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Solutions to Homework 1

Problem 1

a. MAP rule for binary hypothesis testing:

pY |H(y|0)

pY |H(y|1)

Ĥ=0
>
≤

Ĥ=1

PH(1)

PH(0)
=

1

999

We have

l(y) =
pY |H(y|0)

pY |H(y|1)
=





∞ y ≤ 0
1−y

y
0 < y < 1

0 1 ≤ y

.

Solving for l(t) = 1/999 gives t = 999/1000.

b. The probabilities of false alarm and miss are given by pf = Ph(0)pY |H(Y ≥ t|0)

and pm = PH(1)pY |H(Y < t|1) respectively. Obviously the threshold of the decision

scheme should be between 0 and 1 (why?). The expected cost is 200pf + 10000pm.

We have

pY |H(Y ≥ t|0) =

∫ 1

t

(1 − y)dy =
(1 − t)2

2

pY |H(Y < t|1) =

∫ t

0

ydy =
t2

2

Plugging in the values and minimizing the expected cost with respect to t gives

t = 999/1049.

Problem 2

a. (i) Given only Y1, Y3 is not relevant. This is intuitive because Y3 is a more noisier
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version of Y1. Mathematically,

PX|Y1,Y3
(1 | y1, y3)

PX|Y1,Y3
(0 | y1, y3)

=
PX(1)PY1,Y3|X(y1, y3 | 1)

PX(0)PY1,Y3|X(y1, y3 | 0)

=
PX(1)PY1|X(y1 | 1)PY3|Y1,X(y3 | y1, 1)

PX(0)PY1|X(y1 | 0)PY3|Y1,X(y3 | y1, 0)

(a)
=

PX(1)PY1|X(y1 | 1)PY3|Y1
(y3 | y1)

PX(0)PY1|X(y1 | 0)PY3|Y1
(y3 | y1)

=
PX|Y1

(1 | y1)

PX|Y1
(0 | y1)

The equality (a) is due to the fact that given Y1, Y3 is independent of X (it is clear

if you write Y3 = Y1 + N2).

(ii)Given both Y1 and Y2, Y3 is relevant. This is also intuitive because given only

Y1, Y2 we can estimate X with some probability of error. But given all three, we can

estimate it correctly, simply by adding all three of them (Y1 + Y2 + Y3 = X). The

result can be proven more formally as above, but in this case we have to show that

PX|Y1,Y2
(1 | y1, y2)

PX|Y1,Y2
(0 | y1, y2)

6= PX|Y1,Y2,Y3
(1 | y1, y2, y3)

PX|Y1,Y2,Y3
(0 | y1, y2, y3)

b. (i) Yes, given only Y1, Y2 is relevant. Because they are both independent obser-

vations and having more observations will decrease the probability of error.

(ii) Yes, given only Y1, Y3 is relevant. Because Y3 gives some knowledge about N1.

(iii) No, given both Y1 and Y2, Y3 is not relevant. Because Y3 = Y1 − Y2.

Problem 3

The 3 signals are cos(t), cos(t + π/3) and sin(t). The basis can be taken as cos(t)

and sin(t), because these two are orthogonal and cos(t + π/3) can be written as a

linear combination of these two signals.

Problem 4

a. Clearly here the bandwith (B) is B2. The sampling theorem states that samples

should be seperated by Ts = 1/2B for being able to reconstruct the original signal

∈ L2. The sampling frequency Fs is then 2B2.

We can do better by observing that a portion of width 2B1 of the spectrum is not

used. Furthermore, since the spectrum is symmetric, all the information about the

function s(t) is contained in the “positive half” of the spectrum. Hence, we can

reduce the sampling frequency by shifting the spectrum towards the center.

• Remove negative part of the spectrum
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Define the filter with impulse response h>(t) via its Fourier transform H>(f)

H>(f) =





1 iff > 0

1/2 iff = 0

0 iff < 0

or equivalently H>(f) = 1
2
+ 1

2
sgn(f). This is a filter that removes the negative

portion of the spectrum. The analytic equivalent of s(t) is given by

SA =
√

2S(f)H>(f)

where the factor
√

2 guarantees that s(t) and sA(t) have the same norm.

• Baseband Signal

The baseband equivalent of s(t) is defined as:

sE(t) = sA(t)e−j2π
B1+B2

2
t

SE(f) = SA(f +
B1 + B2

2
).

• Sampling and reconstruction

From that point on the signal will occupy the band [−B2−B1

2
, B2−B1

2
]. The sam-

pling frequency is B2 −B1 and Ts = 1
B2−B1

. The original signal is immediately

obtained from sE(t) by

s(t) =
√

2ℜ{sE(t)ej2π
B1+B2

2
t}

where ℜ denotes the real part.

b. We want to know whether {q(t−kT )}+∞
k=−∞ is an orthonormal set of signals.

Nyquist criterion says that the answer is in the affirmative if

+∞∑

k=−∞

∣∣Q(f +
k

T
)
∣∣2 = T for f ∈ [− 1

2T
,

1

2T
].

Since q(t) is real, |Q(f)| is symmetric and therefore we have

|Q(f)|2 =

{
T − T 2f |f | ≤ 1/T

0 else
.

Overlaying {q(t−kT )}+∞
k=−∞ in the graph below, it is seen that q(t) is a Nyquist

pulse.

3



f

T

∑+∞
k=−∞

∣∣Q(f + k
T )

∣∣2

Problem 5 Let

p(x, y) =

{
π−1x− 1

2
(x2+y2) xy > 0

0 else

be the joint density of random variables X and Y . then X and Y are identically

distributed with density

p(x) = (2π)−1/2e−
1

2
x2

,

and thus they are individually Gaussian. However, clearly the pair X, Y is not

Gaussian.

Problem 6 Û =

[
UR

UI

]
, and thus K

Û
=

[
KURUR

KURUI

KUIUR
KUIUI

]
. On the other hand

KU = (KURUR
+ KUIUI

) + j(KUIUR
− KURUI

)

and

0 = JU = (KURUR
− KUIUI

) + j(KUIUR
+ KURUI

).

Thus, KU = 2KURUR
+ j2KUIUR

and K
Û

=

[
KURUR

−KUIUR

KUIUR
KURUR

]
. So we see that

K̂U = 2K
Û

.

Problem 7

(a) Let xE(t) = α(t) exp[jβ(t)]. Then

x(t) =
√

2ℜ{xE(t) exp[j2πf0t]}
=

√
2ℜ{α(t) exp[jβ(t)] exp[j2πf0t]}

=
√

2ℜ{α(t) exp[j(2πf0t + β(t))]}
=

√
2α(t) cos[2πf0t + β(t)].
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We thus have

a(t) =
√

2α(t) =
√

2||xE(t)||

and

θ(t) = β(t) = tan−1 ℑ{xE(t)}
ℜ{xE(t)} .

This shows that a bandpass signal is one that is modulated both in amplitude and

in phase.

(b) Let xE(t) = xR(t) + jxI(t). Then

x(t) =
√

2ℜ{xE(t) exp[j2πf0t]}
=

√
2ℜ{[xR(t) + jxI(t)] exp[j2πf0t]}

=
√

2[xR(t) cos(2πf0t) − xI(t) sin(2πf0t)].

Hence we have

xEI(t) =
√

2ℜ{xE(t)}

and

xEQ(t) =
√

2ℑ{xE(t)}.
(c) We guess that

xE(t) =
A(t)√

2
exp(jϕ).

Indeed

x(t) =
√

2ℜ{xE(t) exp(j2πf0t)}

=
√

2ℜ{A(t)√
2

exp(jϕ) exp(j2πf0t)}

= ℜ{A(t) exp[j(2πf0t + ϕ)]}
= A(t) cos(2πf0t + ϕ).

5


