error for a BPSK knowing H is given by:

$$P_{e/H} = Q\left(\frac{a|h|}{\sqrt{\frac{N_0}{2}}}\right)$$

The probability of error is given by the expectation over H:

$$P_e = \mathbb{E}_{|h|}[P_{e/H}] = \mathbb{E}_{|h|} \left[Q\left(\frac{a|h|}{\sqrt{\frac{N_0}{2}}}\right) \right]$$

Let's rewrite this expression in term of the $SNR = \frac{a^2}{N_0}$, we have $\frac{a}{\sqrt{\frac{N_0}{2}}} = \sqrt{2SNR}$. By replacing, we get :

$$P_e = \mathbb{E}_{|h|} \left[Q \left(|h| \sqrt{2SNR} \right) \right]$$

Let's evaluate this expression using $f_{|h|}(r) = 2re^{-r^2}$:

$$\begin{split} \mathbb{E}_{|h|} \left[Q\left(|h| \sqrt{2SNR} \right) \right] &= \int_{0}^{\infty} 2r e^{-r^{2}} \frac{1}{\sqrt{2\pi}} \int_{r\sqrt{2SNR}}^{\infty} e^{-\frac{y^{2}}{2}} dy dr \\ &= \int_{0}^{\infty} \int_{r\sqrt{2SNR}}^{\infty} \frac{1}{\sqrt{2\pi}} 2r e^{-r^{2}} e^{-\frac{y^{2}}{2}} dy dr \\ &= \int_{0}^{\infty} \int_{0}^{\frac{y^{2}}{\sqrt{2SNR}}} \frac{1}{\sqrt{2\pi}} 2r e^{-r^{2}} e^{-\frac{y^{2}}{2}} dr dy \quad \text{(Change in the integration ord} \\ &= \int_{0}^{\infty} \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2\pi}} \int_{0}^{\sqrt{2SNR}} 2r e^{-r^{2}} dr dy \\ &= \int_{0}^{\infty} \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2\pi}} \left(1 - e^{-\frac{y^{2}}{\sqrt{2SNR}}} \right) dy \\ &= \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{y^{2}}{2} (1 + SNR)} dy \\ &= \frac{1}{2} - \frac{1}{2} \sqrt{\frac{SNR}{(1 + SNR)}} = \frac{1}{2} \left(1 - \sqrt{\frac{SNR}{(1 + SNR)}} \right) \end{split}$$

3.

$$P_e = Q\left(\frac{a}{\sqrt{\frac{N_0}{2}}}\right) = Q(\sqrt{2SNR}).$$

4. For the flat fading channel : $P_e = \{0.146, 0.023, 0.0025, 0.000025, 2.5 \times 10^{-9}\}$. For the AWGN channel : $P_e = \{0.367, 0.000045, 3.7 \times 10^{-44}, 0, 0\}$.

Problem 8.4

$$P_{e} = \mathbb{E}_{||\mathbf{h}||} \left[Q \left(\frac{||\mathbf{h}||d_{min}}{2\sigma} \right) \right]$$

$$\leq \mathbb{E}_{||\mathbf{h}||^{2}} \left[e^{-\frac{||\mathbf{h}||^{2} d_{min}^{2}}{8\sigma^{2}}} \right] = \mathbb{E}_{||\mathbf{h}||^{2}} \left[e^{-\frac{\mathbf{h}^{*} d_{min}^{2}\mathbf{h}}{8\sigma^{2}}} \right]$$

$$= \frac{1}{|\mathbf{I} + \frac{d_{min}^{2}}{8\sigma^{2}} \mathbf{K}_{\mathbf{h}}|} \quad \text{(Lemma from the course)}$$

$$= \frac{1}{|\mathbf{I} + \frac{d_{min}^{2}}{8\sigma^{2}} \mathbf{\Lambda}|}$$

where Λ is the eigenvalue matrix of $\mathbf{K}_{\mathbf{h}}$.

2. $\mathbf{K}_{\mathbf{h}}$ is positive definite, then Λ will have only strictly positive values. Hence

$$\frac{1}{|\mathbf{I} + \frac{d_{min}^2}{8\sigma^2}\mathbf{\Lambda}|} = \frac{1}{\prod_{i=0}^{D-1}(1 + \lambda_i SNR)} \\ \leq \frac{1}{\prod_{i=0}^{D-1}(\lambda_i SNR)} \\ \vdots \frac{1}{SNR^D}$$

Hence the diversity order is D. We can see that the diversity order doesn't change when the h(l) are not independent.

Problem 8.5

1. For one receiver, the error probability is:

$$P_e = \frac{1}{2} \left(1 - \sqrt{\frac{SNR}{1 + SNR}} \right) \approx \frac{1}{2} \left(1 - \left(1 - \frac{1}{2SNR} \right) \right) = \frac{1}{4SNR}$$

Using upper bound for two receive antennas:

$$P_e = \mathbb{E}_h Q(\frac{||h||\sqrt{\mathcal{E}_x}}{2\sigma})$$

$$\leq \mathbb{E}_h e^{-||h||^2 \mathcal{E}_x/8\sigma^2}$$

$$= \frac{1}{(1 + \frac{\mathcal{E}_x}{8\sigma^2})^2}$$

$$\approx \frac{c}{SNR^2}$$

If we define " \doteq " notation as

$$\lim_{\mathrm{SNR}\to\infty} \frac{\log P_e(\mathrm{SNR})}{\log \mathrm{SNR}} = -d$$

written is shorthand as $P_e(\text{SNR}) \doteq \frac{1}{4} \text{SNR}^{-d}$. Then $P_e \doteq \frac{1}{\text{SNR}^2}$ above.

1.

2. When the flag is obstructing we have only one path from the transmitter to the receiver. Therefore,

$$P_e(.|\mathcal{F}=0) \doteq \frac{1}{SNR}$$

In the absence of the flag, we have two indpendent paths from the transmitter to the receiver. Therefore,

$$P_e(.|\mathcal{F}=1) \doteq \frac{1}{SNR2}$$

3.

$$P_e = \Pr(\mathcal{F} = 1)P_e(.|\mathcal{F} = 1) + \Pr(\mathcal{F} = 0)P_e(.|\mathcal{F} = 0)$$
$$\doteq (1 - q)\frac{1}{SNR2} + q\frac{1}{SNR}$$
$$\doteq \frac{1}{SNR}$$

Therefore the diversity order is 1.

Problem 8.6

1. Let

$$\mathbf{x}_{\mathbf{A}} = \mathbf{R} \begin{bmatrix} a \\ a \end{bmatrix}, \mathbf{x}_{\mathbf{B}} = \mathbf{R} \begin{bmatrix} -a \\ a \end{bmatrix}$$
$$\mathbf{x}_{\mathbf{C}} = \mathbf{R} \begin{bmatrix} -a \\ -a \end{bmatrix}, \mathbf{x}_{\mathbf{D}} = \mathbf{R} \begin{bmatrix} a \\ -a \end{bmatrix}$$

Now, by union bound :

$$P_e \leq \mathbb{P}(\mathbf{x}_{\mathbf{A}} \to \mathbf{x}_{\mathbf{B}}) + \mathbb{P}(\mathbf{x}_{\mathbf{A}} \to \mathbf{x}_{\mathbf{C}}) + \mathbb{P}(\mathbf{x}_{\mathbf{A}} \to \mathbf{x}_{\mathbf{D}})$$

Lets evaluate $\mathbb{P}(\mathbf{x}_{\mathbf{A}} \to \mathbf{x}_{\mathbf{B}})$. We can rewrite the channel using the sufficient statistics and $\mathbf{x}_{\mathbf{A}}$ as the transmitted symbol:

$$\frac{h_1^*}{|h_1|}y_1 = x_{A1}|h_1| + z_1$$
$$\frac{h_2^*}{|h_2|}y_1 = x_{A2}|h_2| + z_2$$

where z_1 and z_2 are $\mathcal{N}(0, \frac{N_0}{2})$.

Let
$$\mathbf{V}_{\mathbf{A}} = \begin{bmatrix} |h_1|x_{A1} \\ |h_2|x_{A2} \end{bmatrix}$$
 and $\mathbf{V}_{\mathbf{B}} = \begin{bmatrix} |h_1|x_{B1} \\ |h_2|x_{B2} \end{bmatrix}$
Now

Now,

$$\mathbb{P}(\mathbf{x}_{\mathbf{A}} \to \mathbf{x}_{\mathbf{B}} | h_1, h_2) = Q\left(\frac{||\mathbf{V}_{\mathbf{A}} - \mathbf{V}_{\mathbf{B}}||}{2\sqrt{\frac{N_0}{2}}}\right) = Q\left(\sqrt{\frac{SNR(|h_1|^2 d_1^2 + |h_2|^2 d_2^2)}{2}}\right)$$

where $SNR = \frac{a^2}{N_0}$ and $\mathbf{d} = \frac{1}{a}(\mathbf{x}_{\mathbf{A}} - \mathbf{x}_{\mathbf{B}}) = \begin{bmatrix} 2\cos\theta\\ 2\sin\theta \end{bmatrix}$. And

$$\mathbb{E}_{h_{1},h_{2}}\left[\mathbb{P}(\mathbf{x}_{\mathbf{A}} \to \mathbf{x}_{\mathbf{B}} | h_{1}, h_{2})\right] \leq \mathbb{E}_{h_{1},h_{2}}\left[e^{-\frac{SNR(|h_{1}|^{2}|d_{1}|^{2}+|h_{2}|^{2}|d_{2}|^{2})}{4}}\right]$$
$$= \frac{1}{\left(1 + SNR\frac{|d_{1}|^{2}}{4}\right)} \frac{1}{\left(1 + SNR\frac{|d_{2}|^{2}}{4}\right)}$$
$$\leq \frac{16}{|d_{1}d_{2}|^{2}} \frac{1}{SNR^{2}}$$

Let $\delta_{AB} = |d_1 d_2|^2$. We can repeat the calculus for $\mathbb{P}(\mathbf{x}_{\mathbf{A}} \to \mathbf{x}_{\mathbf{C}})$ and $\mathbb{P}(\mathbf{x}_{\mathbf{A}} \to \mathbf{x}_{\mathbf{D}})$. By analogy, we can define δ_{AC} and δ_{AD} . Hence

$$P_e \le 16\left(\frac{1}{\delta_{AB}} + \frac{1}{\delta_{AC}} + \frac{1}{\delta_{AD}}\right)\frac{1}{SNR^2}.$$

2. To get diversity order of 2, none of the δ_{AB} , δ_{AC} and δ_{AD} should be zero. We have

$$\delta_{AB} = \delta_{AD} = 4\sin^2 2\theta$$

and

$$\delta_{AC} = 16\cos^2 2\theta$$

It gives the following conditions:

$$\sin 2\theta = 0 \Rightarrow 2\theta = \pm n\pi$$
$$\theta = \pm \frac{n\pi}{2} = 0, \frac{\pi}{2}, \frac{3\pi}{2}, \pi$$
$$\cos 2\theta = 0 \Rightarrow 2\theta = \frac{\pi}{2}, \frac{3\pi}{2}$$
$$\theta = \frac{\pi}{4}, \frac{3\pi}{4}$$

 So

$$\theta \neq \{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{3\pi}{2}\}.$$