Solutions to Homework 3

Problem 1

(a) Orthogonality principle implies,

$$
\mathbb{E}\left[(X-\hat{X}) \mathbf{Y}^{*}\right]=0
$$

where $\mathbf{Y}=\left[\begin{array}{c}X+Z_{1} \\ Z_{2}\end{array}\right]$. Let $\mathbf{W}=\left[\begin{array}{ll}W_{1}, & W_{2}\end{array}\right]$, then orthogonality principle implies

$$
\mathbb{E}\left[(X-\mathbf{W} \mathbf{Y}) \mathbf{Y}^{*}\right]=0
$$

or,

$$
\mathbf{W}=\mathbb{E}\left[X \mathbf{Y}^{*}\right]\left(\mathbb{E}\left[\mathbf{Y} \mathbf{Y}^{*}\right]\right)^{-1}
$$

Since,

$$
\mathbb{E}\left[\mathbf{Y} \mathbf{Y}^{*}\right]=\left[\begin{array}{cc}
\mathcal{E}_{x}+\sigma^{2} & \rho \sigma^{2} \\
\rho^{*} \sigma^{2} & \sigma^{2}
\end{array}\right]
$$

and,

$$
\mathbb{E}\left[X \mathbf{Y}^{*}\right]=\left[\begin{array}{ll}
\mathcal{E}_{x}, & 0
\end{array}\right]
$$

We get that,

$$
\mathbf{W}_{\text {opt }}=\left[\begin{array}{ll}
W_{1, o p t}, & W_{2, o p t}
\end{array}\right]=\frac{\mathcal{E}_{x}}{\mathcal{E}_{x}+\sigma^{2}\left(1-|\rho|^{2}\right)}\left[\begin{array}{ll}
1, & -\rho
\end{array}\right],
$$

and

$$
\widehat{X}=\frac{\mathcal{E}_{x}}{\mathcal{E}_{x}+\sigma^{2}\left(1-|\rho|^{2}\right)}\left(X+Z_{1}-\rho Z_{2}\right)
$$

(b)

$$
\sigma_{M M S E}^{2}=\operatorname{Trace}\left(R_{X X}-W_{\mathrm{opt}} R_{Y X}\right)
$$

We have,

$$
R_{X X}=\mathcal{E}_{x}, \quad R_{Y X}=\left[\begin{array}{c}
\mathcal{E}_{x} \\
0
\end{array}\right]
$$

So,

$$
\sigma_{M M S E}^{2}=\frac{\mathcal{E}_{x} \sigma^{2}\left(1-|\rho|^{2}\right)}{\mathcal{E}_{x}+\sigma^{2}\left(1-|\rho|^{2}\right)}
$$

We get that for $|\rho|=1, \sigma_{M M S E}^{2}=0$. The interpretation is that if $|\rho|=1, Z_{1}$ is perfectly predictable from Z_{2} and hence can be canceled from $X+Z_{1}$. This will yield $\sigma_{M M S E}^{2}=0$.
(c) The linear estimator for Z_{1} from Y_{2} is,

$$
\hat{Z}_{1}=W Y_{2} .
$$

Applying orthogonality principle we get that $\hat{Z}_{1}=\rho Y_{2}=\rho Z_{2}$. Thus $\hat{Y}_{1}=Y_{1}-\rho Y_{2}=$ $X+Z_{1}-\rho Z_{2}$. Thus the best linear MMSE estimator can be again obtained by applying orthogonality principle.

$$
W_{o p t}^{(2)}=\frac{\mathcal{E}_{x}}{\mathcal{E}_{x}+\sigma^{2}\left(1-|\rho|^{2}\right)},
$$

and hence

$$
\hat{X}^{(2)}=\frac{\mathcal{E}_{x}}{\mathcal{E}_{x}+\sigma^{2}\left(1-|\rho|^{2}\right)} \hat{Y}_{1}=\frac{\mathcal{E}_{x}}{\mathcal{E}_{x}+\sigma^{2}\left(1-|\rho|^{2}\right)}\left(Y_{1}-\rho Y_{2}\right),
$$

which is the same as in (a). The interpretation is that it is optimal for the prediction of X to optimally predict Z_{1} from Z_{2} and then cancel it from Y_{1}.

Problem 2

(a)

$$
\begin{aligned}
\widehat{X}_{a}= & \frac{H_{a}^{*} \sigma_{x}^{2}}{H_{a} H_{a}^{*} \sigma_{x}^{2}+\sigma_{a}^{2}} Y_{a}, \quad \widehat{X}_{b}=\frac{H_{b}^{*} \sigma_{x}^{2}}{H_{b} H_{b}^{*} \sigma_{x}^{2}+\sigma_{b}^{2}} Y_{b} . \\
P_{a} & =\sigma_{x}^{2}-H_{a}^{*} \sigma_{x}^{2}\left(H_{a} H_{a}^{*} \sigma_{x}^{2}+\sigma_{a}^{2}\right)^{-1} H_{a} \sigma_{x}^{2}, \\
& =\frac{\sigma_{x}^{2} \sigma_{a}^{2}}{\left|H_{a}\right|^{2} \sigma_{x}^{2}+\sigma_{a}^{2}}, \\
P_{b} & =\sigma_{x}^{2}-H_{b}^{*} \sigma_{x}^{2}\left(H_{b} H_{b}^{*} \sigma_{x}^{2}+\sigma_{b}^{2}\right)^{-1} H_{b} \sigma_{x}^{2} \\
& =\frac{\sigma_{x}^{2} \sigma_{b}^{2}}{\left|H_{b}\right|^{2} \sigma_{x}^{2}+\sigma_{b}^{2}} .
\end{aligned}
$$

(b) Using the identities

$$
\begin{aligned}
\widehat{X}_{a} & =\left(\frac{1}{\sigma_{x}^{2}}+\frac{H_{a} H_{a}^{*}}{\sigma_{a}^{2}}\right)^{-1} \frac{H_{a}^{*}}{\sigma_{a}^{2}} Y_{a} \\
\Rightarrow\left(\frac{1}{\sigma_{x}^{2}}+\frac{H_{a} H_{a}^{*}}{\sigma_{a}^{2}}\right) \widehat{X}_{a} & =\frac{H_{a}^{*}}{\sigma_{a}^{2}} Y_{a} \\
\Rightarrow P_{a}^{-1} \widehat{X}_{a} & =\frac{H_{a}^{*}}{\sigma_{a}^{2}} Y_{a} .
\end{aligned}
$$

Similarly,

$$
P_{b}^{-1} \widehat{X}_{b}=\frac{H_{b}^{*}}{\sigma_{b}^{2}} Y_{b} .
$$

(c) Now

$$
\begin{gathered}
\widehat{X}=\left[\begin{array}{ll}
H_{a}^{*} & H_{b}^{*}
\end{array}\right] \sigma_{x}^{2}\left[\begin{array}{cc}
H_{a} H_{a}^{*} \sigma_{x}^{2}+\sigma_{a}^{2} & H_{a} H_{b}^{*} \sigma_{x}^{2} \\
H_{b} H_{a}^{*} \sigma_{x}^{2} & H_{b} H_{b}^{*} \sigma_{x}^{2}+\sigma_{b}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
Y_{a} \\
Y_{b}
\end{array}\right] \\
P=\mathcal{E}_{x}-\sigma_{x}^{2}\left[\begin{array}{ll}
H_{a}^{*} & H_{b}^{*}
\end{array}\right]\left[\begin{array}{cc}
H_{a} H_{a}^{*} \sigma_{x}^{2}+\sigma_{a}^{2} & H_{a} H_{b}^{*} \sigma_{x}^{2} \\
H_{b} H_{a}^{*} \sigma_{x}^{2} & H_{b} H_{b}^{*} \sigma_{x}^{2}+\sigma_{b}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
H_{a} \\
H_{b}
\end{array}\right] \sigma_{x}^{2} .
\end{gathered}
$$

Using the matrix identities by identifying

$$
\mathbf{H}=\left[\begin{array}{c}
H_{a} \\
H_{b}
\end{array}\right], \mathbf{R}_{\mathbf{v}}=\left[\begin{array}{cc}
\sigma_{a}^{2} & 0 \\
0 & \sigma_{b}^{2}
\end{array}\right], \mathbf{R}_{\mathbf{x}}=\sigma_{x}^{2}
$$

We get

$$
\left.\begin{array}{c}
\widehat{X}=\left(\frac{1}{\sigma_{x}^{2}}\right.
\end{array}+\left[\begin{array}{ll}
H_{a}^{*} & H_{b}^{*}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{a}^{2} & 0 \\
0 & \sigma_{b}^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
H_{a} \\
H_{b}
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
H_{a}^{*} & H_{b}^{*}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{a}^{2} & 0 \\
0 & \sigma_{b}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
Y_{a} \\
Y_{b}
\end{array}\right], ~\left(P^{-1} \widehat{X}=\frac{H_{a}^{*}}{\sigma_{a}^{2}} Y_{a}+\frac{H_{b}^{*}}{\sigma_{b}^{2}} Y_{b}=P_{a}^{-1} \widehat{X}_{a}+P_{b}^{-1} \widehat{X}_{b} .\right.
$$

Now

$$
\begin{aligned}
P^{-1} & =\left(\frac{1}{\sigma_{x}^{2}}+\left[\begin{array}{ll}
H_{a}^{*} & H_{b}^{*}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{a}^{2} & 0 \\
0 & \sigma_{b}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
H_{a} \\
H_{b}
\end{array}\right]\right) \\
& =\left(\frac{1}{\sigma_{x}^{2}}+\frac{H_{a}^{*} H_{a}}{\sigma_{a}^{2}}+\frac{H_{b}^{*} H_{b}}{\sigma_{b}^{2}}\right) \\
& =P_{a}^{-1}+P_{b}^{-1}-\frac{1}{\sigma_{x}^{2}}
\end{aligned}
$$

Problem 3

- (Precalculations) Before go through the solution, let compute the power spectral density of x and its spectral factorization (Supposing that the Paley-Wiener condition holds).

$$
\begin{aligned}
S_{x}(D) & =\sum_{k=-\infty}^{+\infty} r_{x}(k) D^{k} \\
& =\sum_{k=-\infty}^{-1} r_{x}(k) D^{k}+r_{x}(0)+\sum_{1}^{+\infty} r_{x}(k) D^{k} \\
& =\sum_{k=-\infty}^{-1}\left(\frac{2}{3}\right)^{-k} D^{k}+\frac{23}{28}+\sum_{k=1}^{\infty}\left(\frac{2}{3}\right)^{k} D^{k} \\
& =\sum_{k=1}^{\infty}\left(\frac{2}{3} D^{-1}\right)^{k}+\frac{23}{28}+\sum_{k=1}^{\infty}\left(\frac{2}{3} D\right)^{k} \\
& =\frac{\frac{2}{3} D^{-1}}{1-\frac{2}{3} D^{-1}+\frac{23}{28}+\frac{\frac{2}{3} D}{1-\frac{2}{3} D}} \\
& =\frac{\frac{2}{3} D-\frac{4}{9}+\frac{2}{3} D^{-1}-\frac{4}{9}+\frac{23}{28}\left(1-\frac{2}{3} D\right)\left(1-\frac{2}{3} D^{-1}\right)}{\left(1-\frac{2}{3} D\right)\left(1-\frac{2}{3} D^{-1}\right)} \\
& =\frac{\frac{5}{21}\left(\frac{1}{2} D+\frac{1}{2} D^{-1}+\frac{5}{4}\right)}{\left(1-\frac{2}{3} D\right)\left(1-\frac{2}{3} D^{-1}\right)} \\
& =\underbrace{\frac{5}{21}}_{\Gamma} \underbrace{\frac{(i)}{\left(1+\frac{1}{2} D\right)}}_{(i i i)} \overbrace{\left(1-\frac{1}{3} D\right)}^{\underbrace{\left(1+\frac{1}{2} D^{-1}\right)}_{(i v)}} \underbrace{(i-1)}_{\left(1-\frac{2}{3} D^{-1}\right)}
\end{aligned}
$$

$S_{x}(D)$ is then expressed under the form $\Gamma L(D) L^{*}\left(D^{-*}\right)$.
We choose $L(D)$ as the minimum-phase part (all zeros and poles are outside the unit circle for the D-Transform, or equivalently, inside the unit circle for the Z-Transform). The roots of the polynomials $(i),(i i),(i i i)$ and (iv) are $-2,-\frac{1}{2}, \frac{3}{2}, \frac{2}{3}$, respectively. Only polynomials i and $i i i$ have their roots outside the unit circle, so $L(D)=\frac{\left(1+\frac{1}{2} D\right)}{\left(1-\frac{2}{3} D\right)}$. (Note that we have chosen the coefficients such that the result is monic.)

Now lets compute the inverse D-Transform of $L(D)$ and of $\frac{1}{L(D)}$ that will be requested for solving the problem.

$$
\begin{aligned}
L(D) & =\frac{\left(1+\frac{1}{2} D\right)}{\left(1-\frac{2}{3} D\right)}=\left(1+\frac{1}{2} D\right) \sum_{k=0}^{\infty}\left(\frac{2}{3} D\right)^{k} \\
& =\sum_{k=0}^{\infty}\left(\frac{2}{3} D\right)^{k}+\frac{1}{2} \sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k} D^{k+1} \\
& =1+\sum_{k=1}^{\infty}\left(\frac{2}{3} D\right)^{k}+\frac{1}{2} \sum_{m=1}^{\infty}\left(\frac{2}{3}\right)^{m-1} D^{m} \quad \text { (by using } m=k+1 \text { in the second summation) } \\
& =1+\sum_{k=1}^{\infty}\left(\left(\frac{2}{3}\right)^{k}+\frac{1}{2}\left(\frac{2}{3}\right)^{k-1}\right) D^{k} \\
& =1+\frac{7}{4} \sum_{k=1}^{\infty}\left(\frac{2}{3}\right)^{k} D^{k}
\end{aligned}
$$

so

$$
l(k)=\left\{\begin{array}{lll}
1 & \text { if } \quad k=0 \\
\frac{7}{4}\left(\frac{2}{3}\right)^{k} & \text { if } \quad k \geq 1
\end{array}\right.
$$

(a) $\hat{x}_{k+2}=\sum_{m=2}^{\infty} a_{m} x_{k+2-m}$

We have to find $a_{m}{ }_{m=2}^{\infty}$ such that $\mathbb{E}\left[\left|x_{k+2}-\hat{x}_{k+2}\right|^{2}\right]$ is minimized. Using the orthogonality
principle, we have

$$
\begin{aligned}
& \mathbb{E}\left[\left(x_{k+2}-\hat{x}_{k+2}\right) x_{k-n}\right]=0 \quad n=0,1, \ldots \\
& \mathbb{E}\left[\left(x_{k+2}-\sum_{m=2}^{\infty} a_{m} x_{k+2-m}\right) x_{k-n}\right]=0 \\
& \mathbb{E}\left[x_{k+2} x_{k-n}\right]-\sum_{m=2}^{\infty} a_{m} \mathbb{E}\left[x_{k+2-m} x_{k-n}\right]=0 \\
& r_{x}(n+2)=\sum_{m=2}^{\infty} a_{m} r_{x}(n+2-m) \\
& r_{x}(l)=\sum_{m=2}^{\infty} a_{m} r_{x}(l-m) \\
&(\text { using } l=n+2 \text { for simplicity, } l=2,3, \ldots) \\
& g_{l}=r_{x}(l)-\sum_{m=2}^{\infty} a_{m} r_{x}(l-m) \\
& g_{l}=\sum_{m=0}^{\infty} a_{m}^{\prime} r_{x}(l-m)
\end{aligned}
$$

$\left.{ }^{*}\right)\left(\right.$ with $a_{0}^{\prime}=1, a_{1}^{\prime}=0$ and $a_{m}^{\prime}=-a_{m}$ for $\left.m \geq 2\right)$
Note that $g_{l}=0$ for $l=2,3, \ldots$, thus it is neither causal nor anti-causal because it has non-null terms for $l \leq 1$. But it can be transformed to an anti-causal sequence by a shift left of 1, i. e.,

$$
\begin{aligned}
G(D) & =g_{1} D+g_{0}+g_{-1} D^{-1}+g_{-2} D^{-2}+\cdots \\
& =D \cdot \underbrace{\left[g_{1}+g_{0} D^{-1}+g_{-1} D^{-2}+g_{-2} D^{-3}+\cdots\right]}_{\tilde{G}(D)}
\end{aligned}
$$

where $\tilde{G}(D)$ is an anti-causal function. Now, we have

$$
\begin{aligned}
G(D) & =A^{\prime}(D) S_{x}(D) \\
& =A^{\prime}(D) \Gamma L(D) L\left(D^{-1}\right)
\end{aligned}
$$

or

$$
D \underbrace{\frac{\tilde{G}(D)}{\Gamma L^{*}\left(D^{-*}\right)}}_{\text {anti-causal }}=\underbrace{A^{\prime}(D) L(D)}_{\text {causal }}
$$

So far we observe that the left hand side is an anti-causal sequence shifted to the right by 1 and the right hand side is a causal sequence. The equality lead to the conclusion that all terms are null except in $k=0$ and $k=1$.

Then we can write the following: $A^{\prime}(D) L(D)=\gamma_{0}+\gamma_{1} D$. Using $\left(^{*}\right)$ and the fact that $\mathrm{L}(\mathrm{D})$ is monic (division of two monic polynomials remains monic) developing and identifying we get the following: $\left(1+a_{2}^{\prime} D^{2}+a_{3}^{\prime} D^{3}+\ldots\right)\left(1+l_{1} D+l_{2} D^{2}+\ldots\right)=\gamma_{0}+\gamma_{1} D$,

thus $\gamma_{0}=1$ and $\gamma_{1}=l_{1}=\frac{2}{3}+\frac{1}{2}=\frac{7}{6}$
Putting all together we obtain $A^{\prime}(D)$ and by an inverse D-Transform and still using $\left(^{*}\right)$ we can find $A(D)$.

$$
\begin{aligned}
A^{\prime}(D) & =\frac{\gamma_{0}+\gamma_{1} D}{L(D)}=\frac{1+\frac{7}{6} D}{L(D)} \\
& =\left(1+\frac{7}{6} D\right)\left(1-\frac{2}{3} D\right) \frac{1}{\left(1+\frac{1}{2} D\right)} \\
& =\left(1+\frac{1}{2} D-\frac{7}{9} D^{2}\right) \sum_{k=0}^{\infty}\left(-\frac{1}{2} D\right)^{k} \\
& =\sum_{k=0}^{\infty}\left(-\frac{1}{2} D\right)^{k}+\frac{1}{2} \sum_{k=0}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k+1}-\frac{7}{9} \sum_{k=0}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k+2} \\
& =1-\frac{1}{2} D+\sum_{k=2}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k}+\frac{1}{2} D+\frac{1}{2} \sum_{k=1}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k+1}-\frac{7}{9} \sum_{k=0}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k+2} \\
& =1-\frac{1}{2} D+\sum_{k=2}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k}+\frac{1}{2} D+\frac{1}{2} \sum_{k=2}^{\infty}\left(-\frac{1}{2}\right)^{k-1} D^{k}-\frac{7}{9} \sum_{k=2}^{\infty}\left(-\frac{1}{2}\right)^{k-2} D^{k} \\
& =1-\frac{28}{9} \sum_{k=2}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k} \\
A^{\prime}(D) & =1+\sum_{k=2}^{\infty}\left(\left(-\frac{1}{2}\right)^{k}+\frac{1}{2}\left(-\frac{1}{2}\right)^{k-1}-\frac{7}{9}\left(-\frac{1}{2}\right)^{k-2}\right) D^{k} \\
\Longrightarrow a_{k}^{\prime} & = \begin{cases}1 & \text { if }=0 \\
0 & \text { if } \quad k=1 \\
-\frac{28}{9}\left(-\frac{1}{2}\right)^{k}- & \text { if } \quad k \geq 2\end{cases}
\end{aligned}
$$

or

$$
a_{m}=\frac{28}{9}\left(-\frac{1}{2}\right)^{m} \quad \text { for } m \geq 2
$$

(b) $\hat{x}_{k+1}=\sum_{m=1}^{\infty} b_{m} x_{k+1-m}$:

This case is the same as in the lecture note: section 5.1.3 (One-step linear prediction). We founded that $B^{\prime}(D)=\frac{1}{L(D)}$ where $b_{0}^{\prime}=1$ and $b_{m}^{\prime}=-b_{m}$

$$
\begin{aligned}
B^{\prime}(D) & =\frac{1}{L(D)}=\left(1-\frac{2}{3} D\right) \frac{1}{\left(1+\frac{1}{2} D\right)} \\
& =\left(1-\frac{2}{3} D\right) \sum_{k=0}^{\infty}\left(-\frac{1}{2} D\right)^{k} \\
& =\sum_{k=0}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k}-\frac{2}{3} \sum_{k=0}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k+1} \\
& =1+\sum_{k=1}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k}-\frac{2}{3} \sum_{k=1}^{\infty}\left(-\frac{1}{2}\right)^{k-1} D^{k} \\
& =1+\sum_{k=1}^{\infty}\left(\left(-\frac{1}{2}\right)^{k}-\frac{2}{3}\left(-\frac{1}{2}\right)^{k-1}\right) D^{k} \\
& =1+\frac{7}{3} \sum_{k=1}^{\infty}\left(-\frac{1}{2}\right)^{k} D^{k} .
\end{aligned}
$$

So,

$$
b_{m}=-\frac{7}{3}\left(-\frac{1}{2}\right)^{m} \quad \text { for } m \geq 1
$$

(c) We suppose that \hat{x}_{k+1} is perfect and then $y_{k+1}=x_{k+1}$. Note that this assumption is not mentioned in the question. But without this assumption the problem cannot be solved. The problem become a one-step prediction as used in question (b) but using $S_{y}(D)$ instead of $S_{x}(D)$.
Now we will show that they are equal:

$$
\begin{aligned}
r_{y}(k+1-n) & =\mathbb{E}\left[y_{k+1} y_{n}\right] \\
& =\mathbb{E}\left[\hat{x}_{k+1} y_{n}\right] \quad(n \leq k) \\
& =\sum_{m=1}^{\infty} b_{m} \mathbb{E}\left[x_{k+1-m} x_{n}\right] \\
& =\sum_{m=1}^{\infty} b_{m} r_{x}(k-m-n+1) \\
& =r_{x}(k-n+1) \quad(\text { Follows from the OP for one-step prediction }) \\
& \Longrightarrow S_{y}(D)=S_{x}(D)
\end{aligned}
$$

Using the OP we have

$$
\hat{y}_{k+2}=\sum_{m=1}^{\infty} c_{m} y_{k+2-m} \perp y_{k+2-n} \quad n=1,2,3, \ldots
$$

Thus

$$
h_{n}=r_{y}(n)-\sum_{m=1}^{\infty} c_{m} r_{y}(l-m)=0 \quad n=1,2, \ldots
$$

Now again we can write $C^{\prime}(D)=\frac{1}{L(D)}$, where $c_{0}^{\prime}=1$ and $c_{m}^{\prime}=-c_{m}$ for $m \geq 1$. Therefore,

$$
c_{m}=-\frac{7}{3}\left(-\frac{1}{2}\right)^{m} \quad \text { for } m \geq 1
$$

(d) Now we just replace y_{k+1} in part (c) by the result of part (b).

$$
\begin{aligned}
\hat{y}_{k+2} & =\sum_{m=1}^{\infty} c_{m} y_{k+2-m} \\
& =c_{1} y_{k+1}+\sum_{m=2}^{\infty} c_{m} y_{k+2-m} \\
& \left.=c_{1} \sum_{n=1}^{\infty} b_{n} x_{k+1-n}+\sum_{m=2}^{\infty} c_{m} x_{k+2-m} \quad \text { (because } y_{n}=x_{n} \text { for } n \leq k\right) \\
& =c_{1} \sum_{n=2}^{\infty} b_{n-1} x_{k+2-n}+\sum_{m=2}^{\infty} c_{m} x_{k+2-m} \\
& =\sum_{m=2}^{\infty}\left(c_{1} b_{m-1}+c_{m}\right) x_{k+2-m} \\
& \Rightarrow d_{m}=c_{1} b_{m-1}+c_{m} \quad \text { for } m \geq 2 \\
d_{m} & =c_{1} b_{m-1}+c_{m} \\
& =-\frac{7}{3}\left(-\frac{1}{2}\right)^{1} \cdot\left(-\frac{7}{3}\left(-\frac{1}{2}\right)^{m-1}\right)+\left(-\frac{7}{3}\left(-\frac{1}{2}\right)^{m}\right) \\
& =-\frac{7}{3}\left(-\frac{1}{2}\right)^{m}\left(-\frac{7}{3}+1\right) \\
& =\frac{28}{9}\left(-\frac{1}{2}\right)^{m}=a_{m} \quad m \geq 2
\end{aligned}
$$

As it was expectable, we see that the result of two-step prediction is absolutely the same as the result of the combination of two times using one-setp prediction. The reason is we are using the same observation in the both methods $\left(\left\{x_{n}\right\}_{n=-\infty}^{n=k}\right.$), and our objective function (cost of the prediction, i. e., $\mathbb{E}\left[\left|x_{k+2}-\hat{x}_{k+2}\right|^{2}\right]$) is also the same, and so we will obtain the same results.

Problem 4

(i) In this case the sequence given $\left\{U_{1 k}\right\},\left\{U_{2 k}\right\}$ is irrelevant. Let us try to compute the $W_{\text {opt }}$ using both the sequences. Let the estimate be given by $\hat{X}_{k}=\sum_{i=-\infty}^{\infty} W_{1 i} U_{1 k-i}+$ $W_{2 i} U_{2 k-i}$ From the orthogonality principle, we have

$$
\begin{array}{ll}
\mathbb{E}\left[\left(X_{k}-\hat{X}_{k}\right) U_{1 j}\right]=0, & \forall j \\
\mathbb{E}\left[\left(X_{k}-\hat{X}_{k}\right) U_{2 j}\right]=0, & \forall j
\end{array}
$$

Fromt he orthogonality principle we get

$$
\begin{aligned}
& R_{X U_{1}}(D)=W_{1}(D) R_{U_{1} U_{1}}(D)+W_{2}(D) R_{U_{2} U_{1}}(D) \\
& R_{X U_{2}}(D)=W_{1}(D) R_{U_{1} U_{2}}(D)+W_{2}(D) R_{U_{2} U_{2}}(D)
\end{aligned}
$$

Since the noise is independent from X, this implies

$$
\begin{aligned}
& R_{U_{1} U_{1}}(D)=R_{Y Y}(D)+\sigma_{1}^{2} \\
& R_{U_{1} U_{2}}(D)=R_{U_{2} U_{1}}(D)=R_{Y Y}(D) \\
& R_{U_{2} U_{2}}(D)=\sigma_{2}^{2}+R_{Y Y}(D)
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& R_{X Y}(D)=W_{1}(D) R_{Y Y}(D)+W_{2}(D) R_{Y Y}(D) \\
& R_{X Y}(D)=W_{1}(D) R_{Y Y}(D)+W_{2}(D) R_{Y Y}(D)+4 W_{2}(D)
\end{aligned}
$$

Solving this we get, $W_{1}(D)=R_{X Y}(D) / R_{Y Y}(D), W_{2}(D)=0$. Therefore the sequence $U_{2}(D)$ was irrelevant.
(ii) In this case

$$
\begin{aligned}
& R_{X Y}(D)=W_{1}(D) R_{Y Y}(D)+W_{1}(D)+W_{2}(D) R_{Y Y}(D) \\
& R_{X Y}(D)=W_{1}(D) R_{Y Y}(D)+W_{2}(D) R_{Y Y}(D)+4 W_{2}(D)
\end{aligned}
$$

Solving this we get

$$
\begin{aligned}
W_{1}(D) & =\frac{4 R_{X Y}(D)}{4+5 R_{Y Y}(D)} \\
W_{2}(D) & =\frac{R_{X Y}(D)}{4+5 R_{Y Y}(D)}
\end{aligned}
$$

(iii) In the part (i) given $\left\{U_{1 k}\right\}$ the sequence $\left\{U_{2 k}\right\}$ is irrelevant. This is because the error in the estimate $W_{1}(D) U_{1}(D)$ is orthogonal to $\left\{U_{1 k}\right\}$ and the noise $\left\{Z_{2 k}\right\}$ is orthogonal to $U_{1 k}$, making the error orthogonal to $\left\{U_{2 k}\right\}$ also. Hence we do not need $\left\{U_{2 k}\right\}$ to estimate. But in the part (ii) this is not true and both the sequences are relevant.

