Homework 3

Problem 1

Consider two individual scalar observations Y_{1}, Y_{2} as,

$$
\begin{align*}
& Y_{1}=X+Z_{1} \tag{1}\\
& Y_{2}=Z_{2} .
\end{align*}
$$

Assume that zero mean Z_{1}, Z_{2} are independent of X and are correlated with covariance,

$$
\mathbb{E}\left[\mathbf{Z Z} \mathbf{Z}^{*}\right]=\left[\begin{array}{cc}
\sigma^{2} & \rho \sigma^{2} \tag{2}\\
\rho^{*} \sigma^{2} & \sigma^{2}
\end{array}\right]
$$

where $\mathbf{Z}=\left[Z_{1}, Z_{2}\right]^{T}$. Let $\mathbb{E}\left[|X|^{2}\right]=\mathcal{E}_{x}$.
(a) Find the best linear MMSE estimate of \hat{X} of the random variable X from the observations Y_{1}, Y_{2}.
(b) What is the minimum mean-squared error $\mathbb{E}\left[|X-\hat{X}|^{2}\right]$ of the best linear estimator? Is there a value of ρ for which we get $\mathbb{E}\left[|X-\hat{X}|^{2}\right]=0$? Interpret the result if $\mathbb{E}\left[|X-\hat{X}|^{2}\right]=0$ is possible.
(c) Find the best linear estimate \hat{Z}_{1} of the random variable Z_{1} from Y_{2}. Consider the operation

$$
\tilde{Y}_{1}=Y_{1}-\hat{Z}_{1}
$$

Find the best linear estimate of X from \tilde{Y}_{1}. Is it the same as the answer you found in (a)? Do you have an interpretation?

Problem 2

Let Y_{a} and Y_{b} be two separate observations of a zero mean random variable X such that

$$
\begin{aligned}
Y_{a} & =H_{a} X+V_{a} \\
\text { and } & Y_{b}
\end{aligned}=H_{b} X+V_{b}, ~ \$
$$

where $\left\{V_{a}, V_{b}, X\right\}$ are mutually independent and zero-mean random variables, and $V_{a}, V_{b}, X, Y_{a}, Y_{b} \in$ \mathbb{C}.
(a) Let \widehat{X}_{a} and \widehat{X}_{b} denote the linear MMSE estimators for X given Y_{a} and Y_{b} respectively. That is

$$
\begin{aligned}
W_{a} & =\operatorname{argmin}_{W_{a}} \mathbb{E}\left(\left\|X-W_{a} Y_{a}\right\|^{2}\right), \\
W_{b} & =\operatorname{argmin}_{W_{b}} \mathbb{E}\left(\left\|X-W_{b} Y_{b}\right\|^{2}\right)
\end{aligned}
$$

and

$$
\widehat{X}_{a}=W_{a} Y_{a} \quad \text { and } \widehat{X}_{b}=W_{b} Y_{b} .
$$

Find \widehat{X}_{a} and \widehat{X}_{b} given that

$$
\mathbb{E}\left(X X^{*}\right)=\sigma_{x}^{2}, \mathbb{E}\left(V_{a} V_{a}^{*}\right)=\sigma_{a}^{2}, \mathbb{E}\left(V_{b} V_{b}^{*}\right)=\sigma_{b}^{2} .
$$

Also, find the error variances,

$$
\begin{aligned}
P_{a} & =\mathbb{E}\left(\left(X-\widehat{X}_{a}\right)\left(X-\widehat{X}_{a}\right)^{*}\right) \\
P_{b} & =\mathbb{E}\left(\left(X-\widehat{X}_{b}\right)\left(X-\widehat{X}_{b}\right)^{*}\right)
\end{aligned}
$$

(b) Prove that

$$
\begin{equation*}
P_{a}^{-1} \widehat{X}_{a}=\frac{H_{a}^{*}}{\sigma_{a}^{2}} Y_{a}, \quad P_{b}^{-1} \widehat{X}_{b}=\frac{H_{b}^{*}}{\sigma_{b}^{2}} Y_{b} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{a}^{-1}=\frac{1}{\sigma_{x}^{2}}+\frac{H_{a} H_{a}^{*}}{\sigma_{a}^{2}}, \quad P_{b}^{-1}=\frac{1}{\sigma_{x}^{2}}+\frac{H_{b} H_{b}^{*}}{\sigma_{b}^{2}} . \tag{4}
\end{equation*}
$$

Hint: Use the identities

$$
\begin{aligned}
\mathbf{R}_{x} \mathbf{H}^{*}\left[\mathbf{H} \mathbf{R}_{x} \mathbf{H}^{*}+\mathbf{R}_{v}\right]^{-1} & =\left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{*} \mathbf{R}_{v}^{-1} \mathbf{H}\right]^{-1} \mathbf{H}^{*} \mathbf{R}_{v}^{-1} \\
\mathbf{R}_{x}-\mathbf{R}_{x} \mathbf{H}^{*}\left[\mathbf{H} \mathbf{R}_{x} \mathbf{H}^{*}+\mathbf{R}_{v}\right]^{-1} \mathbf{H} \mathbf{R}_{x} & =\left[\mathbf{R}_{x}^{-1}+\mathbf{H}^{*} \mathbf{R}_{v}^{-1} \mathbf{H}\right]^{-1}
\end{aligned}
$$

(c) Now we find the estimator \widehat{X}, given both observations Y_{a} and Y_{b}, i.e.,

$$
\binom{Y_{a}}{Y_{b}}=\binom{H_{a}}{H_{b}} X+\binom{V_{a}}{V_{b}} .
$$

We want to find the linear MMSE estimate

$$
\widehat{X}=\left(\begin{array}{ll}
U_{a} & U_{b}
\end{array}\right)\binom{Y_{a}}{Y_{b}},
$$

where

$$
\left(\begin{array}{cc}
U_{a} & U_{b}
\end{array}\right)=\operatorname{argmin}_{\left(U_{a}, U_{b}\right)} \mathbb{E}\left(\|X-\widehat{X}\|^{2}\right)
$$

and define the corresponding error variance

$$
P=\mathbb{E}\left((X-\widehat{X})(X-\widehat{X})^{*}\right)
$$

Use (3), (4) to show that

$$
\begin{aligned}
P^{-1} \widehat{X} & =P_{a}^{-1} \widehat{X}_{a}+P_{b}^{-1} \widehat{X}_{b} \\
\text { and } P^{-1} & =P_{a}^{-1}+P_{b}^{-1}-\frac{1}{\sigma_{x}^{2}} .
\end{aligned}
$$

