Solutions to Homework 5

Problem 1

(a)

$$
\begin{aligned}
\mathbb{E}\left[h_{l}\left(t_{0}\right)\right] & =\mathbb{E}\left[C_{l} \mathrm{e}^{j\left(2 \pi \frac{v}{\lambda} \cos \theta_{l} t+\phi_{l}\right)}\right] \\
& =\mathbb{E}\left[C_{l}\right] \mathbb{E}\left[\mathrm{e}^{j\left(2 \pi \frac{v}{\lambda} \cos \theta_{l} t\right)}\right] \mathbb{E}\left[\mathrm{e}^{j \phi_{l}}\right] \\
\mathbb{E}\left[\mathrm{e}^{j \phi_{l}}\right] & =\int_{0}^{2 \pi} \mathrm{e}^{j \phi_{l}} \frac{1}{2 \pi} d \phi_{l} \\
& =\left[-\frac{j}{2 \pi} \mathrm{e}^{j \phi_{l}}\right]_{0}^{2 \pi}=0 \\
\mathbb{E}\left[h_{l}\left(t_{0}\right)\right] & =0
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Var}\left[h_{l}\left(t_{0}\right)\right] & =\mathbb{E}\left[\left|h_{l}\left(t_{0}\right)\right|^{2}\right]-\underbrace{\mathbb{E}\left[h_{l}\left(t_{0}\right)\right]^{2}}_{=0} \\
& =\mathbb{E}\left[\left|C_{l} \mathrm{e}^{j\left(2 \pi \frac{v}{\lambda} \cos \theta_{l} t+\phi_{l}\right)}\right|^{2}\right] \\
& =\mathbb{E}\left[\left|C_{l}\right|^{2}\right] \underbrace{\mathbb{E}\left[\left|\mathrm{e}^{j\left(2 \pi \frac{v}{\lambda} \cos \theta_{l} t\right)}\right|^{2}\right]}_{=1} \underbrace{\mathbb{E}\left[\left|\mathrm{e}^{j \phi_{l}}\right|^{2}\right]}_{=1} \\
& \left.=\frac{\sigma^{2}}{L} \quad \text { (second moment of } C_{l}\right)
\end{aligned}
$$

(c)

$$
X_{l}=\frac{\sqrt{L}}{\sigma} h_{l}\left(t_{0}\right), \quad \mathbb{E}\left[X_{l}\right]=\frac{\sqrt{N}}{\sigma} \underbrace{\mathbb{E}\left[h_{l}\left(t_{0}\right)\right]}_{=0}=0, \quad \operatorname{Var}\left(X_{l}\right)=\frac{L}{\sigma^{2}} \underbrace{\operatorname{Var}\left(h_{l}\left(t_{0}\right)\right)}_{=\frac{\sigma^{2}}{L}}=1
$$

Remember that $h(t)=\sum_{l=1}^{L} h_{l}(t)$. At time $t=t_{0}$:

$$
h\left(t_{0}\right)=\sum_{l=1}^{L} h_{l}\left(t_{0}\right)=\sum_{l=1}^{L} X_{l} \frac{\sigma}{\sqrt{L}}=\sigma \frac{1}{\sqrt{L}} \sum_{l=1}^{L} X_{l}
$$

All X_{i} 's are i.i.d since $h_{i}\left(t_{0}\right)$'s are composed of i.i.d variables. Using the central limit theorem we get:

$$
\begin{aligned}
\lim _{L \rightarrow \infty} \frac{1}{\sqrt{L}} \sum_{l=1}^{L} X_{l} & \sim \mathcal{N}(0,1) \\
\lim _{L \rightarrow \infty} \sigma \frac{1}{\sqrt{L}} \sum_{l=1}^{L} X_{l} & \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Thus for large $\mathrm{L}, h(t)$ behaves as a zero mean Gaussian random variable of variance σ^{2}.

Problem 7.3

The mobile receiver has a velocity if $v \cos \phi$ towards the transmitter. The received

electric field is hence

$$
\begin{aligned}
E[f, t,(r, \theta, \psi)] & =\frac{1}{r_{0}+v t \cos \phi} \Re\left[\alpha(\theta, \psi, f) e^{j 2 \pi f\left(t-\frac{r_{0}}{c}+\frac{v t \cos \phi}{c}\right)}\right] \\
& =\frac{1}{r_{0}+v t \cos \phi} \Re\left[\alpha(\theta, \psi, f) e^{j 2 \pi f\left(1+\frac{v \cos \phi}{c}\right) t} e^{j 2 \pi f \frac{r_{0}}{c}}\right]
\end{aligned}
$$

The Doppler shift is $f \rightarrow f\left(1+\frac{v \cos \phi}{c}\right)$.

Problem 8.3

1. $\frac{H^{*}}{|H|} Y$ is an invertible mapping and is given by:

$$
\begin{aligned}
\frac{H^{*}}{|H|} Y & =\frac{H^{*}}{|H|}(H X+W) \\
& =\frac{|H|^{2} X}{|H|}+\frac{W H^{*}}{|H|} \\
& =|H| X+\frac{W H^{*}}{|H|}
\end{aligned}
$$

Since $|H| X$ is real, the real part of $\frac{H^{*}}{|H|} Y$ is a sufficient statistics for detection of X.
Now let's compute the distribution of $\frac{W H^{*}}{|H|}$:

$$
\mathbb{E}\left[\frac{W H^{*}}{|H|} \frac{H W^{*}}{|H|}\right]=\mathbb{E}\left[|W|^{2}\right]=N_{0}
$$

We are interrested in the real part of the noise i.e. $\operatorname{Re}\left(\frac{W H^{*}}{|H|}\right)$. So, it has variance of $\frac{N_{0}}{2}$. So $W \sim \mathbb{C N}\left(0, \frac{N_{0}}{2}\right) .{ }_{2}$
2. The exact probability of error for a BPSK knowing H is given by:

$$
P_{e / H}=Q\left(\frac{a|h|}{\sqrt{\frac{N_{0}}{2}}}\right)
$$

The probability of error is given by the expectation over H :

$$
P_{e}=\mathbb{E}_{|h|}\left[P_{e / H}\right]=\mathbb{E}_{|h|}\left[Q\left(\frac{a|h|}{\sqrt{\frac{N_{0}}{2}}}\right)\right]
$$

Let's rewrite this expression in term of the $S N R=\frac{a^{2}}{N_{0}}$, we have $\frac{a}{\sqrt{\frac{N_{0}}{2}}}=$ $\sqrt{2 S N R}$. By replacing, we get :

$$
P_{e}=\mathbb{E}_{|h|}[Q(|h| \sqrt{2 S N R})]
$$

Let's evaluate this expression using $f_{|h|}(r)=2 r e^{-r^{2}}$:

$$
\begin{aligned}
\mathbb{E}_{|h|}[Q(|h| \sqrt{2 S N R})] & =\int_{0}^{\infty} 2 r e^{-r^{2}} \frac{1}{\sqrt{2 \pi}} \int_{r \sqrt{2 S N R}}^{\infty} e^{-\frac{y^{2}}{2}} d y d r \\
& =\int_{0}^{\infty} \int_{r \sqrt{2 S N R}}^{\infty} \frac{1}{\sqrt{2 \pi}} 2 r e^{-r^{2}} e^{-\frac{y^{2}}{2}} d y d r \\
& =\int_{0}^{\infty} \int_{0}^{\frac{y}{\sqrt{2 S N R}}} \frac{1}{\sqrt{2 \pi}} 2 r e^{-r^{2}} e^{-\frac{y^{2}}{2}} d r d y \quad \text { (Change in the integration ord } \\
& =\int_{0}^{\infty} \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}} \int_{0}^{\frac{y}{\sqrt{2 S N R}}} 2 r e^{-r^{2}} d r d y \\
& =\int_{0}^{\infty} \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}}\left(1-e^{-\frac{y^{2}}{\sqrt{2 S N R}}}\right) d y \\
& =\frac{1}{2}-\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-\frac{y^{2}}{2} \frac{(1+S N R)}{S N R}} d y \\
& =\frac{1}{2}-\frac{1}{2} \sqrt{\frac{S N R}{(1+S N R)}}=\frac{1}{2}\left(1-\sqrt{\frac{S N R}{(1+S N R)}}\right)
\end{aligned}
$$

3.

$$
P_{e}=Q\left(\frac{a}{\sqrt{\frac{N_{0}}{2}}}\right)=Q(\sqrt{2 S N R}) .
$$

4. For the flat fading channel $: P_{e}=\left\{0.146,0.023,0.0025,0.000025,2.5 \times 10^{-9}\right\}$. For the AWGN channel : $P_{e}=\left\{0.367,0.000045,3.7 \times 10^{-44}, 0,0\right\}$.
5.

$$
\begin{aligned}
P_{e} & =\mathbb{E}_{\|\mathbf{h}\|}\left[Q\left(\frac{\|\mathbf{h}\| d_{\min }}{2 \sigma}\right)\right] \\
& \leq \mathbb{E}_{\|\mathbf{h}\|^{2}}\left[e^{-\frac{\|\mathbf{h}\|^{2} d_{\text {min }}^{2}}{8 \sigma^{2}}}\right]=\mathbb{E}_{\|\mathbf{h}\|^{2}}\left[e^{-\frac{\mathbf{h}^{*} d_{\text {min }}^{2}}{8 \sigma^{2}}}\right] \\
& =\frac{1}{\left|\mathbf{I}+\frac{d_{\min }^{2}}{8 \sigma^{2}} \mathbf{K}_{\mathbf{h}}\right|} \quad \text { (Lemma from the course) } \\
& =\frac{1}{\left|\mathbf{I}+\frac{d_{\min }^{2}}{8 \sigma^{2}} \boldsymbol{\Lambda}\right|}
\end{aligned}
$$

where $\boldsymbol{\Lambda}$ is the eigenvalue matrix of $\mathbf{K}_{\mathbf{h}}$.
2. $\mathbf{K}_{\mathbf{h}}$ is positive definite, then $\boldsymbol{\Lambda}$ will have only strictly positive values. Hence

$$
\begin{aligned}
\frac{1}{\left|\mathbf{I}+\frac{d_{\min }^{2}}{8 \sigma^{2}} \boldsymbol{\Lambda}\right|} & =\frac{1}{\prod_{i=0}^{D-1}\left(1+\lambda_{i} S N R\right)} \\
& \leq \frac{1}{\prod_{i=0}^{D-1}\left(\lambda_{i} S N R\right)} \\
& =\frac{1}{S N R^{D}}
\end{aligned}
$$

Hence the diversity order is D . We can see that the diversity order doesn't change when the $h(l)$ are not independent.

Problem 8.5

1. For one receiver, the error probability is:

$$
P_{e}=\frac{1}{2}\left(1-\sqrt{\frac{S N R}{1+S N R}}\right) \approx \frac{1}{2}\left(1-\left(1-\frac{1}{2 S N R}\right)\right)=\frac{1}{4 S N R}
$$

Using upper bound for two receive antennas:

$$
\begin{aligned}
P_{e} & =\mathbb{E}_{h} Q\left(\frac{\|h\| \sqrt{\mathcal{E}_{x}}}{2 \sigma}\right) \\
& \leq \mathbb{E}_{h} e^{-\|h\|^{2} \mathcal{E}_{x} / 8 \sigma^{2}} \\
& =\frac{1}{\left(1+\frac{\mathcal{E}_{x}}{8 \sigma^{2}}\right)^{2}} \\
& \approx \frac{c}{S N R^{2}}
\end{aligned}
$$

If we define "三" notation as

$$
\lim _{\mathrm{SNR} \rightarrow \infty} \frac{\log P_{e}(\mathrm{SNR})}{\log \mathrm{SNR}}=-d
$$

written is shorthand as $P_{e}(\mathrm{SNR}) \doteq \mathrm{SNR}^{-d}$. Then $P_{e} \doteq \frac{1}{\mathrm{SNR}^{2}}$ above.
2. When the flag is obstructing we have only one path from the transmitter to the receiver. Therefore,

$$
P_{e}(. \mid \mathcal{F}=0) \doteq \frac{1}{S N R}
$$

In the absence of the flag, we have two indpendent paths from the transmitter to the receiver. Therefore,

$$
P_{e}(. \mid \mathcal{F}=1) \doteq \frac{1}{S N R 2}
$$

3.

$$
\begin{aligned}
P_{e} & =\operatorname{Pr}(\mathcal{F}=1) P_{e}(. \mid \mathcal{F}=1)+\operatorname{Pr}(\mathcal{F}=0) P_{e}(. \mid \mathcal{F}=0) \\
& \doteq(1-q) \frac{1}{S N R 2}+q \frac{1}{S N R} \\
& \doteq \frac{1}{S N R}
\end{aligned}
$$

Therefore the diversity order is 1 .

Problem 8 . 6

1. Let

$$
\begin{gathered}
\mathbf{x}_{\mathbf{A}}=\mathbf{R}\left[\begin{array}{l}
a \\
a
\end{array}\right], \mathbf{x}_{\mathbf{B}}=\mathbf{R}\left[\begin{array}{c}
-a \\
a
\end{array}\right] \\
\mathbf{x}_{\mathbf{C}}=\mathbf{R}\left[\begin{array}{l}
-a \\
-a
\end{array}\right], \mathbf{x}_{\mathbf{D}}=\mathbf{R}\left[\begin{array}{c}
a \\
-a
\end{array}\right]
\end{gathered}
$$

Now, by union bound :

$$
P_{e} \leq \mathbb{P}\left(\mathbf{x}_{\mathbf{A}} \rightarrow \mathbf{x}_{\mathbf{B}}\right)+\mathbb{P}\left(\mathbf{x}_{\mathbf{A}} \rightarrow \mathbf{x}_{\mathbf{C}}\right)+\mathbb{P}\left(\mathbf{x}_{\mathbf{A}} \rightarrow \mathbf{x}_{\mathbf{D}}\right)
$$

Lets evaluate $\mathbb{P}\left(\mathbf{x}_{\mathbf{A}} \rightarrow \mathbf{x}_{\mathbf{B}}\right)$. We can rewrite the channel using the sufficient statistics and $\mathbf{x}_{\mathbf{A}}$ as the transmitted symbol:

$$
\begin{aligned}
& \frac{h_{1}^{*}}{\left|h_{1}\right|} y_{1}=x_{A 1}\left|h_{1}\right|+z_{1} \\
& \frac{h_{2}^{*}}{\left|h_{2}\right|} y_{1}=x_{A 2}\left|h_{2}\right|+z_{2}
\end{aligned}
$$

where z_{1} and z_{2} are $\mathcal{N}\left(0, \frac{N_{0}}{2}\right)$.
Let $\mathbf{V}_{\mathbf{A}}=\left[\begin{array}{l}\left|h_{1}\right| x_{A 1} \\ \left|h_{2}\right| x_{A 2}\end{array}\right]$ and $\mathbf{V}_{\mathbf{B}}=\left[\begin{array}{l}\left|h_{1}\right| x_{B 1} \\ \left|h_{2}\right| x_{B 2}\end{array}\right]$.
Now,

$$
\mathbb{P}\left(\mathbf{x}_{\mathbf{A}} \rightarrow \mathbf{x}_{\mathbf{B}} \mid h_{1}, h_{2}\right)=Q\left(\frac{\| \mathbf{V}_{\mathbf{A}}-\mathbf{V}_{\mathbf{B}}| |}{2 \sqrt{\frac{N_{0}}{2}}}\right)=Q\left(\sqrt{\frac{S N R\left(\left|h_{1}\right|^{2} d_{1}^{2}+\left|h_{2}\right|^{2} d_{2}^{2}\right)}{2}}\right)
$$

where $S N R=\frac{a^{2}}{N_{0}}$ and $\mathbf{d}=\frac{1}{a}\left(\mathbf{x}_{\mathbf{A}}-\mathbf{x}_{\mathbf{B}}\right)=\left[\begin{array}{c}2 \cos \theta \\ 2 \sin \theta\end{array}\right]$.
And

$$
\begin{aligned}
\mathbb{E}_{h_{1}, h_{2}}\left[\mathbb{P}\left(\mathbf{x}_{\mathbf{A}} \rightarrow \mathbf{x}_{\mathbf{B}} \mid h_{1}, h_{2}\right)\right] & \leq \mathbb{E}_{h_{1}, h_{2}}\left[e^{-\frac{S N R\left(\left|h_{1}\right|^{2}\left|d_{1}\right|^{2}+\left.\left.\left|h_{2}\right|^{2}\right|_{d_{2}}\right|^{2}\right)}{4}}\right] \\
& =\frac{1}{\left(1+S N R \frac{\left|d_{1}\right|^{2}}{4}\right)} \frac{1}{\left(1+S N R \frac{\left|d_{2}\right|^{2}}{4}\right)} \\
& \leq \frac{16}{\left|d_{1} d_{2}\right|^{2}} \frac{1}{S N R^{2}}
\end{aligned}
$$

Let $\delta_{A B}=\left|d_{1} d_{2}\right|^{2}$. We can repeat the calculus for $\mathbb{P}\left(\mathbf{x}_{\mathbf{A}} \rightarrow \mathbf{x}_{\mathbf{C}}\right)$ and $\mathbb{P}\left(\mathbf{x}_{\mathbf{A}} \rightarrow\right.$ $\left.\mathbf{x}_{\mathbf{D}}\right)$. By analogy, we can define $\delta_{A C}$ and $\delta_{A D}$. Hence

$$
P_{e} \leq 16\left(\frac{1}{\delta_{A B}}+\frac{1}{\delta_{A C}}+\frac{1}{\delta_{A D}}\right) \frac{1}{S N R^{2}}
$$

2. To get diversity order of 2 , none of the $\delta_{A B}, \delta_{A C}$ and $\delta_{A D}$ should be zero.

We have

$$
\delta_{A B}=\delta_{A D}=4 \sin ^{2} 2 \theta
$$

and

$$
\delta_{A C}=16 \cos ^{2} 2 \theta
$$

It gives the following conditions:

$$
\begin{aligned}
\sin 2 \theta=0 \Rightarrow 2 \theta & = \pm n \pi \\
\theta & = \pm \frac{n \pi}{2}=0, \frac{\pi}{2}, \frac{3 \pi}{2}, \pi \\
\cos 2 \theta=0 \Rightarrow 2 \theta & =\frac{\pi}{2}, \frac{3 \pi}{2} \\
\theta & =\frac{\pi}{4}, \frac{3 \pi}{4}
\end{aligned}
$$

So

$$
\theta \neq\left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{3 \pi}{2}\right\}
$$

