Solutions to Homework 1

Problem 1

a. MAP rule for binary hypothesis testing:

$$
\frac{p_{Y \backslash H}(y \mid 0)}{p_{Y \mid H}(y \mid 1)} \stackrel{\hat{H}=0}{\stackrel{H}{H}=1} \frac{P_{H}(1)}{P_{H}(0)}=\frac{1}{999}
$$

We have

$$
l(y)=\frac{p_{Y \mid H}(y \mid 0)}{p_{Y \mid H}(y \mid 1)}= \begin{cases}\infty & y \leq 0 \\ \frac{1-y}{y} & 0<y<1 \\ 0 & 1 \leq y\end{cases}
$$

Solving for $l(t)=1 / 999$ gives $t=999 / 1000$.
b. The probabilities of false alarm and miss are given by $p_{f}=P_{h}(0) p_{Y \mid H}(Y \geq t \mid 0)$ and $p_{m}=P_{H}(1) p_{Y \mid H}(Y<t \mid 1)$ respectively. Obviously the threshold of the decision scheme should be between 0 and 1 (why?). The expected cost is $200 p_{f}+10000 p_{m}$. We have

$$
\begin{aligned}
& p_{Y \mid H}(Y \geq t \mid 0)=\int_{t}^{1}(1-y) d y=\frac{(1-t)^{2}}{2} \\
& p_{Y \mid H}(Y<t \mid 1)=\int_{0}^{t} y d y=\frac{t^{2}}{2}
\end{aligned}
$$

Plugging in the values and minimizing the expected cost with respect to t gives $t=999 / 1049$.

Problem 2

a. (i) Given only Y_{1}, Y_{3} is not relevant. This is intuitive because Y_{3} is a more noisier
version of Y_{1}. Mathematically,

$$
\begin{aligned}
\frac{P_{X \mid Y_{1}, Y_{3}}\left(1 \mid y_{1}, y_{3}\right)}{P_{X \mid Y_{1}, Y_{3}}\left(0 \mid y_{1}, y_{3}\right)} & =\frac{P_{X}(1) P_{Y_{1}, Y_{3} \mid X}\left(y_{1}, y_{3} \mid 1\right)}{P_{X}(0) P_{Y_{1}, Y_{3} \mid X}\left(y_{1}, y_{3} \mid 0\right)} \\
& =\frac{P_{X}(1) P_{Y_{1} \mid X}\left(y_{1} \mid 1\right) P_{Y_{3} \mid Y_{1}, X}\left(y_{3} \mid y_{1}, 1\right)}{P_{X}(0) P_{Y_{1} \mid X}\left(y_{1} \mid 0\right) P_{Y_{3} \mid Y_{1}, X}\left(y_{3} \mid y_{1}, 0\right)} \\
& \stackrel{(a)}{=} \frac{P_{X}(1) P_{Y_{1} \mid X}\left(y_{1} \mid 1\right) P_{Y_{3} \mid Y_{1}}\left(y_{3} \mid y_{1}\right)}{P_{X}(0) P_{Y_{1} \mid X}\left(y_{1} \mid 0\right) P_{Y_{3} \mid Y_{1}}\left(y_{3} \mid y_{1}\right)} \\
& =\frac{P_{X \mid Y_{1}}\left(1 \mid y_{1}\right)}{P_{X \mid Y_{1}}\left(0 \mid y_{1}\right)}
\end{aligned}
$$

The equality (a) is due to the fact that given Y_{1}, Y_{3} is independent of X (it is clear if you write $Y_{3}=Y_{1}+N_{2}$).
(ii) Given both Y_{1} and Y_{2}, Y_{3} is relevant. This is also intuitive because given only Y_{1}, Y_{2} we can estimate X with some probability of error. But given all three, we can estimate it correctly, simply by adding all three of them $\left(Y_{1}+Y_{2}+Y_{3}=X\right)$. The result can be proven more formally as above, but in this case we have to show that

$$
\frac{P_{X \mid Y_{1}, Y_{2}}\left(1 \mid y_{1}, y_{2}\right)}{P_{X \mid Y_{1}, Y_{2}}\left(0 \mid y_{1}, y_{2}\right)} \neq \frac{P_{X \mid Y_{1}, Y_{2}, Y_{3}}\left(1 \mid y_{1}, y_{2}, y_{3}\right)}{P_{X \mid Y_{1}, Y_{2}, Y_{3}}\left(0 \mid y_{1}, y_{2}, y_{3}\right)}
$$

b. (i) Yes, given only Y_{1}, Y_{2} is relevant. Because they are both independent observations and having more observations will decrease the probability of error.
(ii) Yes, given only Y_{1}, Y_{3} is relevant. Because Y_{3} gives some knowledge about N_{1}.
(iii) No, given both Y_{1} and Y_{2}, Y_{3} is not relevant. Because $Y_{3}=Y_{1}-Y_{2}$.

Problem 3

The 3 signals are $\cos (t), \cos (t+\pi / 3)$ and $\sin (t)$. The basis can be taken as $\cos (t)$ and $\sin (t)$, because these two are orthogonal and $\cos (t+\pi / 3)$ can be written as a linear combination of these two signals.

Problem 4

a. Clearly here the bandwith (B) is B_{2}. The sampling theorem states that samples should be seperated by $T_{s}=1 / 2 B$ for being able to reconstruct the original signal $\in \mathcal{L}^{2}$. The sampling frequency F_{s} is then $2 B_{2}$.
We can do better by observing that a portion of width $2 B_{1}$ of the spectrum is not used. Furthermore, since the spectrum is symmetric, all the information about the function $s(t)$ is contained in the "positive half" of the spectrum. Hence, we can reduce the sampling frequency by shifting the spectrum towards the center.

- Remove negative part of the spectrum

Define the filter with impulse response $h_{>}(t)$ via its Fourier transform $H_{>}(f)$

$$
H_{>}(f)= \begin{cases}1 & \text { if } f>0 \\ 1 / 2 & \text { if } f=0 \\ 0 & \text { if } f<0\end{cases}
$$

or equivalently $H_{>}(f)=\frac{1}{2}+\frac{1}{2} \operatorname{sgn}(f)$. This is a filter that removes the negative portion of the spectrum. The analytic equivalent of $s(t)$ is given by

$$
S_{A}=\sqrt{2} S(f) H_{>}(f)
$$

where the factor $\sqrt{2}$ guarantees that $s(t)$ and $s_{A}(t)$ have the same norm.

- Baseband Signal

The baseband equivalent of $s(t)$ is defined as:

$$
\begin{aligned}
s_{E}(t) & =s_{A}(t) e^{-j 2 \pi \frac{B_{1}+B_{2}}{2} t} \\
S_{E}(f) & =S_{A}\left(f+\frac{B_{1}+B_{2}}{2}\right) .
\end{aligned}
$$

- Sampling and reconstruction

From that point on the signal will occupy the band $\left[-\frac{B_{2}-B_{1}}{2}, \frac{B_{2}-B_{1}}{2}\right]$. The sampling frequency is $B_{2}-B_{1}$ and $T_{s}=\frac{1}{B_{2}-B_{1}}$. The original signal is immediately obtained from $s_{E}(t)$ by

$$
s(t)=\sqrt{2} \Re\left\{s_{E}(t) e^{j 2 \pi \frac{B_{1}+B_{2}}{2} t}\right\}
$$

where \Re denotes the real part.
b. We want to know whether $\{q(t-k T)\}_{k=-\infty}^{+\infty}$ is an orthonormal set of signals. Nyquist criterion says that the answer is in the affirmative if

$$
\sum_{k=-\infty}^{+\infty}\left|Q\left(f+\frac{k}{T}\right)\right|^{2}=T \text { for } f \in\left[-\frac{1}{2 T}, \frac{1}{2 T}\right]
$$

Since $q(t)$ is real, $|Q(f)|$ is symmetric and therefore we have

$$
|Q(f)|^{2}= \begin{cases}T-T^{2} f & |f| \leq 1 / T \\ 0 & \text { else }\end{cases}
$$

Overlaying $\{q(t-k T)\}_{k=-\infty}^{+\infty}$ in the graph below, it is seen that $q(t)$ is a Nyquist pulse.

Problem 5 Let

$$
p(x, y)= \begin{cases}\pi^{-1} x^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} & x y>0 \\ 0 & \text { else }\end{cases}
$$

be the joint density of random variables X and Y. then X and Y are identically distributed with density

$$
p(x)=(2 \pi)^{-1 / 2} e^{-\frac{1}{2} x^{2}},
$$

and thus they are individually Gaussian. However, clearly the pair X, Y is not Gaussian.

Problem $6 \quad \hat{\mathbf{U}}=\left[\begin{array}{l}\mathbf{U}_{R} \\ \mathbf{U}_{I}\end{array}\right]$, and thus $K_{\hat{\mathbf{U}}}=\left[\begin{array}{cc}K_{\mathbf{U}_{R} \mathbf{U}_{R}} & K_{\mathbf{U}_{R} \mathbf{U}_{I}} \\ K_{\mathbf{U}_{I} \mathbf{U}_{R}} & K_{\mathbf{U}_{I} \mathbf{U}_{I}}\end{array}\right]$. On the other hand

$$
K_{\mathbf{U}}=\left(K_{\mathbf{U}_{R} \mathbf{U}_{R}}+K_{\mathbf{U}_{I} \mathbf{U}_{I}}\right)+j\left(K_{\mathbf{U}_{I} \mathbf{U}_{R}}-K_{\mathbf{U}_{R} \mathbf{U}_{I}}\right)
$$

and

$$
0=J_{\mathbf{U}}=\left(K_{\mathbf{U}_{R} \mathbf{U}_{R}}-K_{\mathbf{U}_{I} \mathbf{U}_{I}}\right)+j\left(K_{\mathbf{U}_{I} \mathbf{U}_{R}}+K_{\mathbf{U}_{R} \mathbf{U}_{I}}\right)
$$

Thus, $K_{\mathbf{U}}=2 K_{\mathbf{U}_{R} \mathbf{U}_{R}}+j 2 K_{\mathbf{U}_{I} \mathbf{U}_{R}}$ and $K_{\hat{\mathbf{U}}}=\left[\begin{array}{cc}K_{\mathbf{U}_{R} \mathbf{U}_{R}} & -K_{\mathbf{U}_{I} \mathbf{U}_{R}} \\ K_{\mathbf{U}_{I} \mathbf{U}_{R}} & K_{\mathbf{U}_{R} \mathbf{U}_{R}}\end{array}\right]$. So we see that $\widehat{K_{\mathbf{U}}}=2 K_{\hat{\mathbf{U}}}$.

Problem 7

(a) Let $x_{E}(t)=\alpha(t) \exp [j \beta(t)]$. Then

$$
\begin{aligned}
x(t) & =\sqrt{2} \Re\left\{x_{E}(t) \exp \left[j 2 \pi f_{0} t\right]\right\} \\
& =\sqrt{2} \Re\left\{\alpha(t) \exp [j \beta(t)] \exp \left[j 2 \pi f_{0} t\right]\right\} \\
& =\sqrt{2} \Re\left\{\alpha(t) \exp \left[j\left(2 \pi f_{0} t+\beta(t)\right)\right]\right\} \\
& =\sqrt{2} \alpha(t) \cos \left[2 \pi f_{0} t+\beta(t)\right] .
\end{aligned}
$$

We thus have

$$
a(t)=\sqrt{2} \alpha(t)=\sqrt{2}\left\|x_{E}(t)\right\|
$$

and

$$
\theta(t)=\beta(t)=\tan ^{-1} \frac{\Im\left\{x_{E}(t)\right\}}{\Re\left\{x_{E}(t)\right\}} .
$$

This shows that a bandpass signal is one that is modulated both in amplitude and in phase.
(b) Let $x_{E}(t)=x_{R}(t)+j x_{I}(t)$. Then

$$
\begin{aligned}
x(t) & =\sqrt{2} \Re\left\{x_{E}(t) \exp \left[j 2 \pi f_{0} t\right]\right\} \\
& =\sqrt{2} \Re\left\{\left[x_{R}(t)+j x_{I}(t)\right] \exp \left[j 2 \pi f_{0} t\right]\right\} \\
& =\sqrt{2}\left[x_{R}(t) \cos \left(2 \pi f_{0} t\right)-x_{I}(t) \sin \left(2 \pi f_{0} t\right)\right] .
\end{aligned}
$$

Hence we have

$$
x_{E I}(t)=\sqrt{2} \Re\left\{x_{E}(t)\right\}
$$

and

$$
x_{E Q}(t)=\sqrt{2} \Im\left\{x_{E}(t)\right\} .
$$

(c) We guess that

$$
x_{E}(t)=\frac{A(t)}{\sqrt{2}} \exp (j \varphi)
$$

Indeed

$$
\begin{aligned}
x(t) & =\sqrt{2} \Re\left\{x_{E}(t) \exp \left(j 2 \pi f_{0} t\right)\right\} \\
& =\sqrt{2} \Re\left\{\frac{A(t)}{\sqrt{2}} \exp (j \varphi) \exp \left(j 2 \pi f_{0} t\right)\right\} \\
& =\Re\left\{A(t) \exp \left[j\left(2 \pi f_{0} t+\varphi\right)\right]\right\} \\
& =A(t) \cos \left(2 \pi f_{0} t+\varphi\right)
\end{aligned}
$$

