Homework 3

Problem 1

Consider two individual scalar observations Y_1, Y_2 as,

$$Y_1 = X + Z_1$$
 (1)
 $Y_2 = Z_2.$

Assume that zero mean Z_1, Z_2 are independent of X and are correlated with covariance,

$$\mathbb{E}[\mathbf{Z}\mathbf{Z}^*] = \begin{bmatrix} \sigma^2 & \rho\sigma^2\\ \rho^*\sigma^2 & \sigma^2 \end{bmatrix},\tag{2}$$

where $\mathbf{Z} = [Z_1, Z_2]^T$. Let $\mathbb{E}[|X|^2] = \mathcal{E}_x$.

- (a) Find the best linear MMSE estimate of \hat{X} of the random variable X from the observations Y_1, Y_2 .
- (b) What is the minimum mean-squared error $\mathbb{E}[|X \hat{X}|^2]$ of the best linear estimator? Is there a value of ρ for which we get $\mathbb{E}[|X \hat{X}|^2] = 0$? Interpret the result if $\mathbb{E}[|X \hat{X}|^2] = 0$ is possible.
- (c) Find the best linear estimate \hat{Z}_1 of the random variable Z_1 from Y_2 . Consider the operation

$$\tilde{Y}_1 = Y_1 - \hat{Z}_1$$

Find the best linear estimate of X from \tilde{Y}_1 . Is it the same as the answer you found in (a)? Do you have an interpretation?

Problem 2

Let Y_a and Y_b be two separate observations of a zero mean random variable X such that

$$Y_a = H_a X + V_a$$

and
$$Y_b = H_b X + V_b,$$

where $\{V_a, V_b, X\}$ are mutually independent and zero-mean random variables, and $V_a, V_b, X, Y_a, Y_b \in \mathbb{C}$.

(a) Let \hat{X}_a and \hat{X}_b denote the linear MMSE estimators for X given Y_a and Y_b respectively. That is

$$W_a = \operatorname{argmin}_{W_a} \mathbb{E} \left(||X - W_a Y_a||^2 \right)$$
$$W_b = \operatorname{argmin}_{W_b} \mathbb{E} \left(||X - W_b Y_b||^2 \right)$$

and

$$X_a = W_a Y_a$$
 and $X_b = W_b Y_b.$

Find \widehat{X}_a and \widehat{X}_b given that

$$\mathbb{E}(XX^*) = \sigma_x^2, \mathbb{E}(V_a V_a^*) = \sigma_a^2, \mathbb{E}(V_b V_b^*) = \sigma_b^2.$$

Also, find the error variances,

$$P_a = \mathbb{E}\left((X - \hat{X}_a)(X - \hat{X}_a)^*\right)$$
$$P_b = \mathbb{E}\left((X - \hat{X}_b)(X - \hat{X}_b)^*\right)$$

(b) Prove that

$$P_{a}^{-1}\widehat{X}_{a} = \frac{H_{a}^{*}}{\sigma_{a}^{2}}Y_{a}, \quad P_{b}^{-1}\widehat{X}_{b} = \frac{H_{b}^{*}}{\sigma_{b}^{2}}Y_{b}$$
(3)

and

$$P_a^{-1} = \frac{1}{\sigma_x^2} + \frac{H_a H_a^*}{\sigma_a^2}, \quad P_b^{-1} = \frac{1}{\sigma_x^2} + \frac{H_b H_b^*}{\sigma_b^2}.$$
 (4)

Hint: Use the identities

$$\mathbf{R}_{x}\mathbf{H}^{*}\left[\mathbf{H}\mathbf{R}_{x}\mathbf{H}^{*}+\mathbf{R}_{v}\right]^{-1} = \left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{*}\mathbf{R}_{v}^{-1}\mathbf{H}\right]^{-1}\mathbf{H}^{*}\mathbf{R}_{v}^{-1}$$
$$\mathbf{R}_{x}-\mathbf{R}_{x}\mathbf{H}^{*}\left[\mathbf{H}\mathbf{R}_{x}\mathbf{H}^{*}+\mathbf{R}_{v}\right]^{-1}\mathbf{H}\mathbf{R}_{x} = \left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{*}\mathbf{R}_{v}^{-1}\mathbf{H}\right]^{-1}.$$

(c) Now we find the estimator \widehat{X} , given both observations Y_a and Y_b , i.e.,

$$\left(\begin{array}{c}Y_a\\Y_b\end{array}\right) = \left(\begin{array}{c}H_a\\H_b\end{array}\right)X + \left(\begin{array}{c}V_a\\V_b\end{array}\right).$$

We want to find the linear MMSE estimate

$$\widehat{X} = \left(\begin{array}{cc} U_a & U_b \end{array} \right) \left(\begin{array}{c} Y_a \\ Y_b \end{array} \right),$$

where

$$\begin{pmatrix} U_a & U_b \end{pmatrix} = \operatorname{argmin}_{(U_a, U_b)} \mathbb{E} \left(||X - \widehat{X}||^2 \right)$$

and define the corresponding error variance

$$P = \mathbb{E}\left((X - \widehat{X})(X - \widehat{X})^*\right).$$

Use (3), (4) to show that

$$P^{-1}\hat{X} = P_a^{-1}\hat{X}_a + P_b^{-1}\hat{X}_b$$

and $P^{-1} = P_a^{-1} + P_b^{-1} - \frac{1}{\sigma_x^2}$.