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Solutions to Homework 3

Problem 1

(a) Orthogonality principle implies,

E[(X − X̂)Y∗] = 0

where Y =

[
X + Z1

Z2

]
. Let W =

[
W1, W2

]
, then orthogonality principle implies

E[(X −WY)Y∗] = 0

or,
W = E[XY∗](E[YY∗])−1

Since,

E[YY∗] =

[Ex + σ2 ρσ2

ρ∗σ2 σ2

]

and,
E[XY∗] =

[Ex, 0
]
.

We get that,

Wopt =
[
W1,opt, W2,opt

]
=

Ex

Ex + σ2(1− |ρ|2) [1, −ρ],

and

X̂ =
Ex

Ex + σ2(1− |ρ|2)(X + Z1 − ρZ2)

(b)
σ2

MMSE = Trace (RXX −WoptRY X) .

We have,

RXX = Ex, RY X =

[Ex

0

]

So,

σ2
MMSE =

Exσ
2(1− |ρ|2)

Ex + σ2(1− |ρ|2) .

We get that for |ρ| = 1,σ2
MMSE = 0. The interpretation is that if |ρ| = 1, Z1 is perfectly

predictable from Z2 and hence can be canceled from X+Z1. This will yield σ2
MMSE = 0.
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(c) The linear estimator for Z1 from Y2 is,

Ẑ1 = WY2.

Applying orthogonality principle we get that Ẑ1 = ρY2 = ρZ2. Thus Ŷ1 = Y1 − ρY2 =
X +Z1−ρZ2. Thus the best linear MMSE estimator can be again obtained by applying
orthogonality principle.

W
(2)
opt =

Ex

Ex + σ2(1− |ρ|2) ,

and hence

X̂(2) =
Ex

Ex + σ2(1− |ρ|2) Ŷ1 =
Ex

Ex + σ2(1− |ρ|2)(Y1 − ρY2),

which is the same as in (a). The interpretation is that it is optimal for the prediction
of X to optimally predict Z1 from Z2 and then cancel it from Y1.

Problem 2

(a)

X̂a =
H∗

aσ2
x

HaH∗
aσ2

x + σ2
a

Ya, X̂b =
H∗

b σ2
x

HbH∗
b σ2

x + σ2
b

Yb.

Pa = σ2
x −H∗

aσ2
x

(
HaH

∗
aσ2

x + σ2
a

)−1
Haσ

2
x,

=
σ2

xσ
2
a

|Ha|2σ2
x + σ2

a

,

Pb = σ2
x −H∗

b σ2
x

(
HbH

∗
b σ2

x + σ2
b

)−1
Hbσ

2
x,

=
σ2

xσ
2
b

|Hb|2σ2
x + σ2

b

.

(b) Using the identities

X̂a =

(
1

σ2
x

+
HaH

∗
a

σ2
a

)−1
H∗

a

σ2
a

Ya,

⇒
(

1

σ2
x

+
HaH

∗
a

σ2
a

)
X̂a =

H∗
a

σ2
a

Ya,

⇒ P−1
a X̂a =

H∗
a

σ2
a

Ya.

Similarly,

P−1
b X̂b =

H∗
b

σ2
b

Yb.

(c) Now

X̂ =
[
H∗

a H∗
b

]
σ2

x

[
HaH

∗
aσ2

x + σ2
a HaH

∗
b σ2

x

HbH
∗
aσ2

x HbH
∗
b σ2

x + σ2
b

]−1 [
Ya

Yb

]

P = Ex − σ2
x

[
H∗

a H∗
b

] [
HaH

∗
aσ2

x + σ2
a HaH

∗
b σ2

x

HbH
∗
aσ2

x HbH
∗
b σ2

x + σ2
b

]−1 [
Ha

Hb

]
σ2

x.
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Using the matrix identities by identifying

H =

[
Ha

Hb

]
,Rv =

[
σ2

a 0
0 σ2

b

]
,Rx = σ2

x.

We get

X̂ =

(
1

σ2
x

+
[
H∗

a H∗
b

] [
σ2

a 0
0 σ2

b

]−1 [
Ha

Hb

])−1 [
H∗

a H∗
b

] [
σ2

a 0
0 σ2

b

]−1 [
Ya

Yb

]
,

⇒ P−1X̂ =
H∗

a

σ2
a

Ya +
H∗

b

σ2
b

Yb = P−1
a X̂a + P−1

b X̂b.

Now

P−1 =

(
1

σ2
x

+
[
H∗

a H∗
b

] [
σ2

a 0
0 σ2

b

]−1 [
Ha

Hb

])
,

=

(
1

σ2
x

+
H∗

aHa

σ2
a

+
H∗

b Hb

σ2
b

)
,

= P−1
a + P−1

b − 1

σ2
x

.

Problem 3

• (Precalculations) Before go through the solution, let compute the power spectral density
of x and its spectral factorization (Supposing that the Paley-Wiener condition holds).

Sx(D) =
+∞∑

k=−∞
rx(k)Dk

=
−1∑

k=−∞
rx(k)Dk + rx(0) +

+∞∑
1

rx(k)Dk

=
−1∑

k=−∞
(
2

3
)−kDk +

23

28
+

∞∑

k=1

(
2

3
)kDk

=
∞∑

k=1

(
2

3
D−1)k +

23

28
+

∞∑

k=1

(
2

3
D)k

=
2
3
D−1

1− 2
3
D−1

+
23

28
+

2
3
D

1− 2
3
D

=
2
3
D − 4

9
+ 2

3
D−1 − 4

9
+ 23

28
(1− 2

3
D)(1− 2

3
D−1)

(1− 2
3
D)(1− 2

3
D−1)

=
5
21

(1
2
D + 1

2
D−1 + 5

4
)

(1− 2
3
D)(1− 2

3
D−1)

=
5

21︸︷︷︸
Γ

(i)︷ ︸︸ ︷
(1 +

1

2
D)

(1− 2

3
D)

︸ ︷︷ ︸
(iii)

(ii)︷ ︸︸ ︷
(1 +

1

2
D−1)

(1− 2

3
D−1)

︸ ︷︷ ︸
(iv)
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Sx(D) is then expressed under the form ΓL(D)L∗(D−∗).
We choose L(D) as the minimum-phase part (all zeros and poles are outside the unit
circle for the D-Transform, or equivalently, inside the unit circle for the Z-Transform).
The roots of the polynomials (i), (ii), (iii) and (iv) are −2, −1

2
, 3

2
, 2

3
, respectively. Only

polynomials i and iii have their roots outside the unit circle, so L(D) =
(1+ 1

2
D)

(1− 2
3
D)

. (Note

that we have chosen the coefficients such that the result is monic.)

Now lets compute the inverse D-Transform of L(D) and of 1
L(D)

that will be requested
for solving the problem.

L(D) =
(1 + 1

2
D)

(1− 2
3
D)

= (1 +
1

2
D)

∞∑

k=0

(
2

3
D)k

=
∞∑

k=0

(
2

3
D)k +

1

2

∞∑

k=0

(
2

3
)kDk+1

= 1 +
∞∑

k=1

(
2

3
D)k +

1

2

∞∑
m=1

(
2

3
)m−1Dm (by using m = k + 1 in the second summation)

= 1 +
∞∑

k=1

(
(
2

3
)k +

1

2
(
2

3
)k−1

)
Dk

= 1 +
7

4

∞∑

k=1

(
2

3
)kDk

so

l(k) =

{
1 if k = 0
7
4
(2

3
)k if k ≥ 1

(a) x̂k+2 =
∑∞

m=2 amxk+2−m

We have to find am
∞
m=2 such that E[|xk+2−x̂k+2|2] is minimized. Using the orthogonality
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principle, we have

E[(xk+2 − x̂k+2)xk−n] = 0 n = 0, 1, ...

E[(xk+2 −
∞∑

m=2

amxk+2−m)xk−n] = 0

E[xk+2xk−n]−
∞∑

m=2

amE[xk+2−mxk−n] = 0

rx(n + 2) =
∞∑

m=2

amrx(n + 2−m)

rx(l) =
∞∑

m=2

amrx(l −m)

(using l = n + 2 for simplicity, l = 2, 3, ...)

gl = rx(l)−
∞∑

m=2

amrx(l −m)

gl =
∞∑

m=0

a′mrx(l −m)

(*)(with a′0 = 1, a′1 = 0 and a′m = −am for m ≥ 2)

Note that gl = 0 for l = 2, 3, ..., thus it is neither causal nor anti-causal because it has
non-null terms for l ≤ 1. But it can be transformed to an anti-causal sequence by a
shift left of 1, i. e.,

G(D) = g1D + g0 + g−1D
−1 + g−2D

−2 + · · ·
= D · [g1 + g0D

−1 + g−1D
−2 + g−2D

−3 + · · · ]︸ ︷︷ ︸
G̃(D)

where G̃(D) is an anti-causal function. Now, we have

G(D) = A′(D)Sx(D)

= A′(D)ΓL(D)L(D−1),

or

D
G̃(D)

ΓL∗(D−∗)︸ ︷︷ ︸
anti-causal

= A′(D)L(D)︸ ︷︷ ︸
causal

So far we observe that the left hand side is an anti-causal sequence shifted to the right
by 1 and the right hand side is a causal sequence. The equality lead to the conclusion
that all terms are null except in k = 0 and k = 1.

Then we can write the following: A′(D)L(D) = γ0 + γ1D. Using (*) and the fact
that L(D) is monic (division of two monic polynomials remains monic) developing and
identifying we get the following: (1+a′2D

2 +a′3D
3 + ...)(1+ l1D+ l2D

2 + ...) = γ0 +γ1D,
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=

thus γ0 = 1 and γ1 = l1 = 2
3

+ 1
2

= 7
6

Putting all together we obtain A′(D) and by an inverse D-Transform and still using (*)
we can find A(D).

A′(D) =
γ0 + γ1D

L(D)
=

1 + 7
6
D

L(D)

= (1 +
7

6
D)(1− 2

3
D)

1

(1 + 1
2
D)

= (1 +
1

2
D − 7

9
D2)

∞∑

k=0

(−1

2
D)k

=
∞∑

k=0

(−1

2
D)k +

1

2

∞∑

k=0

(−1

2
)kDk+1 − 7

9

∞∑

k=0

(−1

2
)kDk+2

= 1− 1

2
D +

∞∑

k=2

(−1

2
)kDk +

1

2
D +

1

2

∞∑

k=1

(−1

2
)kDk+1 − 7

9

∞∑

k=0

(−1

2
)kDk+2

= 1− 1

2
D +

∞∑

k=2

(−1

2
)kDk +

1

2
D +

1

2

∞∑

k=2

(−1

2
)k−1Dk − 7

9

∞∑

k=2

(−1

2
)k−2Dk

A′(D) = 1 +
∞∑

k=2

(
(−1

2
)k +

1

2
(−1

2
)k−1 − 7

9
(−1

2
)k−2

)
Dk

= 1− 28

9

∞∑

k=2

(−1

2
)kDk

=⇒ a′k =





1 if = 0
0 if k = 1
−28

9
(−1

2
)k− if k ≥ 2

or

am =
28

9
(−1

2
)m for m ≥ 2

(b) x̂k+1 =
∑∞

m=1 bmxk+1−m :

This case is the same as in the lecture note: section 5.1.3 (One-step linear prediction).
We founded that B′(D) = 1

L(D)
where b′0 = 1 and b′m = −bm
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B′(D) =
1

L(D)
= (1− 2

3
D)

1

(1 + 1
2
D)

= (1− 2

3
D)

∞∑

k=0

(−1

2
D)k

=
∞∑

k=0

(−1

2
)kDk − 2

3

∞∑

k=0

(−1

2
)kDk+1

= 1 +
∞∑

k=1

(−1

2
)kDk − 2

3

∞∑

k=1

(−1

2
)k−1Dk

= 1 +
∞∑

k=1

(
(−1

2
)k − 2

3
(−1

2
)k−1

)
Dk

= 1 +
7

3

∞∑

k=1

(−1

2
)kDk.

So,

bm = −7

3
(−1

2
)m for m ≥ 1

(c) We suppose that x̂k+1 is perfect and then yk+1 = xk+1. Note that this assumption is
not mentioned in the question. But without this assumption the problem cannot be
solved. The problem become a one-step prediction as used in question (b) but using
Sy(D) instead of Sx(D).
Now we will show that they are equal:

ry(k + 1− n) = E[yk+1yn]

= E[x̂k+1yn] (n ≤ k)

=
∞∑

m=1

bmE[xk+1−mxn]

=
∞∑

m=1

bmrx(k −m− n + 1)

= rx(k − n + 1) (Follows from the OP for one-step prediction)

=⇒ Sy(D) = Sx(D)

Using the OP we have

ŷk+2 =
∞∑

m=1

cmyk+2−m ⊥ yk+2−n n = 1, 2, 3, . . .

Thus

hn = ry(n)−
∞∑

m=1

cmry(l −m) = 0 n = 1, 2, . . .

Now again we can write C ′(D) = 1
L(D)

, where c′0 = 1 and c′m = −cm for m ≥ 1.
Therefore,

cm = −7

3
(−1

2
)m for m ≥ 1
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(d) Now we just replace yk+1 in part (c) by the result of part (b).

ŷk+2 =
∞∑

m=1

cmyk+2−m

= c1yk+1 +
∞∑

m=2

cmyk+2−m

= c1

∞∑
n=1

bnxk+1−n +
∞∑

m=2

cmxk+2−m (because yn = xn for n ≤ k)

= c1

∞∑
n=2

bn−1xk+2−n +
∞∑

m=2

cmxk+2−m

=
∞∑

m=2

(c1bm−1 + cm)xk+2−m

⇒ dm = c1bm−1 + cm for m ≥ 2

dm = c1bm−1 + cm

= −7

3
(−1

2
)1 · (−7

3
(−1

2
)m−1) + (−7

3
(−1

2
)m)

= −7

3
(−1

2
)m(−7

3
+ 1)

=
28

9
(−1

2
)m = am m ≥ 2

As it was expectable, we see that the result of two-step prediction is absolutely the same
as the result of the combination of two times using one-setp prediction. The reason is
we are using the same observation in the both methods ({xn}n=k

n=−∞), and our objective
function (cost of the prediction, i. e., E[|xk+2− x̂k+2|2]) is also the same, and so we will
obtain the same results.

Problem 4

(i) In this case the sequence given {U1k}, {U2k} is irrelevant. Let us try to compute the
Wopt using both the sequences. Let the estimate be given by X̂k =

∑∞
i=−∞ W1iU1k−i +

W2iU2k−i From the orthogonality principle, we have

E[(Xk − X̂k)U1j] = 0, ∀j
E[(Xk − X̂k)U2j] = 0, ∀j

Fromt he orthogonality principle we get

RXU1(D) = W1(D)RU1U1(D) + W2(D)RU2U1(D)

RXU2(D) = W1(D)RU1U2(D) + W2(D)RU2U2(D)

Since the noise is independent from X, this implies

RU1U1(D) =RY Y (D) + σ2
1

RU1U2(D) =RU2U1(D) = RY Y (D)

RU2U2(D) =σ2
2 + RY Y (D)
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Therefore we have

RXY (D) =W1(D)RY Y (D) + W2(D)RY Y (D)

RXY (D) =W1(D)RY Y (D) + W2(D)RY Y (D) + 4W2(D)

Solving this we get, W1(D) = RXY (D)/RY Y (D), W2(D) = 0. Therefore the sequence
U2(D) was irrelevant.

(ii) In this case

RXY (D) =W1(D)RY Y (D) + W1(D) + W2(D)RY Y (D)

RXY (D) =W1(D)RY Y (D) + W2(D)RY Y (D) + 4W2(D)

Solving this we get

W1(D) =
4RXY (D)

4 + 5RY Y (D)

W2(D) =
RXY (D)

4 + 5RY Y (D)

(iii) In the part (i) given {U1k} the sequence {U2k} is irrelevant. This is because the error
in the estimate W1(D)U1(D) is orthogonal to {U1k} and the noise {Z2k} is orthogonal
to U1k, making the error orthogonal to {U2k} also. Hence we do not need {U2k} to
estimate. But in the part (ii) this is not true and both the sequences are relevant.
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