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Chapter 1

Introduction and Objectives

The evolution of communication technology during the past few decades has been im-
pressive. In spite of an enormous progress, many of the challenges still lay ahead of us.
While any prediction of the next big technological revolution is likely to be wrong, it
is safe to say that communication devices will become smaller, lighter, more powerful,
more integrated, more ubiquitous, and more reliable than they are today. Perhaps one
day the input/output interface and the communication/computation hardware will be
separated. The former will be the only part that we will carry on us and it will commu-
nicate wirelessly with the latter. Perhaps the communication/computation hardware will
be part of the infrastructure. It will be built into cars, trains, airplanes, public places,
homes, offices, etc. With the the input/output device that we carry around we will have
virtually unlimited access to communication and computation facilities. Search engines
may be much more powerful than they are today, giving instant access to any information
digitally stored. The input/output device may contain all of our preferences so that, for
instance, when we sit down in front of a computer, we see the environment that we like
regardless of location (home, office, someone else’s desk) and regardless of the hardware
and operating system. The input device may also allow us to unlock doors and make pay-
ments, making keys, credit cards, and wallets obsolete. Getting there will require joint
efforts from almost all branches of electrical engineering, computer science, and system
engineering.

In this course we focus on the system aspects of digital communications. Digital commu-
nications is a rather unique field in engineering in which theoretical ideas have had an
extraordinary impact on actual system design. Our goal is to get acquainted with some of
these ideas. Hopefully, you will appreciate the way that many of the mathematical tools
you have learned so far will turn out to be exactly what we need. These tools include
probability theory, stochastic processes, linear algebra, and Fourier analysis.

We will focus on systems that consist of a single transmitter, a channel, and a receiver
as shown in Figure 1.1. The channel filters the incoming signal and corrupts it with
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Figure 1.1: Basic point-to-point communication system over a bandlimited
Gaussian channel.

noise. The noise is Gaussian since it represents the contribution of various noise sources.1

The filter in the channel model has both a physical and a conceptual justification. The
conceptual justification stems from the fact that most wireless communication systems
are subject to a license that dictates, among other things, the frequency band that the
signal is allowed to occupy. A convenient way to enforce this constraint is to tell the
system designers that the channel contains an ideal filter that blocks everything outside
the intended band. The physical reason has to do with the observation that the signal
emitted from the transmit antenna typically encounters obstacles that create reflections
and scattering. Hence the receive antenna may capture the superposition of a number of
delayed and attenuated replicas of the transmitted signal (plus noise). It is a straight-
forward exercise to check that this physical channel is linear and time-invariant. Thus it
may be modeled by a linear filter as shown in the figure.2 In some cases the transmit
and/or the receive antennas also filter the signal. This happens, for instance, when the
signal’s bandwidth is so large that the antenna characteristic varies over the frequency
interval spanned by the signal. The filter in Figure 1.1 accounts for these and possibly
other linear time-invariant transformations that act upon the communication signals as
it travels from the sender to the receiver. The channel model of Figure 1.1 is meaningful
for both wireline and wireless communication chanels. It is referred to as the bandlimited
Gaussian channels.

Since communication means different things for different people, we need to clarify the
role of the transmitter/receiver pair depicted in Figure 1.1. For the purpose of this class
a transmitter implements a mapping between a message set and a signal set, both of the
same cardinality, say m . The number m of elements of the message set is important
but the nature of its elements is not. (More on this later.) Without loss of generality
we can let the message set consist of the integers {0, 1, . . . ,m− 1} . The elements of the
message set are called messages. There is a one-to-one correspondence between messages

1Individual noise sources do not necessarily have Gaussian statistics. However, due to the central limit
theorem, their aggregate contribution is often quite well approximated by a Gaussian random process.

2If the scattering and reflecting objects move with respect to the transmit/receive antennae then the
filter is time-varying but this case is deferred to the advanced digital communication class.
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and elements of the signal set. The “nature” (e.g. discrete vs continuous time) of the
signals is important since signals have to be compatible with the channel. The channel is
always assumed to be given to the designer who has no control over it. By assumption, the
designer can only control the design of the transmitter/receiver pair. A user communicates
by selecting a message i ∈ {0, 1, . . . ,m − 1} which is converted by the transmitter into
the corresponding signal si . The channel reacts to the signal by producing the observable
y . Based on y , the receiver generates an estimate î(y) of i . Hence the receiver is a map
from the space of channel output signals to the message set. Hopefully i = î most of the
time. When this is not the case we say that an error event occurred. In all situations
of interest to us it is not possible to reduce the probability of error to zero. This is so
since, with positive probability, the channels is capable of producing an output y that
could have stemmed from more than one message. One of the performance measures of
a transmitter/receiver pair for a given channel is thus the probability of error. Another
performance measure is the rate at which we communicate. Conceptually, we may label
every message with a unique sequence of logm bits so that communicating the message
is equivalent to communicating the corresponding bit sequence. (This is why earlier we
said that the nature of the messages is not relevant). Hence we are sending the equivalent
of logm bits every time we use the channel. By increasing the value of m we increase the
rate in bits per channel use but, as we will see, under normal circumstances this increase
can not be done indefinitely without increasing the probability of error.

At the end of this course you should have a good understanding of a basic communication
system and be able to make sensible design choices. In particular, you should know what
a receiver does to minimize the probability of error, be able to do a quantitative analysis
of some of the most important performance figures, and know which tradeoffs you have
as a system designer.

A few words about the big picture and the approach that we will take are in order. We will
discover that a natural way to design, analyze, and implement a transmitter/receiver pair
is in terms of the modules shown in Figure 1.2. These modules allow us to focus on selected
issues while hiding others. For instance, at the very bottom level we exchange messages.
At this level we may think of all modules as being inside a “black box” that hides all the
implementation details and lets us see only what the user has to see from the outside. The
“black box” is an abstract channel model that takes messages and delivers messages not
always without making errors. At this level of granularity the visible performance figures
are the cardinality of the message set, how long we have to wait until we are allowed
to choose the next message, and the probability of error. The first two determine how
many bits we send per unit of time, i.e., the rate at which we communicate. At the top
level of Figure 1.2 we focus on the characteristics of the actual signals being sent over the
physical medium, such as the average power of the transmitted signal and the frequency
band it occupies. We will see that at the second level from the bottom we communicate
n -tuples. It is at this level that we will understand the heart of the receiver. We will
understand how the receiver should base its decision so as to minimize the probability of
error and see how to compute the resulting error probability. Finally, one layer up we
communicate using low-frequency (as opposed to radio frequency) signals. Separating the
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Figure 1.2: Decomposed transmitter and receiver.

top two layers is important for implementation purposes.

There is more than one way to organize the discussion around the modules of Figure 1.2.
Following the signal path, i.e., starting from the first module of the transmitter and
working our way through the system until we reach the final stage of the receiver would not
be a good idea since it makes little sense to study the transmitter design without having
an appreciation of the task and limitations of a receiver. We will instead make many
passes over the block diagram of Figure 1.2, each time at a different level and focussing
on different issues as discussed in the previous paragraph, but each time considering the
sender and the receiver together. We will start with the channel seen by the bottom
modules in Figure 1.2. This approach has the advantage that you will quickly be able
to appreciate what the transmitter and the receiver should do. One may argue that this
approach has the disadvantage of asking the student to accept an abstract channel model
that seems to be oversimplified. (It is not, but this will not be immediately clear). On
the other hand one can also argue in favor of the pedagogical value of starting with highly
simplified models. Shannon, the founding father of modern digital communication theory
and one of the most profound engineers and mathematicians of the 20th century, was
knows to solve difficult problems by first reducing the problem to a much simpler version
that he could almost solve “by inspection.” Only after having familiarized himself with
the simpler problem would he work his way back to the next level of difficulty.

The choice of material covered in this course is by now more or less standard for an
introductory course on digital communications. The approach depicted in Figure 1.2 has
been made popular by J.M. Wozencraft and I. M. Jacobs in Principles of Communication
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Engineering –a textbook appeared in 1965. However, the field has evolved since then and
these notes reflect such evolution. Some of the exposition has benefited from the notes
Introduction to Digital Communication, written by Profs. A. Lapidoth and R. Gallager
for the MIT course Nr. 6.401/6.450, 1999. I am indebted to them for letting me use their
notes during the first few editions of this course.

There is only so much that one can do in one semester. EPFL offers various possibilities for
those who want to know more about digital communications and related topics. Classes for
which this course is a recommended prerequisite are Advanced Digital Communications,
Information Theory and Coding, Principles of Diversity in Wireless Networks, and Coding
Theory. For the student interested in hands-on experience, EPFL offers Software-Defined
Radio: A Hands On Course.

Networking is another branch of communications that has developed almost independently
of the material treated in this class. It relies on quite a different set of mathematical models
and tools. Networking assumes that there is a network of bit pipes which is reliable most
of the time but that can fail once in a while, e.g., due to network congestion, hardware
failure, queue overflow, etc. Queues are used to temporarily store packets when the next
link is congested. Networking deals with problems such as finding a route for a packet,
computing the delay incurred by a packet as it goes from source to destination considering
the queueing delay and the fact that packets are retransmitted if their reception is not
acknowledged. We will not be dealing with networking problems in this class.

We conclude this introduction with a very brief overview of the various chapters. Not
everything in this overview will make sense to you now. Nevertheless we advise you to
read it now and read it again when you feel that it is time to step back and take a look
at the “big picture.” It will also give you an idea of which fundamental concepts will play
a role in this course.

Chapter 2 deals with the vector channel case of Figure 1.2. The emphasis will be on
the design of an optimal Vector Receiver, assuming that the Vector Transmitter and
the Vector Channel are given. This is an application of what is know in the statistical
literature as hypothesis testing (to be developed in Chapter 2). After a rather general
start we will spend some time on the Gaussian Vector Channel. (In Chapter 9 you will
realize that the Gaussiann Vector Channel is a cornerstone of digital communications.)

In Chapter 3 we will focus on the Waveform Generator and on the Baseband Front-End
of Figure 1.2. The mathematical tool behind the description of the Waveform Generator
is the notion of orthonormal expansion from linear algebra. We will fix an orthonormal
basis and we will let the output of the Vector Transmitter be the vector of coefficients
that determine the signal produced by the Waveform Transmitter (with respect to the
given orthonormal basis). The Baseband Front-End of the receiver reduces the received
waveform to a vector (n -tuple) that contains just as much information as needed to
decide about the message selected by the sender. To do so the Baseband Front-End
projects the received waveform onto each element of the mentioned orthonormal basis.
The resulting n -tuple is passed to the Vector Receiver. Together, the Vector Transmitter
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and the Waveform Generator form the Waveform Transmitter. Together the Baseband
Front-End and the Vector Receiver form the Waveform Receiver. What we do in Chapter
3 holds irrespectively of the specific set of signals that we use to communicate.

Chapter 4 deals with general high level implications of a specific signal set.

Chapter ?? is about choosing a convenient orthonormal basis for the Waveform Genera-
tors. We will see that it is possible to choose in such a way that the transmitted signals
have a desirable power spectral density and, at the same time, satisfy the desire for a
relatively low-cost Baseband Front-End. The main concept here is what is called Nyquist
criterion.

Chapter ?? deals with the Up/Down Converters. The idea is to learn how to shift the
spectrum of the transmitted signal so that we can place its center frequency at any
desired location in the frequency axis, without changing what we have called the Waveform
Transmitter and the Waveform Receiver. This will be done using one of the fundamental
properties of the Fourier transform. Given our ability to shift the center frequency of the
transmitted signal to any desired location, it makes sense to let the Waveform Transmitter
and the Waveform Receiver operate in some fixed frequency range if this simplifies their
implementation. Implementing signal processing (amplification, filtering, multiplication
of signals, etc.) becomes more and more challenging as the center frequency of the signals
being processed increases. This is so since simple wires meant to carry the signal inside
the circuit may act as transmit antenna and irradiate the signal. This may cause all
kinds of problems, including the fact that signals get mixed “in the air” and, even worse,
are reabsorbed into the circuit by some short wire that acts as receive antenna causing
interference, oscillations due to unwanted feedback, etc.. To minimize such problems, it
is common practice to let the Waveform Transmitter and Waveform Receiver operate at
“baseband”, i.e. process signals that have f = 0 as their center frequency. As it turns
out, the baseband representation of a general signal is complex-valued, even if the signal
being represented is real-valued. This means that the Waveform Transmitter/Receiver
pairs have to deal with complex-valued signals. This is not a problem per se. In fact
working with complex-valued signals simplifies the notation. However, it requires a small
overhead in terms of having to learn how to deal with complex-valued stochastic processes
and complex-valued random vectors.

Dealing with complex-valued Gaussian processes and vectors is the topic of Chapter 8.

Chapter 9 “closes the loop” by showing that the channel “seen” by the Vector Transmitter
and the Vector Receiver is indeed the abstract Gaussian Vector Channel that we have
assumed in Chapter 2. To emphasize the importance of the Vector Channel we mention
that in a typical information theory course (mandatory at the master-level at EPFL) as
well as in a typical coding theory course (offered at EPFL in the Ph.D. program), the
channel is a Vector Channel (perhaps not called this way) and one takes it for granted
that the student knows where it comes from. (The material treated in this class is also
assumed as being assimilated in Advanced Digital Communications as well as in Software-
Defined Radio: A Hands on Course, both of which are offered at EPFL at the master
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level.)

Chapter 6 is a case study on coding. The communication model is that of Chapter 2
with the Vector Channel being Gaussian. The Vector Transmitter will incorporate a
convolutional encoder and the Vector Receiver will be based on the Viterbi algorithm.
The performance of the resulting scheme will be analyzed and compared to the uncoded
case.
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Chapter 2

Optimal Receivers for Vector Channels

2.1 Introduction

As pointed out in the introduction, we will study point-to-point communications from
various abstraction levels. In this chapter we will be dealing with the vector channel. In
the next chapter it will become clear why the vector channel is an important abstraction
model. For now it suffices to say that it is the channel that we see from the input to the
output of the dotted box in Figure 2.1. The goal of this chapter is to understand how to
design and analyze the vector receiver when the channel and the transmitter are given.

We start with the communication system depicted in Figure 2.2 (in which the channel is
a bit more general than the vector channel depicted in Figure 2.1). Its components are:

• The source: It is responsible for producing the message H ∈ H = {0, 1, . . . , (m−1)} .
The task of the receiver would be extremely simple if the source selected the message
according to some deterministic rule. In this case the receiver could reproduce the
source message by following the same algorithm and there would be no need for a
communication system. For this reason, in communication we always assume that
the source is modeled by a random variable, here denoted by the capital letter H .
As usual, a random variable taking values on a finite alphabet is described by its
probability mass function PH(i) , i ∈ H . In most cases of interest to us, H is
uniformly distributed and/or m = 2.

• The transmitter: It is a mapping from H to S = {s0, s1, . . . , sm−1} where si ∈ Cn

for some n . (We will start with si ∈ Rn but we will see in the last chapter that it is
crucial that we allow for si ∈ Cn ).

• The channel: It is described by the probability density of the output for each of the
possible inputs. When the channel input is si , the probability density of Y will be
denoted by fY |S(y|si).

11
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• The receiver: The receiver’s task is to “guess” H from Y . The decision made by
the receiver is denoted by Ĥ . Unless specified otherwise, the receiver will always
be designed to minimize the probability of error defined as the probability that Ĥ
differs from H . This is the so-called hypothesis testing problem that comes up in
various contexts (not only in communications).

First we give a few examples.

Example 1. A common source model consist of H = {0, 1} and PH(0) = PH(1) = 1/2 .
This models individual bits of, say, a file. Alternatively, one could model an entire file of,
say, 1 Mbit by saying that H = {0, 1, . . . , (2106 − 1)} and PH(i) = 1

2106
, i ∈ H .

Example 2. A transmitter for a binary source could be a map from H = {0, 1} to
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S = {−a, a} for some real-valued constant a . Alternatively, a transmitter for a 4-ary
source could be a map from H = {0, 1, 2, 3} to S = {a, ia,−a,−ia} , where i =

√
−1 .

Example 3. The channel model that we will use mostly in this chapter is the additive
white Gaussian (AWGN) channel that maps a channel input s ∈ Rn into Y = s + Z ,
where Z is a Gaussian random vector with independent components.

Specifying the decision rule implemented by the receiver is straightforward once we un-
derstand the hypothesis testing problem studied in the next section.

2.2 Hypothesis Testing

Detection, decision, and hypothesis testing are all synonyms. They refer to the problem
of deciding the outcome of a random variable H that takes values on a finite alphabet
H = {0, 1, . . . ,m−1} , from the outcome of some related random variable Y . The random
variable H is called the Hypothesis and Y the observation.

The problem that a receiver has to solve is a detection problem in the above sense. Here
the hypothesis H is the message selected by the source. The transmitter sends a signal
(typically a distinct signal for each letter of H ) and the receiver observes the channel
response Y . The receiver decides the value of H based on Y . The receiver’s decision
will be denoted by Ĥ . We wish to make Ĥ = H , but this is not always possible. The
goal is to devise a decision that makes Pc = Pr{Ĥ = H} as large as possible.1

The standard assumption is that we know the a priori probability PH and for each i ∈ H
we know the conditional probability density function2 (pdf) fY |H(y|i) of Y .

Example 4. Here is a good example of a typical hypothesis testing problem. The problem
is that of communicating one bit of information (or more generally a sequence of bits)
across an optical fiber. The bit being transmitted is modeled by the random variable
H ∈ {0, 1} , PH(0) = 1/2 . If H = 1 , we switch on a LED whose light is carried across
an optical fiber to a photodetector at the receiver front end. The photodetector outputs
the number of photons Y ∈ N it detects. The problem is to decide whether H = 0 or
H = 1 . Our decision may only be based on whatever prior information we have about the
model and on the actual observation y . What makes the problem interesting is that it is
impossible to determine H from Y with certainty. Even if the LED is off, the detector
is likely to detect some photons (e.g. due to “ambient light”). A good assumption is that
Y is Poisson distributed with intensity λ that depends on whether the LED is on or off.

1 Pr is a short-hand for probability of the enclosed event.
2In most cases of interest in communication, the random variable Y is continuous. That’s why in

the above discussion we have implicitly assumed that, given H = i , Y has a pdf fY |H(y|i) . If Y is a
discrete random variable, then we assume that we know the conditional probability pY |H(y|i) .
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Mathematically, the situation is as follows:

H = 0, Y ∼ pY |H(y|0) =
λy0
y!
e−λ0

H = 1, Y ∼ pY |H(y|1) =
λy1
y!
e−λ1

We read the first row as follows: “When the hypothesis is H = 0 then the observable Y
is Poisson distributed with intensity λ0 ”.

The problem of deciding the value of H from the observable Y when we know the
distribution of H and that of Y for each value of H is a standard hypothesis testing
problem. 2

From PH and fY |H , via Bayes rule, we obtain

PH|Y (i|y) =
PH(i)fY |H(y|i)

fY (y)

where fY (y) =
∑

i PH(i)fY |H(y|i) . PH|Y (i|y) is the posterior (also called a posteriori
probability of H given Y ). Once we have observed that Y = y , the probability that
H = i becomes PH|Y (i|y) .

If we choose Ĥ = i , then PH|Y (i|y) is the probability that we made the correct decision.
Since our goal is to maximize the probability of being correct, the optimum decision rule
is

Ĥ(y) = arg max
i
PH|Y (i|y) (MAP decision rule). (2.1)

This is called maximum a posteriori (MAP) decision rule. In case of ties, i.e. if PH|Y (j|y)
equals PH|Y (k|y) equals maxi PH|Y (i|y) , then it does not matter if we decide for Ĥ = k

or for Ĥ = j . In either case the probability that we have decided correctly is the same.

Since the MAP rule maximizes the probability of being correct for each observation
y , it also maximizes the unconditional probability of being correct Pc . The former is
PH|Y (Ĥ(y)|y) . If we plug in the random variable Y instead of y , then we obtain a
random variable. (A real-valued function of a random variable is a random variable.)
The expected valued of this random variable is the (unconditional) probability of being
correct, i.e.,

Pc = E[PH|Y (Ĥ(Y )|Y )] =

∫
y

PH|Y (Ĥ(y)|y)fY (y)dy.

There is an important special case, namely when H is uniformly distributed. In this case,
PH|Y (i|y) , as a function of i , is proportional to fY |H(y|i)/m . Therefore, the argument
that maximizes PH|Y (i|y) also maximizes fY |H(y|i) . Then the MAP decision rule is
equivalent to the maximum likelihood (ML) decision rule:

Ĥ(y) = arg max
i
fY |H(y|i) (ML decision rule). (2.2)
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2.2.1 Binary Hypothesis Testing

The special case in which we have to make a binary decision, i.e., H ∈ H = {0, 1} , is
both instructive and of practical relevance. Since there are only two alternatives to be
tested, the MAP test may now be written as

fY |H(y|1)PH(1)

fY (y)

Ĥ = 1
≥
<

Ĥ = 0

fY |H(y|0)PH(0)

fY (y)
.

An equivalent rule is

Λ(y) =
fY |H(y|1)

fY |H(y|0)

Ĥ = 1
≥
<

Ĥ = 0

PH(0)

PH(1)
= η (binary MAP rule). (2.3)

The left side of the above test is called the likelihood ratio denoted by Λ(y) whereas the
right side is the threshold η . Notice that if PH(0) increases, so does the threshold. In
turn the region {y : Ĥ(y) = 0} becomes bigger. This is intuitive.

When PH(0) = PH(1) = 1/2 the threshold becomes unity and the MAP test becomes a
ML test that may be written as

fY |H(y|1)

Ĥ = 1
≥
<

Ĥ = 0

fY |H(y|0) (binary ML rule).

The decoding region Ri is the set of y for which the decision is Ĥ = i , i ∈ {0, 1} .

To compute the probability of error it is often convenient to compute the error probability
for each hypothesis and then take the average. When H = 0, we make an incorrect
decision if Y ∈ R1 or, equivalently, if Λ(y) ≥ η . Hence, denoting by Pe(i) the probability
of making an error when H = i ,

Pe(0) = Pr{Y ∈ R1|H = 0} =

∫
R1

fY |H(y|0)dy (2.4)

= Pr{Λ(Y ) ≥ η|H = 0}. (2.5)

Whether it is easier to work with the right side of (2.4) or of (2.5) depends on whether it
is easier to work with the conditional density of Y or of Λ(Y ) . We will see examples of
both cases.

Similar expressions hold for the probability of error conditioned on H = 1, denoted by
Pe(1) . The unconditional error probability is then

Pe = Pe(1)pH(1) + Pe(0)pH(0).
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From (2.3) we see that, for the purpose of performing a MAP test, having Λ(Y ) is as
good as having the observable Y . Any random variable obtained from Y that has this
property is called a sufficient statistic.

2.3 The Q Function

The Q function is defined as:

Q(x)
4
=

1√
2π

∫ ∞

x

e−
ξ2

2 dξ.

Hence, if Z ∼ N (0, 1) (meaning that Z is a Normally distributed zero-mean random
variable of unit variance) then Pr{Z ≥ x} = Q(x) .

If Z ∼ N (m,σ2) , then the probability Pr{Z ≥ x} can be written using the Q function
by noticing that {Z ≥ x} is equivalent to {Z−m

σ
≥ x−m

σ
} . But Z−m

σ
∼ N (0, 1) . Hence

Pr{Z ≥ x} = Q(x−m
σ

) . Make sure you are familiar with these steps. We will use them
frequently.

We now describe some of the key properties of Q(x) .

(a) If Z ∼ N (0, 1) , FZ(z) = Pr{Z ≤ z} = 1 − Q(z) . (Draw a picture that expresses
this relationship in terms of areas under the probability density function of Z .)

(b) Q(0) = 1/2 , Q(−∞) = 1 , Q(∞) = 0 .

(c) Q(−x) +Q(x) = 1 . (Again, draw a picture.)

(d) 1√
2πα

e−
α2

2 (1− 1
α2 ) < Q(α) < 1√

2πα
e−

α2

2 , α > 0 .

(e) An alternative expression with fixed integration limits is Q(x) = 1
π

∫ π
2

0
e−

x2

2 sin2 θ dθ . It
holds for x ≥ 0 .

(f) Q(α) ≤ 1
2
e−

α2

2 , α ≥ 0.

Proofs: The proofs or (a), (b), and (c) are immediate (a picture suffices). The proof of
part (d) is omitted. To prove (e), let X ∼ N (0, 1) and Y ∼ N (0, 1) be independent.

Hence Pr{X ≥ 0, Y ≥ ξ} = Q(0)Q(ξ) = Q(ξ)
2

.

Using Polar coordinates

Q(ξ)

2
=

∫ π
2

0

∫ ∞

ξ
sin θ

e−
r2

2

2π
rdrdθ =

1

2π

∫ π
2

0

∫ ∞

ξ2

2 sin2 θ

e−tdtdθ =
1

2π

∫ π
2

0

e−
ξ2

2 sin2 θ dθ.
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To prove (f) we use (e) and the fact that e−
ξ2

2 sin2 θ ≤ e−
ξ2

2 for θ ∈ [0, π
2
] . Hence

Q(ξ) ≤ 1

π

∫ π
2

0

e−
ξ2

2 dθ =
1

2
e−

ξ2

2 .

2.4 Binary Communication Across the Scalar Gaussian
Channel

We consider the following setup

-

H ∈ {0, 1}
TX

S Y
-�
��

6

Z ∼ N (0, σ2)

- RX -
Ĥ

We assume that the transmitter maps H = 0 into a ∈ R and H = 1 into b ∈ R . The
output statistic for the various hypotheses is as follows:

H = 0 : Y ∼ N (a, σ2)

H = 1 : Y ∼ N (b, σ2).

An equivalent way to say this is

fY |H(y | 0) =
1√

2πσ2
exp

{
−(y − a)2

2σ2

}
fY |H(y | 1) =

1√
2πσ2

exp

{
−(y − b)2

2σ2

}
.

We compute the likelihood ratio

Λ(y) =
fY |H(y | 1)

fY |H(y | 0)
= exp

{
−(y − b)2 − (y − a)2

2σ2

}
= exp

{
b− a
σ2

(y − a+ b

2
)

}
.

The threshold is η = P0

P1
. Now we have all the ingredients for the MAP rule. Comparing

Λ(y) to η is the same as comparing log Λ(y) to log η . The function log Λ(y) is called
log likelihood ratio. Hence the MAP decision rule is

b− a
σ2

(
y − a+ b

2

) Ĥ = 1
≥
<

Ĥ = 0

ln η.
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a ba+b
2

Figure 2.3: The probability of error when H = 0 is the black area. It is the
probability that the noise makes y exceed the threshold when H = 0 . The
value of the threshold, half way between a and b , is determined assuming

PH(0) = PH(1) .

If b > a , then we can divide both sides by b−a
σ2 without changing the outcome of the

above comparison. In this case we obtain

ĤMAP(y) =

{
1, y > θ

0, otherwise,

where θ = σ2

b−a ln η+ a+b
2
. Notice that if PH(0) = PH(1) , then ln η = 0 and the threshold

θ becomes the midpoint a+b
2

.

We now determine the probability of error. Recall that

Pe(0) = Pr{Y > θ | H = 0} =

∫
R1

fY |H(y | 0)dy.

This is the probability that a Gaussian random variable with mean a and variance σ2

exceeds the threshold θ . From our review on the Q function we know immediately
that Pe(0) = Q

(
θ−a
σ

)
. Similarly, Pe(1) = Q

(
b−θ
σ

)
. Finally, Pe = PH(0)Q

(
θ−a
σ

)
+

PH(1)Q
(
b−θ
σ

)
.

The most common case is when PH(0) = PH(1) = 1/2 . Then θ−a
σ

= b−θ
σ

= b−a
2σ

= d
2σ

,
where d is the distance between a and b . In this case

Pe = Q

(
d

2σ

)
.

Figure 2.3, which holds for the ML decision rule, leads immediately to Pe . Make sure
that you understand it. It will be used frequently.



2.5. Binary Communication Across the Vector Gaussian Channel 19

2.5 Binary Communication Across the Vector Gaussian
Channel

The setup is the same as for the scalar case except that the transmitter output s , the
noise z , and the observation y are now n -tuples over R . The new setting is represented
in the figure below. Before going on we recommend reviewing the background material
in Appendices 2.C and 2.E

-

H ∈ {0, 1}
TX

S Y
-�
��

6

Z ∼ N (0, σ2In)

- RX -
Ĥ

We now assume that the hypothesis i is mapped into the transmitter output X(i) defined
by

X(i) =

{
a ∈ Rn, i = 0

b ∈ Rn, i = 1.

We also assume that Z ∼ N (0, σ2In) .

As we did earlier, we start writing down the output statistic for each hypothesis

H = 0 : Y = a + Z ∼ N (a, σ2In)

H = 1 : Y = b + Z ∼ N (b, σ2In).

Recall that

fZ(z) =
n∏
i=1

1√
2πσ2

e−
z2
i

2σ2 =
1

(2πσ2)n/2
e−

‖z‖2

2σ2 .

Similarly,

fY |H(y | 0) =
1

(2πσ2)n/2
e−

‖y−a‖2

2σ2

fY |H(y | 1) =
1

(2πσ2)n/2
e−

‖y−b‖2

2σ2 .

Hence

Λ(y) =
fY |H(y | 1)

fY |H(y | 0)
= exp

{
‖ y − a ‖2 − ‖ y − b ‖2

2σ2

}
,
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and

LLR(y) =
‖ y − a ‖2 − ‖ y − b ‖2

2σ2
(2.6)

=
‖ a ‖2 − ‖ b ‖2

2σ2
+

1

σ2
〈y, b− a〉 (2.7)

= 〈y − a + b

2
,

b− a

‖ b− a ‖2
〉‖ b− a ‖2

σ2
, (2.8)

where in the last equation we used the fact that for real-valued vectors a and b , 〈a +
b,a− b〉 =‖ a ‖2 − ‖ b ‖2〉 .

From (2.7) the MAP rule is

〈y, b− a〉

Ĥ = 1
≥
<

Ĥ = 0

T,

where T = σ2 ln η + ‖b‖2−‖a‖2
2

is a threshold and η = PH(0)
PH(1)

. This says that R0 and R1

are separated by the hyperplane

{y ∈ Rn : 〈y, b− a〉 = T} ,

When PH(0) = PH(1) = 1/2 , the separating hyperplane separates the points that are
closer to a from those that are closer to b . We see this by solving for y in

LLR(y) = ln η

when ln η = 0. The y that satisfy this relationship are the ones for which

‖ y − a ‖2 − ‖ y − b ‖2= 0.

These are the y that are at the same distance from a and from b . Hence the ML
decision rule for the AWGN channel decides for the transmitted vector that is closer to
the observed vector.

We also see that the separating hyperplane moves towards b when φ increases, which
is the case when PH(0)

PH(1)
increases. This makes sense: if the prior probability becomes

more in favor of H = 0 then the decoding region R0 becomes larger. Moreover, if PH(0)
PH(1)

exceeds 1 , then ln η is positive and φ increases with σ2 . This also makes sense: as the
observation becomes noisier, we pay more attention to the prior (which favors H = 0).

2.6 Multi-Hypothesis Testing

In Section 2.2 we have defined the hypothesis testing problem and derived the maximum
a posteriori (MAP) and maximum likelihood (ML) decision rules. This was done for the
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general case of m hypotheses, that is when H = {0, 1, . . . , (m− 1)} . We then turned our
attention to binary hypotheses, i.e. H = {0, 1} , and deepened our understanding paying
particular attention to the special case in which the observation Y is a Gaussian random
variable (or random vector Y ) whose mean depends on H . Now we go back to the m
hypothesis testing problem.

Recall that the MAP decision rule, which minimizes the probability of making an error,
is

ĤMAP (y) = arg max
i
PH|Y (i|y)

= arg max
i

fY |H(y|i)PH(i)

fY (y)

= arg max
i
fY |H(y|i)PH(i),

where fY |H(·|i) is the probability density function of the observable Y when the hypoth-
esis is i and PH(i) is the probability of the i th hypothesis. This rule is well defined up to
ties. If there is more than one i that achieves the maximum on the right side of one (and
thus all) of the above expressions, then we may decide for any such i without affecting
the probability of error. If we want the decision rule to be unambiguous, we can agree
that in case of ties we pick the largest i that achieves the maximum.

When all hypotheses have the same probability, then the MAP rule specializes to the ML
rule, i.e.,

ĤML(y) = arg max
i
fY |H(y|i).

We will always assume that fY |H is known. If the transmitter maps the hypothesis i into
the channel input si , then fY |H(y|i) = fY |X(y|si) , where fY |X(·|x) , also denoted by
fY |x , is the probability density function of the channel output when the channel input is
x .

Note that the decision (or decoding) function Ĥ assigns an i ∈ H to each y ∈ Rn . It
can be equivalently described by the decision (or decoding) regions Ri , i ∈ H , where
Ri consists of those y for which Ĥ(y) = i . It is convenient to think of Rn as being
partitioned by decoding regions as depicted in the following figure.

Rm−1Ri

R0 R1
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We use the decoding regions to express the error probability Pe or, equivalently, the
probability of deciding correctly Pc .

Pe(i) = 1− Pc(i)

= 1−
∫
Ri

fY |H(y|i)dy.

Now assume the AWGN channel. When H = i , i ∈ H , let S = si . Assume PH(i) = 1
m

(this is a common assumption in communications). The ML decision rule is

ĤML(y) = arg max
i
fY |H(y|i)

= arg max
i

1

(2πσ2)n/2
exp{−‖ y − si ‖2

2σ2
}

= arg min
i
‖ y − si ‖2 .

Hence a ML decision rule for the AWGN channel is a minimum-distance decision rule as
shown in Figure 2.4. Up to ties, Ri corresponds to the Voronoi region of si , defined as
the set of points in Rn that are at least as close to si as to any other sj .

Example 5. (PAM) Figure 2.5 shows the signal points and the decoding regions of
a ML decoder for 6-ary Pulse Amplitude Modulation (why the name makes sense will
become clear in the next chapter), assuming that the channel is the AWGN channel. The
signal points are elements of R and the ML decoder chooses according to the minimum-
distance rule. When the hypothesis is H = 0 , the receiver makes the wrong decision if
the observation y ∈ R falls outside the decoding region R0 . This is the case if the noise
Z ∈ R is larger than d/2 , where d = si − si−1 , i = 1, . . . , 5 . Thus

Pe(0) = Pr{Z >
d

2
} = Q(

d

2σ
).

By symmetry, Pe(5) = Pe(0) . For i ∈ {1, 2, 3, 4} , the probability of error when H = i
is the probability that the event {Z ≥ d

2
} ∪ {Z < −d

2
} occurs. This even is the union

R1

s1

R0

s2

R2

s0

Figure 2.4: Example of Voronoi regions.
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- Rs s s s s s
s0 s1 s2 s3 s4 s5

R0 R1 R2 R3 R4 R5

Figure 2.5: PAM signal constellation.

of disjoint events. Its probability is the sum of the probability of the individual events.
Hence

Pe(i) = Pr{{Z ≥ d

2
} ∪ {Z < −d

2
}} = 2Pr{Z ≥ d

2
} = 2Q(

d

2σ
), i ∈ {1, 2, 3, 4}.

Finally,

Pe =
2

6
Q(

d

2σ
) +

4

6
2Q(

d

2σ
) =

5

3
Q(

d

2σ
).

2

Example 6. (4-ary QAM) Figure 2.6 shows the signal set {s0, s1, s2, s3} for 4-ary
Quadrature Amplitude Modulation (QAM). Me may consider signals as points in R2

or in C . We choose the former since we don’t know how to deal with complex valued
noise yet. The noise is Z ∼ N (0, σ2I2) and the observable, when H = i , is Y = si + Z .
We assume that the receiver implements a ML decision rule, which for the AWGN channel
means minimum-distance decoding. The decoding region for s0 is the first quadrant, for
s1 the second quadrant, etc.. When H = 0 , the decoder makes the correct decision if
{Z1 > −d

2
} ∩ {Z2 ≥ −d

2
} , where d is the minimum distance among signal points. This

is the intersection of independent events. Hence the probability of the intersection is the
product of the probability of each event, i.e.

Pc(0) =

[
Pr

{
Zi ≥ −

d

2

}]2

= Q2

(
− d

2σ

)
=

[
1−Q

(
d

2σ

)]2

.

By symmetry, for all i , Pc(i) = Pc(0) . Hence,

Pe = Pe(0) = 1− Pc(0) = 2Q

(
d

2σ

)
−Q2

(
d

2σ

)
.

When the channel is Gaussian and the decoding regions are bounded by affine planes,
like in this and the previous example, one can express the error probability by means of
the Q function. Another observation is worth mentioning: In this example we decided
to focus on computing Pc(0) . It would have been possible to compute Pe(0) instead
of Pc(0) but it would have costed a bit more work. To compute Pe(0) we evaluate the
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- ϕ1

6

ϕ2

s s

s s

s1 s0

s2 s3

- ϕ1

6

ϕ2

s -Z1

6

Z2

� -

d
2

d
2

?

6

Figure 2.6: QAM signal constellation.

probability of the union {Z1 ≤ −d
2
} ∪ {Z2 ≤ −d

2
} . These are not disjoint events. In fact

they are independent events that can very well occur together. Thus the probability of
the union is not the sum of the individual probabilities. Computing the probability of
the union is not difficult but requires slightly more work than obtaining the probability
of the intersection needed to determine Pc(0) . (In fact you are encouraged to verify the
details.) 2

2.7 Union of Events Bound

Here is a simple and extremely useful bound. Recall that for general events A,B

P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

≤ P (A) + P (B) .

More generally, using induction, we obtain the the Union of Events Bound

P

(
M⋃
i=1

Ai

)
≤

M∑
i=1

P (Ai), (UEB)

that applies to any collection of sets Ai , i = 1, . . . ,M . We now apply the union of events
bound to approximate the probability of error in multi-hypothesis testing. Recall that

Pe(i) = Pr{Y 6∈ Ri|H = i} =

∫
Rc

i

fY |H(y|i)dy,

where Rc
i denotes the complement of Ri . If we are able to evaluate the above integral

for every i , then we are able to determine the probability of error exactly. The bound
that we derive is useful if we are unable to evaluate the above integral.

For i 6= j define
Bi,j = {y : PH(j)fY |H(y|j) ≥ PH(i)fY |H(y|i)}.
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Bi,j is the set of y for which the a posteriori probability when H = j is at least as high
as when H = i . Moreover,

Rc
i ⊆

⋃
j:j 6=i

Bi,j,

with equality if ties are always resolved against i . In fact, by definition, the right side
contains all the ties whereas the left side may or may not contain them. Here ties refers
to those y for which equality holds in the definition of Bi,j .

Now we use the union of events bound:

Pe(i) = Pr {Y ∈ Rc
i |H = i}

≤ Pr

{
Y ∈

⋃
j:j 6=i

Bi,j|H = i

}
≤
∑
j:j 6=i

Pr {Y ∈ Bi,j|H = i} (2.9)

=
∑
j:j 6=i

∫
Bi,j

fY |H(y|i)dy.

To see exactly how we have applied the union of events bound, the second row above
should be read as P (

⋃
j:j 6=i{Y ∈ Bi,j}) where where P (A) is the probability of the event

{Y ∈ A) conditioned on H = i .

What we have gained is that it is typically easier to integrate over Bi,j than over Rc
j .

For instance, for the AWGN channel and ML decision rule∫
Bi,j

fY |H(y|i)dy = Q

(
‖ sj − si ‖

2σ

)
.

Moreover, in the next section we derive an easy-to-compute tight upperbound on∫
Bi,j

fY |H(y|i)dy

for a general fY |H . Notice that the above integral is the probability of error under H = i
when there are only two hypotheses and the other hypothesis is H = j .

Example 7. (m -PSK) The figure below shows a signal set for m -ary PSK (phase-shift
keying) when m = 8 .

√
Es
s1

s7

s6

s3

s5

s2

s0s4
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Formally, the signal transmitted when H = i , i ∈ H = {0, 1, . . . ,m− 1} , is

si =
√
Es
(

cos 2πi/m
sin 2πi/m

)
.

The hypothesis testing problem is specified by

H = i : Y ∼ N (si, σ
2I2)

and the prior PH(i) is assumed to be uniformly distributed.

Since we have a uniform prior, the MAP and the ML decision rule are identical. Due
to the circular symmetry of the additive noise, the ML decoder is a minimum-distance
decoder. The decoding regions (up to ties) are shown in the picture below.

s7

R2

R6

R5

R7

R0

R1
R3

s4

s1

s0

s3

s5
s6

s2

R4

Now we proceed to compute the error probability. By symmetry, Pe(i) is independent of
i . Hence Pe = Pe(i) . To determine Pe(i) , it is convenient to put the coordinate system
at si as shown in the figure below.

Pe(i) = 2Pr{Z ∈ shaded area}

= 2

∫
z∈shaded area

1

2πσ2
exp{−‖ z ‖2

2σ2
}dz.
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New origin Old origin

√
Es

ψ θ

r

b(θ) =
√
Es sinψ

sin(θ+ψ)

z

ψ

s4 0

ψ = π
m

Passing to polar coordinates with

z1 = r cos θ

z2 = r sin θ

we obtain

Pe(i) = 2

∫ π−ψ

0

∫ ∞

b(θ)

1

2πσ2
exp

{
− r2

2σ2

}
rdrdθ

=

∫ π−ψ

0

1

π
exp

{
−b

2(θ)

2σ2

}
dθ

=
1

π

∫ π−ψ

0

exp

{
− sin2 ψ

sin2(θ + ψ)

Es
2σ2

}
dθ. (Exact analysis of PSK).

This is as far as we can go with the exact analysis.

Now we use the union of events bound to determine an upperbound to the error proba-
bility. With reference to the figure below we have:

Pe(i) = Pr{Y ∈ Bi,i−1 ∪ Bi,i+1|H = i}
≤ Pr{Y ∈ Bi,i−1|H = i}+ Pr{Y ∈ Bi,i+1|H = i}
= 2Pr{Y ∈ Bi,i−1|H = i}

= 2Q

(
‖ si − si−1 ‖

2σ

)
= 2Q

(√
Es
σ

sinψ

)
.

Notice that we have been using a version of the union of events bound adapted to the
problem: we are getting a tighter bound by using the fact that Rc

i = Bi,i−1∪Bi,i+1 rather
than Rc

i ⊂ ∪j 6=iBi,j .
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How good is the upperbound? Notice that

Pe = Pr{Y ∈ Bi,i−1|H = i}+ Pr{Y ∈ Bi,i+1|H = i} − Pr{Y ∈ Bi,i−1 ∩ Bi,i+1|H = i}
and we obtained an upper bound by lower-bounding the last term with 0 . We now obtain
a lower bound to Pe by upperbounding the same term. To do so, observe from the above
picture that Bi,i−1∩Bi,i+1 is the decoding region of the point which is furthest away from
si . Hence the probability that y ends up in that region given that si was sent is smaller
than the probability that y end up in any of the remaining regions not counting the
decoding region of si . There are M − 1 regions leading to an error and the probability
that y is in one of them is Pe . Hence the probability that it is in the one of the M − 1
regions that has the smallest probability can not exceed Pe

M−1
:

Pr{Y ∈ (Bi,i−1 ∩ Bi,i+1)|H = i} ≤ Pe(i)

m− 1
=

Pe
m− 1

.

Hence,

Pe = Pr{Y ∈ Bi,i−1|H = i}+ Pr{Y ∈ Bi,i+1|H = i} − Pr{Y ∈ B4,3 ∩ Bi,i+1|H = i}

≥ 2Q

(√
Es
σ2

sinψ

)
− Pe
m− 1

.

Solving for Pe we obtain the desired lower bound

Pe ≥ 2Q

(√
Es
σ2

sinψ

)
m− 1

m
.

The ratio between the upper and the lower bound is the constant m
m−1

. For m large,
the bounds become very tight. One can come up with lower bounds for which this ratio
goes to 1 as Es/σ2 → ∞ . One such bound is obtained by upperbounding Pr{Y ∈
Bi,i−1 ∩ Bi,i+1|H = i} with the probability Q

(√
Es

σ

)
that Y1 is positive given H = i . 2

2.8 Union Bhattacharyya Bound

Let us summarize. From the union of events bound applied to

Rc
i ⊆

⋃
j:j 6=i

Bi,j
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we have obtained the upper bound

Pe(i) = Pr{Y ∈ Rc
i |H = i}

≤
∑
j:j 6=i

Pr{Y ∈ Bi,j|H = i}

and we have used this bound for the AWGN channel. What we have gained with the
bound is that instead of having to compute

Pr{Y ∈ Rc
i |H = i} =

∫
Rc

i

fY |H(y|i)dy,

which requires integrating over a possibly complicated region Rc
i , we only have to compute

Pr{Y ∈ Bi,j|H = i} =

∫
Bi,j

fY |H(y|i)dy.

The latter integral is simply Q( a
σ
) , where a is the distance between si and the hyperplane

bounding Bi,j . For a ML decision rule, a =
‖si−sj‖

2
.

What if the channel is not AWGN? Is there a relatively simple expression for Pr{Y ∈
Bi,j|H = i} that applies for general channels? Such an expression does exist. It is the
Bhattacharyya bound that we now derive.3

Given a set A , the indicator function 1A is defined as

1A(x) =

{
1, x ∈ A
0, otherwise.

From
Bi,j = {y ∈ Rn : PH(i)fY |H(y|i) ≤ PH(j)fY |H(y|j)},

we immediately verify that

1Bi,j
(y) ≤

√
PH(j)fY |H(y|j)
PH(i)fY |H(y|i)

.

With this we obtain the Bhattacharyya bound as follows:

Pr{Y ∈ Bi,j|H = i} =

∫
y∈Bi,j

fY |H(y|i)dy

=

∫
y∈Rn

fY |H(y|i)1Bi,j
(y)dy

≤
∫
y∈Rn

fY |H(y|i)

√
PH(j)fY |H(y|j)
PH(i)fY |H(y|i)

dy

=

√
PH(j)

PH(i)

∫
y∈Rn

√
fY |H(y|i)fY |H(y|j) dy. (2.10)

3There are two versions of the Bhattacharyya bound. Here we derive the one that has the simpler
derivation. The other version, which is tighter by a factor 2 , is left as an exercise.
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What makes the last integral appealing is that we integrate over the entire Rn . As shown
in Problem 22 (Bhattacharyya Bound for DMCs), for discrete memoryless channels the
bound further simplifies.

As the name indicates, the Union Bhattacharyya bound is the union of events bound
(2.10). Inserting yields

Pe(i) ≤
∑
j:j 6=i

Pr{Y ∈ Bi,j|H = i} ≤
∑
j:j 6=i

√
PH(j)

PH(i)

∫
y∈Rn

√
fY |H(y|i)fY |H(y|j) dy.

We can now remove the conditioning on H = i and obtain

Pr{e} ≤
∑
i

∑
j:j 6=i

√
PH(i)PH(j)

∫
y∈Rn

√
fY |H(y|i)fY |H(y|j) dy.

Example 8. (Tightness of the Bhattacharyya Bound) Consider the following scenario

H = 0 : S = s0 = (0, 0, . . . , 0)T

H = 1 : S = s1 = (1, 1, . . . , 1)T

with PH(0) = 0.5 , and where the channel is the binary erasure channel described in the
figure:

1 - 11− p

∆

������������:

XXXXXXXXXXXXz

0 0-1− p
X Y

Figure 2.7: Binary erasure channel.

The Bhattacharyya bound is :

Pr{Y ∈ B0,1 | H = 0} ≤
∑

y∈{0,1,∆}n

√
PY |H(y | 1)PY |H(y | 0)

=
∑

y∈{0,1,∆}n

√
PY |X(y | s1)PY |X(y | s0)

(a)
=
√
PY |X((∆, . . . ,∆)T | s0)PY |X((∆, . . . ,∆)T | s1)

= pn,
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where in (a) we used the fact that the first factor under the square root vanishes if y
contains ones and the second vanishes if y contains zeros. The same bound applies for
H = 1 . Hence Pe ≤ 1

2
pn + 1

2
pn = pn .

If we use the tighter version of the union Bhattacharyya bound, which as mentioned earlier
is tighter by a factor of 2 , then we obtain

Pe
(UBB)

≤ 1

2
pn.

For the Binary Erasure Channel and the two codewords s0 and s1 we can actually
compute the probability of error exactly:

Pe =
1

2
Pr{Y = (∆,∆, . . . ,∆)T} =

1

2
pn.

For this channel the Bhattacharyya bound is tight! 2
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2.9 Problems

Problem 1. (Warmup Problem: Background Material)

(a) Assume that X1 and X2 are independent random variables and that they are uni-
formly distributed in the interval [0, 1] . What is the probability that X1 + X2 < 1
and X2 ≥ 1

2
?

(b) Let φ(t) = A
sin π

T
t

π
T
t

, t ∈ R . Sketch φ(t) and its Fourier transform φF(f) . Label

your figures appropriately.

(c) Determine A so that φ(t) has unit energy.

Problem 2. (Weather Frog)

Let us assume that a “weather frog” bases his forecast for tomorrow’s weather entirely
on today’s air pressure. Determining a weather forecast is a hypothesis testing problem.
For simplicity, let us assume that the weather frog only needs to tell us if the forecast
for tomorrow’s weather is “sunshine” or “rain”. Hence we are dealing with a binary
hypothesis testing problem. Let H = 0 mean “sunshine” and H = 1 mean “rain”. We
will assume that both values of H are equally likely, i.e. pH(0) = pH(1) = 1/2 .

Measurements over several years have led the weather frog to conclude that on a day that
precedes sunshine the pressure may be modeled as a random variable y with the following
probability density function:

fY |H(y|0) =

{
A− A

2
y, 0 ≤ y ≤ 1

0, otherwise.
(2.11)

Similarly, the pressure on a day that precedes a rainy day is distributed according to

fY |H(y|1) =

{
B + B

3
y, 0 ≤ y ≤ 1

0, otherwise.
(2.12)

The weather frog’s goal in life is to guess the value of H after measuring Y .

(i) Determine A and B .

(ii) Find the probability pH|Y (0|y) for all values of y . This probability is often called the
a posteriori probability of hypothesis H = 0 given that Y = y . Also find the probability
pH|Y (1|y) for all values of y . Hint: Use Bayes’ rule.

(iii) Plot pH|Y (0|y) and pH|Y (1|y) as a function of y . Is it true that the decision rule
may be written as

Ĥ(y) =

{
0, if y ≤ θ
1, otherwise,

(2.13)
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for some threshold θ ? If yes specify θ .

(iv) Determine, as a function of θ , the probability that the decision rule in (iii) decides
Ĥ = 1 when, in reality, H = 0 . This probability is denoted Pr(Ĥ(y) = 1|H = 0) .

(v) Determine, as a function of θ , the probability of error for the decision rule that you
have derived in (iii). Evaluate your expression at the value of θ that you have found in
(iii).

(vi) Among decision rules that compare the pressure y to a threshold like in Eqn. (2.13),
is there a decision rule that results in a smaller probability of error than the rule derived in
(iii)? You should be able to answer this question without further calculations. However,
to double check, find the θ that maximizes the expression you have found in part (iv).

Problem 3. (Enhanced Weather Frog)

A TV weather frog bases his weather forecast for tomorrow entirely on today’s air pressure,
which is thus his observable Y . Here, we consider an ambitious weather frog who wants
to distinguish three kinds of weather. This means, that tomorrow’s weather is represented
by a random variable H which take on value 0 if the sun shines tomorrow, 1 if it rains
or 2 if the weather is unstable. We assume that the three hypotheses are a priori equally
likely, i.e. pH(0) = pH(1) = pH(2) = 1/3 .

Measurements over several years have led to the following estimate of the probability
density function of today’s air pressure provided that the sun shines tomorrow,

fY |H(y|0) =

{
A− 2Ay , 0 ≤ y ≤ 0.5
0 , otherwise.

The estimate of the probability density function of today’s air pressure provided that it
rains tomorrow, is

fY |H(y|1) =

{
B + B

2
y , 0 ≤ y ≤ 1

0 , otherwise.

Finally, the estimate of the probability density function of today’s air pressure provided
that the weather is unstable tomorrow, is

fY |H(y|2) =

{
C , 0 ≤ y ≤ 1
0 , otherwise.

The weather frog’s goal is to guess the value of H after measuring Y .

(i) Determine A , B and C .

(ii) Write down the optimal decision rule (i.e. the rule that minimize the probability of a
wrong forecast) in general terms.

(iii) For all values y , draw into one graph fy|H(y|0) , fy|H(y|1) and fy|H(y|2) . Show on

the graph the decision regions corresponding to the optimal decision rule. If we let Ĥ(y)
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denote the frog’s forecast for a value y of the measurement, can the decision rule be
written in the following form:

Ĥ(y)


0 , if y ≤ θ1

2 , if θ1 < y < θ2

1 , if y ≥ θ2,

where θ1 and θ2 are some thresholds? If so, determine the values θ1 and θ2 ?

(iv) Find the probability of a wrong forecast knowing that tomorrow’s weather is unstable,
i.e., determine the probability that the decision Ĥ is different from 2 knowing that, in
reality, H = 2 . This probability is denoted Pr{e|H = 2} .

(v) If we assume that, instead of using the optimal rule, our weather frog always decides
that tomorrow’s weather is sunny, what will be his probability of error (probability of a
wrong forecast)? Explain.

Problem 4. (Hypothesis Testing in Laplacian Noise) Consider the following hypothesis
testing problem between two equally likely hypotheses. Under hypothesis H = 0 , the
observable Y is equal to a+Z where Z is a random variable with Laplacian distribution

fZ(z) =
1

2
e−|z|. (2.14)

Under hypothesis H = 1 , the observable is given by −a+ Z .

(i) Find and draw the density fY |H(y|0) of the observable under hypothesis H = 0 , and
the density fY |H(y|1) of the observable under hypothesis H = 1 .

(ii) Find the optimal decision rule to minimize the probability of error. Write out the
expression for the likelihood ratio.

(iii) Compute the probability of error of the optimal decision rule.

Problem 5. (Poisson Parameter Estimation) In this example there are two hypotheses,
H = 0 and H = 1 which occur with probabilities pH(0) = p0 and pH(1) = 1 − p0 ,
respectively. The observable is y ∈ N0 , i.e. y is a nonnegative integer. Under hypothesis
H = 0 , y is distributed according to a Poisson law with parameter λ0 , i.e.

pY |H(y|0) =
λy0
y!
e−λ0 . (2.15)

Under hypothesis H = 1 ,

pY |H(y|1) =
λy1
y!
e−λ1 . (2.16)



2.9. Problems 35

This example is in fact modeling the reception of photons in an optical fiber (for more
details, see the Example in Section 2.2 of these notes).

(i) Derive the MAP decision rule by indicating likelihood and log-likelihood ratios.
Hint: The direction of an inequality changes if both sides are multiplied by a negative
number.

(ii) Derive the formula for the probability of error of the MAP decision rule.

(iii) For p0 = 1/3 , λ0 = 2 and λ1 = 10 , compute the probability of error of the MAP
decision rule. You may want to use a computer program to do this.

(iv) Repeat (iv) with λ1 = 20 and comment.

Problem 6. (IID versus First-Order Markov Model) Consider testing two equally likely
hypotheses H = 0 and H = 1 . The observable

Y = (Y1, . . . , Yk) (2.17)

is a k -dimensional binary vector. Under H = 0 the components of the vector Y are
independent uniform random variables (also called Bernoulli (1/2) random variables).
Under H = 1 , the component Y1 is also uniform, but the components Yi , 2 ≤ i ≤ k ,
are distributed as follows:

Pr(Yi = yi|Yi−1 = yi−1, . . . , Y1 = y1) =

{
3/4, if yi = yi−1

1/4, otherwise.
(2.18)

(i) Find the decision rule that minimizes the probability of error. Hint: Write down a
short sample sequence (y1, . . . , yk) and determine its probability under each hypothesis.
Then generalize.

(ii) Give a simple sufficient statistic for this decision.

(iii) Suppose that the observed sequence alternates between 0 and 1 except for one string
of ones of length s , i.e. the observed sequence y looks something like

y = 0101010111111 . . . 111111010101 . . . . (2.19)

What is the least s such that we decide for hypothesis H = 1? Evaluate your formula
for k = 20 .

Problem 7. (Real-Valued Gaussian Random Variables) For the purpose of this prob-
lem, two zero-mean real-valued Gaussian random variables X and Y are called jointly
Gaussian if and only if their joint density is

fXY (x, y) =
1

2π
√

det Σ
exp

(
−1

2

(
x, y

)
Σ−1

(
x
y

))
, (2.20)
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where (for zero-mean random vectors) the so-called covariance matrix Σ is

Σ = E

[(
X
Y

)
(X, Y )

]
=

(
σ2
X σXY

σXY σ2
Y

)
. (2.21)

(i) Show that if X and Y are jointly Gaussian random variables, then X is a Gaussian
random variable, and so is Y .

(ii) How does your answer change if you use the definition of jointly Gaussian random
variables given in these notes?

(iii) Show that if X and Y are independent Gaussian random variables, then X and Y
are jointly Gaussian random variables.

(iv) However, if X and Y are Gaussian random variables but not independent, then
X and Y are not necessarily jointly Gaussian. Give an example where X and Y are
Gaussian random variables, yet they are not jointly Gaussian.

(v) Let X and Y be independent Gaussian random variables with zero mean and variance
σ2
X and σ2

Y , respectively. Find the probability density function of Z = X + Y .

Problem 8. (Correlation and Independence) Let Z be a random variable with p.d.f.:

fZ(z) =

{
1/2, −1 ≤ z ≤ 1
0, otherwise.

(2.22)

Also, let X = Z and Y = Z2 .

(i) Show that X and Y are uncorrelated.

(ii) Are X and Y independent?

(iii) Now let X and Y be jointly Gaussian, zero mean, uncorrelated with variances σ2
X

and σ2
Y respectively. Are X and Y independent? Justify your answer.

Problem 9. (Transformation of Random Vectors) Let R and Φ be independent random
variables. R is distributed uniformly over the unit interval, Φ is distributed uniformly
over the interval [0, 2π) .4

(i) Interpret R and Φ as the polar coordinates of a point in the plane. It is clear that
the point lies inside (or on) the unit circle. Is the distribution of the point uniform over
the unit disk? Take a guess!

4This notation means: 0 is included, but 2π is excluded. It is the current standard notation in the
anglo-saxon world. In the French world, the current standard for the same thing is [0, 2π[ .
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(ii) Define the random variables

X = R cos Φ (2.23)

Y = R sin Φ. (2.24)

Find the joint distribution of the random variables X and Y using the Jacobian deter-
minant.

Do you recognize a relationship between this method and the method derived in class to
determine the probability density after a linear non-singular transformation?

(iii) Does the result of part (ii) support or contradict your guess from part (i)? Explain.

Problem 10. (Theorem Of Irrelevance and Sufficient Statistics) Have you ever tried to
drink from a fire hydrant? There are situations in which the observable Y contains too
much data. You would like to have a many-to-one function T so that T (Y ) contains
enough information to make a MAP decision but not too much to be impractical to work
with. The Theorem of irrelevance gives a test to check if you have such a function.

Consider two hypotheses with probabilities pH(0) = p0 and pH(1) = 1− p0 . The observ-
able is Y = (Y1, . . . , Yk) . Let fY |H(y|0) and fY |H(y|1) be given.

(i) ( Theorem of irrelevance): Suppose it is possible to write

fY |H(y|0) = g0(T (y))h(y) (2.25)

fY |H(y|1) = g1(T (y))h(y), (2.26)

where T (·) : Rk → Rd is a function from the observation space Rk to some space of
choice Rd , g0(·), g1(·) : Rd → R+ and h(·) : Rk → R+ .

Prove that if you have T (y) you don’t need y to make a MAP decision. For this reason
T (y) is called a sufficient statistic for the hypothesis testing problem.

(ii) Sometimes we can partition the observable Y ∈ Rk into two vectors Y ′ = (Y1, . . . , Yr)
and Y ′′ = (Yr+1, . . . , Yk) . Show that the irrelevance theorem implies the following state-
ment: If fY ′′|H,Y ′(y

′′|i, y′) does not depend on i , then Y ′ is a sufficient statistic, i.e. Y ′′

is irrelevant to the decision problem.

(iii) Use (ii) to answer the following communications problem (see the picture below):
Under H = 0 , the source emits S = 1 ; under H = 1 , the source emits S = −1 . The
receiver has access to two noisy versions of the source output, namely

Y (1) = S + Z1 (2.27)

Y (2) = S + Z1 + Z2, (2.28)

where Z1 and Z2 are zero-mean Gaussian random variables of variance σ2 . Is Y (2)

relevant to the hypothesis testing problem? Prove your answer.
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Source -�
��
-�
��

??

Receiver -

? ?S

Z1 Z2

Y (2)Y (1)

Problem 11. (Sufficient Statistic) Consider a binary hypothesis testing problem specified
by:

H = 0 :

{
Y1 = Z1

Y2 = Z1Z2

H = 1 :

{
Y1 = −Z1

Y2 = −Z1Z2

where Z1 , Z2 and H are independent random variables.

(i) Is Y1 a sufficient statistic? Recall that Y1 is a sufficient statistic if a MAP decoder that
observes (Y1, Y2) makes the same decision (up to ties) as a MAP decoder that observes
Y1 alone.

(Hint: If Y = aZ , where a is a scalar then fY (y) = 1
|a|fZ(y

a
) ).

Problem 12. (Comparison of 16-PAM and 16-QAM) The following two signal constella-
tions are used to communicate across an additive white Gaussian noise channel. Let the
noise variance be σ2 .

a

b
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Each point represents a signal si for some i . Assume each signal is used with the same
probabiliy.

(i) For each signal constellation, compute the average probability of error, Pe , as a func-
tion of the parameters a and b , respectively.

(ii) For each signal constellation, compute the average energy per symbol, Es , as a func-
tion of the parameters a and b , respectively:

Es =
16∑
i=1

pH(i) ‖ si ‖2 (2.29)

(iii) Plot Pe versus Es for both signal constellations and comment.

Problem 13. (A Gaussian Vector and Three Regions) [Wozencraft and Jacobs] Let X ∼
N (0, σ2I2) . For each of the three figures below, express the probability that X lies in
the shaded region. You may use the Q -function when appropriate.
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x1

Problem 14. (QPSK Decision Regions) Let H ∈ {0, 1, 2, 3} and assume that when
H = i you transmit the signal si shown in the figure. Under H = i , the receiver
observes Y = si + Z .

-

6

s s
s

s
s2 s0

s1

s3

x1

x2



40 Chapter 2.

(a) Draw the decoding regions assuming that Z ∼ N (0, σ2I2) and that PH(i) = 1/4 ,
i ∈ {0, 1, 2, 3} .

(b) Draw the decoding regions (qualitatively) assuming Z ∼ N (0, σ2I) and PH(0) =
PH(2) > PH(1) = PH(3) . Justify your answer.

(c) Assume again that PH(i) = 1/4 , i ∈ {0, 1, 2, 3} and that Z ∼ N (0, K) , where

K =

(
σ2 0
0 4σ2

)
. How do you decode now? Justify your answer.

Problem 15. (Antenna Array) The following problem relates to the design of multi-
antenna systems. The situation that we have in mind is one where one of two signals is
transmitted over a Gaussian channel and is received through two different antennas. We
shall assume that the noises at the two terminals are independent but not necessarily of
equal variance. You are asked to design a receiver for this situation, and to assess its
performance. This situation is made more precise as follows:

Consider the binary equiprobable hypothesis testing problem:

H = 0 : Y1 = A+ Z1, Y2 = A+ Z2

H = 1 : Y1 = −A+ Z1, Y2 = −A+ Z2,

where Z1, Z2 are independent Gaussian random variables with different variances σ2
1 6=

σ2
2 , that is, Z1 ∼ N (0, σ2

1) and Z2 ∼ N (0, σ2
2) . A > 0 is a constant.

(a) Show that the decision rule that minimizes the probability of error (based on the
observable Y1 and Y2 ) can be stated as

σ2
2y1 + σ2

1y2

0

≷
1

0. (2.30)

(b) Draw the decision regions in the (Y1, Y2) plane for the special case where σ1 = 2σ2 .

(c) Evaluate the probability of error for the optimal detector as a function of σ2
1 , σ2

2 and
A .

Problem 16. (Multiple Choice Exam) You are taking a multiple choice exam. Question
number 5 allows for two possible answers. According to your first impression, answer 1
is correct with probability 1/4 and answer 2 is correct with probability 3/4 .

You would like to maximize your chance of giving the correct answer and you decide to
have a look at what your left and right neighbors have to say.

The left neighbor has answered ĤL = 1 . He is an excellent student who has a record of
being correct 90% of the time.
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The right neighbor has answered ĤR = 2 . He is a weaker student who is correct 70% of
the time.

(a) You decide to use your first impression as a prior and to consider ĤL and ĤR as
observations. Describe the corresponding hypothesis testing problem.

(b) What is your answer Ĥ ? Justify it.

Problem 17. (QAM with an Erasure) Consider a QAM receiver that outputs a special
symbol called “erasure” and denoted by δ whenever the observation falls in the shaded
area shown in Figure (2.8). Assume that s0 is transmitted and that Y = s0 + N is
received where N ∼ N (0, σ2I2) . Let P0i , i = 0, 1, 2, 3 be the probability that the
receiver outputs Ĥ = i and letP0δ be the probability that it outputs δ . Determine P00 ,
P01 , P02 , P03 and P0δ .
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Figure 2.8: Modified QAM demodulator

Problem 18. (Repeat Codes and Bhattacharyya Bound) A repeat code is a code that
transmits each source output N times across the channel. It is clear that the probability
of error at the decoder decreases with increasing N .

Consider two equally likely hypotheses (or, as we could also say, source output values).
Under hypothesis H = 0 , the signal (X1, . . . , XN) = (1, . . . , 1) is put onto the channel;
under hypothesis H = 1 , the signal is (X1, . . . , XN) = (−1, . . . ,−1) . The transmission
channel adds zero-mean independent Gaussian noise of variance σ2 . At the receiver, we
observe

(Y1, . . . , YN) = (X1 + Z1, . . . , XN + ZN). (2.31)
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Based on this observation, we can find the MAP estimator. In fact, it turns out that a
sufficient statistic is the sum of the received values, Y1 +Y2 + . . .+YN . The corresponding
probability of error was found to be

Pr(1){e} = Q

(√
N

σ

)
. (2.32)

However, in this case, the receiver has to be able to perform addition of real numbers,
and we also have to store them. This is not always possible. Therefore, suppose now that
the decoder has access only to the sign of Yi , 1 ≤ i ≤ N . That is, the observation is

W = (W1, . . . ,WN) = (sgn(Y1), . . . , sgn(YN)) = (sgn(X1 + Z1), . . . , sgn(XN + ZN)),(2.33)

where Zi ∼ N (0, σ2) .

(i) Determine the MAP decision rule based on the observation (W1, . . . ,WN) . Give a
simple sufficient statistic, and draw a diagram of the optimal receiver.

(ii) Find the expression for the probability of error Pr(2){e} . You may assume that N
is odd.

(iii) Your answer to (ii) contains a sum that cannot be solved in closed form. Therefore,
find the Bhattacharyya bound on Pr(2){e} .

(iv) For N = 1, 3, 5, 7 , find the numerical values of Pr(1){e} , Pr(2){e} , and the Bhat-
tacharyya bound on Pr(2){e} .

Problem 19. (Tighter Union Bhattacharyya Bound: Binary Case) In this problem we
derive a tighter version of the Union Bhattacharyya Bound for binary hypotheses.
Let

H = 0 : Y ∼ fY |H(y | 0)

H = 1 : Y ∼ fY |H(y | 1).

The MAP decision rule is

Ĥ(y) = arg max
i
PH(i)fY |H(y | i),

and the resulting probability of error is

Pr{e} = PH(0)

∫
R1

fY |H(y | 0)dy + PH(1)

∫
R0

fY |H(y | 1)dy. (2.34)

(i) Argue that

Pr{e} =

∫
y

min
{
PH(0)fY |H(y | 0), PH(1)fY |H(y | 1)

}
dy.
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(ii) Prove that for a, b ≥ 0, min(a, b) ≤
√
ab ≤ a+b

2
. Use this to prove the tighter version

of Bhattacharyya Bound, i.e,

Pr{e} ≤ 1

2

∫
y

√
fY |H(y | 0)fY |H(y | 1)dy.

(iii) Compare the above bound to the one derived in class when PH(0) = 1
2
. How do you

explain the improvement by a factor 1
2
?

Problem 20. (Tighter Union Bhattacharyya Bound: M -ary Case)
In class we have derived the Union Bhattacharyya Bound. Is this a tight bound or can
we do better? To be specific, let us analyze the following M-ary MAP detector:

Ĥ(y) = smallest i such that (2.35)

PH(i)fY/H(y/i) = max
j
{PH(j)fY/H(y/j)} (2.36)

Let

Bij =

{
y : PH(j)fY |H(y|j) ≥ PH(i)fY |H(y | i), j < i

y : PH(j)fY |H(y | j) > PH(i)fY |H(y | i), j > i
(2.37)

(i) Verify that Bij = Bcji .

Given H = i , the detector will make an error iff:

y ∈
⋃
j:j 6=i

Bij (2.38)

We calculate the probability of error as:

Pr{e} =
M−1∑
i=0

Pr{e | H = i}PH(i) (2.39)

(ii) Show that:

Pr{e} ≤
M−1∑
i=0

∑
j>i

[Pr{Bij | H = i}PH(i) + Pr{Bji | H = j}PH(j)] (2.40)

=
M−1∑
i=0

∑
j>i

[∫
Bij

fY |H(y | i)PH(i)dy +

∫
Bc

ij

fY |H(y | j)PH(j)dy

]
(2.41)

=
M−1∑
i=0

∑
j>i

[∫
y

min
{
fY |H(y | i)PH(i), fY |H(y | j)PH(j)

}
dy

]
(2.42)



44 Chapter 2.

(Hint: Apply the Union of Events Bound to equation (2.39) and then group the terms
corresponding to Bij and Bji . For proving the last part, go back to the definition of Bij .)

(iii) Hence show that:

Pr{e} ≤
M−1∑
i=0

∑
j>i

[ (
PH(i) + PH(j)

2

)∫
y

√
fY |H(y | i)fY |H(y | j)dy

]
(2.43)

(Hint: For a, b ≥ 0,min(a, b) ≤
√
ab ≤ a+b

2
.)

As an application of the above bound, consider the following binary hypothesis testing
problem:

H = 0 : Y ∼ N (−a, σ2) (2.44)

H = 1 : Y ∼ N (+a, σ2) (2.45)

where the two hypotheses are equiprobable. Use the above bound to show that:

Pr{e} = Pr{e | H = 0} (2.46)

≤ 1

2
exp

{
− a2

2σ2

}
(2.47)

But Pr{e} = Q
(
a
σ

)
. Hence we have re-derived the bound (see lecture 1):

Q(x) ≤ 1

2
exp

{
−x

2

2

}
. (2.48)

Problem 21. (An Application to the Tight Bhattacharyya Bound) As an application of
the tight Bhattacharyya bound, consider the following binary hypothesis testing problem

H = 0 : Y ∼ N (−a, σ2)

H = 1 : Y ∼ N (+a, σ2)

where the two hypotheses are equiprobable.

(i) Use the Tight Bhattacharyya Bound to derive a bound on Pr{e} .

(ii) We know that the probability of error for this binary hypothesis testing problem is

Q( a
σ
) ≤ 1

2
exp

{
− a2

2σ2

}
, where we have used the result Q(x) ≤ 1

2
exp

{
−x2

2

}
derived in

lecture 1. How do the two bounds compare? Are you surprised (and why)?
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Problem 22. (Bhattacharyya Bound for DMCs) Consider a Discrete Memoryless Chan-
nel (DMC). This is a channel model described by an input alphabet X , an output alphabet
Y and a transition probability5 P (y|x) . When we use this channel to transmit an n-tuple
x ∈ X n , the transition probability is

P (y|x) =
n∏
i=1

P (yi|xi).

So far we have come across two DMCs, namely the BSC (Binary Symmetric Channel) and
the BEC (Binary Erasure Channel). The purpose of this problem is to realize that for
DMCs, the Bhattacharyya Bound takes on a simple form, in particular when the channel
input alphabet X contains only two letters.

(i) Consider a source that sends s0 when H = 0 and s1 when H = 1 . Justify the
following chain of inequalities.

Pr{e}
(a)

≤ 1

2

∑
y

√
P (y|s0)P (y|s1)

(b)

≤
∑

y

√√√√ n∏
i=1

P (yi|s0i)P (yi|s1i)

(c)
=

∑
y1,...,yn

n∏
i=1

√
P (yi|s0i)P (yi|s1i)

(d)
=

[∑
y1

√
P (y1|s01)P (y1|s11)

]
. . .

[∑
yn

√
P (yn|s0n)P (yn|s1n)

]
(e)
=

n∏
i=1

∑
y

√
P (y|s0i)P (y|s1i)

(f)
=

∏
a∈X ,b∈X ,a 6=b

(∑
y

√
P (y|s0i)P (y|s1i)

)n(a,b)

.

where n(a, b) is the number of positions i in which s0i = a and s1i = b .

(ii) The Hamming distance dH(s0, s1) is defined as the number of positions in which
s0 and s1 differ. Show that for a binary input channel, i.e, when X = {a, b} , the
Bhattacharyya Bound becomes

Pr{e} ≤ zdH(s0,s1),

where
z =

∑
y

√
P (y|a)P (y|b).

5Here we are assuming that the output alphabet is discrete. Otherwise we need to deal with densities
instead of probabilities.
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Notice that z depends only on the channel whereas its exponent depends only on s0 and
s1 .

(iii) What is z for:

(a) The binary input Gaussian channel described by the densities

fY |X(y|0) = N (−
√
E, σ2)

fY |X(y|1) = N (
√
E, σ2).

(b) The Binary Symmetric Channel (BSC) with the transition probabilities described by

pY |X(y|x) =

{
1− δ, if y = x,
δ, otherwise.

Verify your result with that of homework 4 problem 1.

(c) The Binary Erasure Channel (BEC) with the transition probabilities given by

pY |X(y|x) =


1− δ, if y = x,
δ, if y = E
0, otherwise.

Verify your result with the one obtained in class.

(iv) Extra question for the curious ones: Assume that the BSC has been obtained from
the binary-input Gaussian channel via a one-bit quantizer applied at the channel output
like in homework 4 problem (i). Plot the z of the original and the quantized channel as
a function of the input power. By how much do we need to increase the input power of
the quantized channel to match the z of the unquantized channel?

Problem 23. (Signal Constellation) The following signal constellation with six signals is
used in additive white Gaussian noise of variance σ2 :

-

6

s s s

s s s

-� b

6

?

a
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Assume that the six signals are used with equal probabilities.

(i) Draw the boundaries of the decision regions into the above figure.

(ii) Compute the average probability of error, Pr{e} , for this signal constellation.

(iii) Compute the average energy per symbol for this signal constellation.

Problem 24. (Application of Hypothesis Testing to Fading) Consider the following com-
munication problem:

There are two equiprobable hypotheses. When H = 0 , we transmit s = −b , where b is
an arbitrary but fixed positive number. When H = 1 , we transmit s = b .

The channel is as shown in the figure below, where Z ∼ N (0, σ2) represents the noise,
A ∈ {0, 1} represents a random attenuation (fading) with PA(0) = 1

2
, and Y is the

channel output. The random variables H , A and Z are independent.

×�
�� �
��
-

s Y

A Z

6 6

(i) Find the decision rule that the receiver should implement to minimize the probability
of error. Sketch the decision regions.

(ii) Calculate the probability of error Pr{e} , based on the above decision rule.

Problem 25. (Dice Tossing)

You have two dices, one fair and one loaded (truqué). A friend told you that the loaded
dice produces a 6 with probability 1

4
, and the other values with uniform probabilities.

You do not know a priori which one is fair or which one is loaded. You pick with uniform
probabilities one of the two dices, and perform N consecutive tosses (lancés) with the
dice you have chosen. Let

Y = (Y1, · · ·, YN)

be the sequence of numbers observed.

(a) Based on the sequence of observations Y , find the decision rule to determine whether
the dice you have chosen is loaded. Your decision rule should maximize the probability
of correct decision.
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(b) Identify a compact sufficient statistic for this hypothesis testing problem, call it S .
Justify your answer. [Hint: S ∈ N .]

(c) Find the Bhattacharyya bound on the probability of error. You can either work with
the observation (Y1, . . . , YN) or with (Z1, . . . , ZN) , where Zi indicates whether the
i th observation is a six or not, or you can work with S . In some cases you may
find it useful to know that

∑N
i=0

(
N
i

)
xi = (1 + x)N for N ∈ N . In other cases the

following may be useful:
∑

Y1,Y2,...,YN

∏N
i=1 f(Yi) =

(∑
Y1
f(Y1)

)N
.

Problem 26. (Who Wants to Be a Millionaire)

Assume you are at a quiz show. You are shown three boxes which look identical from the
outside, except they have labels 0, 1, and 2, respectively. Exactly one of them contains
one million Swiss francs, the other two contain nothing. A computer randomly chooses
a box with uniform probability. Let A be the random variable which denotes his choice,
A ∈ {0, 1, 2} . The quizmaster now eliminates from the remaining two boxes one that does
not contain the prize. This means that if neither of the two remaining boxes contain the
prize then the quizmaster eliminates one with uniform probability. Otherwise, he simply
eliminates the one which does not contain the prize. Let B denote the random variable
corresponding to the box eliminated by the quizmaster, B ∈ {0, 1, 2} , and let C denote
the remaining box. You are asked to choose one of the three boxes knowing A and B .

(a) Formulate this as a hypotheses testing problem. What is the set of hypotheses, what
are the observations, and what are the priors?

(b) Write down the general rule for the optimal decision. Assume that A = 0 and
B = 1 . What is the optimal decision?

(c) What is the optimal decision in the general case?

Problem 27. (Playing Darts)

Assume that you are throwing darts at a target. We assume that the target is one-
dimensional, i.e., that the darts all end up on a line. The “bulls eye” is in the center of
the line, and we give it the coordinate 0 . The position of a dart on the target can then
be measured with respect to 0 .

We assume that the position X1 of a dart that lands on the target is a random variable
that has a Gaussian distribution with variance σ2

1 and mean 0 .

Assume now that there is a second target, which is further away. If you throw dart to that
target, the position X2 has a Gaussian distribution with variance σ2

2 (where σ2
2 > σ2

1 )
and mean 0 .
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You play the following game: You toss a coin which gives you “head” with probability
p and “tail” with probability 1 − p for some fixed p ∈ [0, 1] . We can model a coin as a
Bernoulli random variable Z . If Z = 1 , you throw a dart onto the first target. If Z = 0 ,
you aim the second target instead. Let X be the relative position of the dart with respect
to the center of the target that you have chosen.

(i) Write down X in terms of X1 , X2 and Z .

(ii) Compute the variance of X .

Bonus question: Is the distribution of X a Gaussian (Note that X is not a linear
combination of X1 and X2 )? Explain.

(iii) Let S = |X| be the score, which is given by the distance of the dart to the center
of the target (that you picked using the coin). Compute the average score E[S] .

Problem 28. (Properties of the Q Function)

Prove properties (a) through (d) of the Q function defined in the lecture notes, Section
2.3.

You can use the following hint to help you with property (d):

Hint: Define Φ(t) = 1√
2π
e−

t2

2 . Then, integrate
∫∞
x

Φ(t) 1
t2
dt by parts.

The resulting equality can be used to prove both inequalities in (d). Start by proving the
right-hand inequality.

Problem 29. (Uncorrelation vs. Independence)

Let X and Y be two random variables.

(i) When are X and Y uncorrelated? When are they independent? Write down the
definitions.

(ii) Show that if X and Y are independent, they are also uncorrelated.

(iii) We first define two new random variables U and V :

U =

{
0 with prob. 1

2

1 with prob. 1
2
,

V =

{
0 with prob. 1

2

1 with prob. 1
2
,
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where U and V are independent. Now, assume that X and Y are defined as follows:
X = U + V and Y = |U − V | .
Are X and Y independent? Compute the covariance of X and Y . What do you
conclude?

Problem 30. (Bhattacharyya Bound and Laplacian Noise) When Y ∈ R is a continuous
random variable, the Bhattacharyya bound states that

Pr{Y ∈ Bi,j|H = i} ≤

√
PH(j)

PH(i)

∫
y∈R

√
fY |H(y|i)fY |H(y|j) dy,

where i, j are two possible hypotheses and Bi,j = {y ∈ R : PH(i)fY |H(y|i) ≤ PH(j)fY |H(y|j)} .
In this problem H = {0, 1} and PH(0) = PH(1) = 0.5 .

(a) Write a sentence that expresses the meaning of Pr{Y ∈ B0,1|H = 0} . Use words
that have operational meaning.

(b) Do the same but for Pr{Y ∈ B0,1|H = 1} . (Note that we have written B0,1 and not
B1,0 .)

(c) Evaluate the right hand side of the Bhattacharyya bound for the special case fY |H(y|0) =
fY |H(y|1) .

(d) Evaluate the Bhattacharyya bound for the following (Laplacian noise) setting:

H = 0 : Y = −a+ Z

H = 1 : Y = a+ Z,

where a ∈ R+ is a constant and fZ(z) = 1
2
exp (−|z|) , z ∈ R . Hint: it does not

matter if you evaluate the bound for H = 0 or H = 1 .

(e) For which value of a should the bound give the result obtained in (c)? Verify that
it does. Check your previous calculations if it does not.

Problem 31. (Irrelevance and the Markov Chain) Assume that H is a random variable
that corresponds to a hypothesis. Let Ys and Yi be two more random variables, that are
observations.

Definition: We say that H → Ys → Yi forms a Markov chain if

fYi|H,Ys(yi|i, ys) = fYi|Ys(yi|ys)

for all possible values of yi , i and ys .
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(a) Show that H → Ys → Yi forms a Markov chain if and only if Yi → Ys → H forms a
Markov chain, i.e., if and only if

PH|Ys,Yi
(i|ys, yi) = PH|Ys(i|ys)

holds for all values of i , ys and yi .

(b) We know from the homework that if fYi|H,Ys(yi|i, ys) does not depend on i (in other
words, if H → Ys → Yi forms a Markov chain), then Ys is a sufficient statistic and
Yi is irrelevant. Using part (a), this tells us that if PH|Ys,Yi

(i|ys, yi) = PH|Ys(i|ys) for
all values of i , ys and yi , then Ys is a sufficient statistic (and Yi is irrelevant).

Is this intuitive? Explain why / why not.

Problem 32. (Antipodal Signaling)

Consider the following signal constellation:

-

6 ss1

s
s0

−a a

a

−a

y1

y2

Assume that s1 and s0 are used for communication over the Gaussian vector channel.
More precisely:

H = 0 : Y = s0 + Z,

H = 1 : Y = s1 + Z,

where Z ∼ N (0, σ2I2) . Hence, Y is a vector with two components Y = (Y1, Y2) .

(a) Argue why Y1 is not a sufficient statistic.

(b) Give a different signal constellation with two signals s̃0 and s̃1 such that, when
using them in the above communication setting, Y1 is a sufficient statistic.
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Problem 33. (Hypothesis Testing on a Uniform Vector Channel) Consider a binary
hypothesis testing problem in which the hypotheses H = 0 and H = 1 occur with
probability PH(0) and PH(1) = 1−PH(0) , respectively. The observation Y is a sequence
of zeros and ones of length 2k , where k is a fixed integer. When H = 0 , each component
of Y is 0 or a 1 with probability 1

2
and components are independent. When H = 1 ,

Y is chosen uniformly at random from the set of all sequences of length 2k that have an
equal number of ones and zeros. There are

(
2k
k

)
such sequences.

(a) What is PY |H(y|0)? What is PY |H(y|1)?

(b) Find a maximum likelihood decision rule. What is the single number you need to
know about y to implement this decision rule?

(c) Find a decision rule that minimizes the error probability.

(d) Are there values of PH(0) and PH(1) such that the decision rule that minimizes
the error probability always decides for only one of the alternatives? If yes, what are
these values, and what is the decision?

Problem 34. (SIMO Channel with Laplacian Noise)

One of the two signals s0 = −1, s1 = 1 is transmitted over the channel shown on the left
of Figure 2.9. The two noise random variables Z1 and Z2 are statistically independent
of the transmitted signal and of each other.

Their density functions are

fZ1(α) = fZ2(α) =
1

2
e−|α|.

S ∈ {s0, s1}
-

-�
��
- Y2

6

Z2

-�
��
- Y1

?

Z1

-

(y1, y2)

y1

6
y2

b

a
(1, 1)s

s

Figure 2.9: The channel (on the left) and a figure explaining the hint.
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(a) Derive a maximum likelihood decision rule.

(b) Describe the maximum likelihood decision regions in the (y1, y2) plane. Try to de-
scribe the ”Either Choice” regions, i.e., the regions in which it does not matter if you
decide for s0 or for s1 . Hint: Use geometric reasoning and the fact that for a point
(y1, y2) as shown on the right of Figure 1, | y1 − 1 | + | y2 − 1 |= a+ b.

(c) A receiver decides that s1 was transmitted if and only if (y1 + y2) > 0 . Does this
receiver minimize the error probability for equally likely messages?

(d) What is the error probability for the receiver in (c)? Hint: if W = Z1,+Z2 then
fW (ω) = e−ω

4
(1 + ω) for w > 0 .

(e) Could you have derived fW as in (d) ? If yes, say how but omit detailed calculations.

Problem 35. (ML Receiver and UBB for Orthogonal Signaling)

Let H ∈ {1, . . . ,m} be uniformly distributed and consider the communication problem
described by:

H = i : Y = si + Z, Z ∼ N (0, σ2Im),

where s1, . . . , sm , si ∈ Rm , is a set of constant-energy orthogonal signals. Without loss
of generality we assume

si =
√
Eei,

where ei is the i th unit vector in Rm , i.e., the vector that contains 1 at position i and
0 elsewhere, and E is some positive constant.

(a) Describe the maximum likelihood decision rule. (Make use of the fact that si =√
Eei .)

(b) Find the distance ‖si − sj‖ .

(c) Upper-bound the error probability Pr{e|H = i} using the union bound and the Q
function.

Problem 36. (Data Storage Channel)

The process of storing and retrieving binary data on a thin-film disk may be modeled as
transmitting binary symbols across an additive white Gaussian noise channel where the
noise Z has a variance that depends on the transmitted (stored) binary symbol S . The
noise has the following input-dependent density:

fZ(z) =


1√
2πσ2

1

e
− z2

2σ2
1 if S = 1

1√
2πσ2

0

e
− z2

2σ2
0 if S = 0,

where σ1 > σ0 . The channel inputs are equally likely.
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(a) On the same graph, plot the two possible output probability density functions. Indi-
cate, qualitatively, the decision regions.

(b) Determine the optimal receiver in terms of σ1 and σ0 . (Use the back of the previous
page for details.)

(c) Write an expression for the error probability Pe as a function of σ0 and σ1 .

Problem 37. (Lie Detector)

You are asked to develop a “lie detector” and analyze its performance. Based on the
observation of brain cell activity, your detector has to decide if a person is telling the
truth or is lying.

For the purpose of this problem, the brain cell produces a sequence of spikes as shown in
the figure. For your decision you may use only a sequence of n consecutive inter-arrival
times Y1, Y2, . . . , Yn . Hence Y1 is the time elapsed between the first and second spike, Y2

the time between the second and third, etc.

Inter-arrival times

Spike sequences
- t

6 6 6 6

Y1 Y2 Y3

We assume that, a priori, a person lies with some known probability p . When the person
is telling the truth, Y1, . . . , Yn is an i.i.d. sequence of exponentially distributed random
variables with intensity α , (α > 0) , i.e.

fYi
(y) = αe−αy, y ≥ 0.

When the person lies, Y1, . . . , Yn is i.i.d. exponentially distributed with intensity β ,
(α < β) .

(a) Describe the decision rule of your lie detector for the special case n = 1 . Your
detector shall be designed so as to minimize the probability of error.

(b) What is the probability PL/T that your lie detector says that the person is lying
when the person is telling the truth?

(c) What is the probability PT/L that your test says that the person is telling the truth
when the person is lying.

(d) Repeat (a) and (b) for a general n . Hint: There is no need to repeat every step of
your previous derivations.
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Problem 38. (Fault Detector)

As an engineer, you are required to design the test performed by a fault-detector for a
“black-box” that produces a a sequence of i.i.d. binary random variables · · · , X1, X2, X3, · · · .
Previous experience shows that this “black box” has an apriori failure probability of 1

1025
.

When the “black box” works properly, pXi
(1) = p . When it fails, the output symbols are

equally likely to be 0 or 1 .

Your detector has to decide based on the observation of the past 16 symbols, i.e., at time
k the decision will be based on Xk−16, . . . , Xk−1 .

(a) Describe your test.

(b) What does your test decide if it observes the output sequence 0101010101010101?
Assume that p = 1/4 .

Problem 39. (A Simple Multiple-Access Scheme)

Consider the following very simple model of a multiple-access scheme. There are two
users. Each user has two hypotheses. Let H1 = H2 = {0, 1} denote the respective set
of hypotheses and assume that both users employ a uniform prior. Further, let X1 and
X2 be the respective signals sent by user one and two. Assume that the transmissions of
both users are independent and that X1 ∈ {±1} and X2 ∈ {±2} where X1 and X2 are
positive if their respective hypothesis is zero and negative otherwise. Assume that the
receiver observes the signal Y = X1 +X2 +Z , where Z is a zero mean Gaussian random
variable with variance σ2 and is independent of the transmitted signal.

(a) Assume that the receiver observes Y and wants to estimate both transmitted signals,
i.e., the receiver forms the estimate Ĥ = (Ĥ1, Ĥ2) . Starting from first principles,
what is the generic form of the optimal decision rule?

(b) For the specific set of signals given, what is the set of possible observations assuming
that σ2 = 0? Label these signals by the corresponding (joint) hypotheses.

(c) Assuming now that σ2 > 0 , draw the optimal decision regions.

(d) What is the resulting probability of correct decision? i.e., determine the probability
P{Ĥ1 = H1, Ĥ2 = H2} .

(e) Finally, assume that we are only interested in the transmission of user two. What is
P{Ĥ2 = H2}?

Problem 40. (Uncoded Transmission)

Consider the following transmission scheme. We have two possible sequences {X1
j } and

{X2
j } taking values in {−1,+1} , for j = 0, 1, 2, · · · , k − 1 . The transmitter chooses one

of the two sequences and sends it directly over an additive white Gaussian noise channel.
Thus, the received value is Yj = X i

j + Zj , where i = 1, 2 depending of the transmitted
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sequence, and {Zj} is a sequence of i.i.d. zero-mean Gaussian random variables with
variance σ2 .

(a) Using basic principles, write down the optimal decision rule that the receiver should
implement to distinguish between the two possible sequences. Simplify this rule to
express it as a function of inner products of vectors.

(b) Let d be the number of positions in which {X1
j } and {X2

j } differ. Assuming that
the transmitter sends the first sequences {X1

j } , find the probability of error (the
probability that the receiver decides on {X2

j } ), in terms of the Q function and d .

Problem 41. (Data Dependent Noise)

Consider the following binary Gaussian hypothesis testing problem with data dependent
noise.

Under hypothesis H0 the transmitted signal is s0 = −1 and the received signal is Y =
s0 + Z0 , where Z0 is zero-mean Gaussian with variance one.

Under hypothesis H1 on the other hand, the transmitted signal is s1 = 1 and the received
signal is Y = s1 + Z1 , where Z1 is zero-mean Gaussian with variance σ2 . Assume that
the prior is uniform.

(a) Starting from first principles write down the optimal decision rule as a function of
the parameter σ2 and the received signal Y .

(b) For the value σ2 = exp(4) compute the decision regions.

(c) Give as simple expressions as possible for the error probabilities Pr{e|0} and Pr{e|1} .

Hint: It might be handy to recall that the solutions of the quadratic equation ax2+bx+c =
0 are given by x = −b±

√
b2−4ac

2a
.

Problem 42. (Decision Problem) Consider the following decision problem. For the hy-
pothesis H = i , i ∈ {0, 1, 2, 3} , we send the point Si , as shown in the figure below.

1−1

1

−1

S1

S2

S3

S0

y1

y2
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S0 =

(
0
1

)
, S1 =

(
1
0

)
, S2 =

(
0
−1

)
, S3 =

(
−1
0

)
.

The receiver observes the vector Y = Si + Z , where Z is a zero-mean Gaussian random

vector whose covariance matrix is ΣZ =

(
4 2
2 5

)
.

(a) In order to simplify the decision problem, we transform Y into Ŷ = BY , where B
is a 2-by-2 matrix, and use Ŷ to take our decision. What is the appropriated matrix
B to choose?

Hint: If A = 1
4

(
2 0
−1 2

)
, then AΣZA

T = I , with I =

(
1 0
0 1

)
.

(b) What are the new transmitted points Ŝi ? Draw the resulting transmitted points and
the decision regions associated to them.

(c) Give an upper bound to the error probability in this decision problem.

Problem 43. (Signal Constellation under AWGN)

Consider the following 5 -ary hypothesis testing problems. We assume that, the prior
is uniform, the signal constellation consists of elements of R2 , and the noise is additive
Gaussian with independent components of variance σ2 in each dimension.

d

d
60o 30o

(a) Draw the boundaries of the decision regions into the above figure.

(b) Give the exact probability of error for the middle point of the constellation.

(c) Find an upper bound on the probability of error, Pr{e} , using the union bounding
technique.

(d) Consider the following set of parameters:

σ2 = 1, d = 1 (1)

σ2 = 2, d = 2 (2)

σ2 = 4, d = 2 (3)

Which one do you prefer and why?
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Problem 44. (Football)

Consider four teams A,B,C,D playing in a football tournament. There are two rounds in
the competition. In the first round there are two matches and the winners progress to
play in the final. In the first round A plays against one of the other three teams with
equal probability 1

3
and the remaining two teams play against each other. The probability

of A winning against any team depends on the number of red cards “r” A gets in the
previous match. The probabilities of winning for A against B,C,D denoted by pb, pc, pd
are pb = 0.5

(1+r)
, pc = pd = 0.6

1+r
. In a match against B, A will get 1 red card and in a match

against C or D, B will get 2 red cards. Assuming that initially A has 0 red cards and the
other teams receive no red cards in the entire tournament and among B,C,D each team
has equal chances to win against each other.

Is betting on team A as the winner a good choice ?

Problem 45. (Fourier Transform)

(a) Prove that if x(t) is a real-valued signal, then its Fourier transform X(f) satisfies
the symmetric property

X(f) = X∗(−f) (Symmetry Property)

where X∗ is the complex conjugate of X .

(b) Prove that if x(t) is a purely imaginary-valued signal, then its Fourier transform
X(f) satisfies the anti-symmetry property

X(f) = −X∗(−f) (Anti-Symmetry Property)

Problem 46. (Rayleigh distribution)

Let X and Y be two independent, zero-mean, unit-variance, Gaussian random variables:
(X, Y ) = N (0, I2) . Let R and Θ be the corresponding polar coordinates, i.e., X =
R cos Θ and Y = R sin Θ . Find the probability density functions fR,Θ , fR , and fΘ .

Hint: Try do solve this problem without looking up formulas. First write down the
expression of fR,Θ as a function of fX,Y assuming that you have a linear transformation
of the kind (X, Y )T = A(R,Θ)T for some 2 × 2 invertible matrix A. See the Appendix
of the lecture notes, Chapter 2, if you don’t know how to do this from memory using the
hints given in class. Recall that detA equals 1

detA−1 , which means that you may work
with the determinant of A or with that of A−1 , whichever is more convenient. Next,
instead of A use the Jacobian J of the transformation that maps R,Θ into X, Y . The
Jacobian is the matrix that maps (dR, dΘ)T into (dX, dY )T .
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Appendix 2.A Facts About Matrices

We now review a few definitions and results that will be useful throughout. Hereafter H†

is the conjugate transpose of H also called the Hermitian adjoint of H .

Definition 9. A matrix U ∈ Cn×n is said to be unitary if U †U = I . If, in addition,
U ∈ Rn×n, U is said to be orthogonal.

The following theorem lists a number of handy facts about unitary matrices. Most of
them are straightforward. For a proof see [1, page 67].

Theorem 10. if U ∈ Cn×n , the following are equivalent:

(a) U is unitary;

(b) U is nonsingular and U † = U−1 ;

(c) UU † = I ;

(d) U † is unitary

(e) The columns of U form an orthonormal set;

(f) The rows of U form an orthonormal set; and

(g) For all x ∈ Cn the Euclidean length of y = Ux is the same as that of x ; that is,
y†y = x†x .

Theorem 11. (Schur) Any square matrix A can be written as

A = URU †

where U is unitary and R is an upper-triangular matrix whose diagonal entries are the
eigenvalues of A .

Proof. Let us use induction on the size n of the matrix. The theorem is clearly true for
n = 1. Let us now show that if it is true for n− 1 it follows that it is true for n . Given
A of size n , let v be an eigenvector of unit norm, and λ the corresponding eigenvalue.
Let V be a unitary matrix whose first column is v . Then, consider the matrix

V †AV.

Now, the first column of this matrix is given by

V †Av = λV †v = λe1
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where e1 is the unit vector along the first coordinate. Thus

V †AV =

(
λ ∗
0 B

)
,

where B is square and of dimension n − 1 . By the induction hypothesis B = WSW † ,
where W is unitary and S is upper triangular. Thus,

V †AV =
(
λ ∗0 WSW †) =

(
1 0
0 W

)(
λ ∗
0 S

)(
1 0
0 W †

)
(2.49)

and putting

U = V

(
1 0
0 W

)
and R =

(
λ ∗
0 S

)
,

we see that U is unitary, R is upper-triangular and A = URU † , completing the in-
duction step. To see that the diagonal entries of R are indeed the eigenvalues of A it
suffices to bring the characteristic polynomial of A in the following form: det(λI −A) =
det
[
U †(λI −R)U

]
= det(λI −R) =

∏
i(λ− rii) .

Definition 12. A matrix H ∈ Cn×x is said to be Hermitian if H = H† . It is said to be
Skew-Hermitian if H = −H† .

Recall that an n× n matrix has exactly n eigenvalues in C .

Lemma 13. A Hermitian matrix H ∈ Cn×n can be written as

H = UΛU † =
∑
i

λiuiu
†
i

where U is unitary and Λ = diag(λ1, . . . , λn) is a diagonal that consists of the eigenvalues
of H . Moreover, the eigenvalues are real and the i th column of U is an eigenvector
associated to λi .

Proof. By Theorem 11 (Schur) we can write H = URU † where U is unitary and R is
upper triangular with the diagonal elements consisting of the eigenvalues of A . From
R = U †HU we immediately see that R is Hermitian. Hence it is diagonal and the
diagonal elements must be real.

If ui is the i th column of U , then

Hui = UΛU †ui = UΛei = Uλiei = λiui

showing that it is indeed an eigenvector associated to the i th eigenvalue λi .

The reader interested in properties of Hermitian matrices is referred to [1, Section 4.1].

Exercise 14. Show that if H ∈ Cn×n is Hermitian, then u†Hu is real for all u ∈ Cn .



2.A. Facts About Matrices 61

A class of Hermitian matrices with a special positivity property arises naturally in many
applications, including communication theory. They provide a generalization to matrices
of the notion of positive numbers.

Definition 15. An Hermitian matrix H ∈ Cn×n is said to be positive definite if

u†Hu > 0 for all non zero u ∈ Cn.

If the above strict inequality is weakened to u†Hu ≥ 0 , then A is said to be posi-
tive semidefinite. Implicit in these defining inequalities is the observation that if H is
Hermitian, the left hand side is always a real number.

Example 16. Show that a non-singular covariance matrix is always positive definite. 2

Theorem 17. (SVD) Any matrix A ∈ Cm×n can be written as a product

A = UDV †,

where U and V are unitary (of dimension m×m and n×n , respectively) and D ∈ Rm×n

is non-negative and diagonal. This is called the singular value decomposition (SVD) of
A . Moreover, letting k be the rank of A , the following statements are true:

(i) The columns of V are the eigenvectors of A†A . The last n− k columns span the null
space of A .

(ii) The columns of U are eigenvectors of AA† . The first k columns span the range of
A .

(iii) If m ≥ n then

D =

 diag(
√
λ1, . . . ,

√
λn)

. . . . . . . . . . . . . . . . . . .
0m−n

 ,

where λ1 ≥ λ2 ≥ . . . ≥ λk > λk+1 = . . . = λn = 0 are the eigenvalues of A†A ∈ Cn×n

which are non-negative since A†A is Hermitian. If m ≤ n then

D = (diag(
√
λ1, . . . ,

√
λm) : 0n−m),

where λ1 ≥ λ2 ≥ . . . ≥ λk > λk+1 = . . . = λm = 0 are the eigenvalues of AA† .

Note 1: Recall that the nonzero eigenvalues of AB equals the nonzero eigenvalues of BA ,
see e.g. Horn and Johnson, Theorem 1.3.29. Hence the nonzero eigenvalues in (iii) are
the same for both cases.

Note 2: To remember that V is associated to H†H (as opposed to being associated to
HH† ) it suffices to look at the dimensions: V ∈ Rn and H†H ∈ Rn×n .

Proof. It is sufficient to consider the case with m ≥ n since if m < n we can apply the
result to A† = UDV † and obtain A = V D†U † .
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Hence let m ≥ n , and consider the matrix A†A ∈ Cn×n . This matrix is Hermitian. Hence
its eigenvalues λ1 ≥ λ2 ≥ . . . λn ≥ 0 are real and non-negative and one can choose the
eigenvectors v1,v2, . . . ,vn to form an orthonormal basis for Cn . Let V = (v1, . . . ,vn) .
Let k be the number of positive eigenvectors and choose.

ui =
1√
λi
Avi, i = 1, 2, . . . , k. (2.50)

Observe that

u†
iuj =

1√
λiλj

v†iA
†Avj =

√
λj
λi

v†ivj = δij, 0 ≤ i, j ≤ k.

Hence {ui : i = 1, . . . , k} form an orthonormal set in Cm . Complete this set to an or-
thonormal basis for Cm by choosing {ui : i = k+1, . . . ,m} and let U = (u1,u2, . . . ,um).
Note that (2.50) implies

ui

√
λi = Avi, i = 1, 2, . . . , k, k + 1, . . . , n,

where for i = k + 1, . . . , n the above relationship holds since λi = 0 and vi is a corre-
sponding eigenvector. Using matrix notation we obtain

U



√
λ1 0

. . .

0
√
λn

. . . . . . . . . . . . . . . . .
0m−n

 = AV, (2.51)

i.e., A = UDV † . For i = 1, 2, . . . ,m,

AA†ui = UDV †V †D†U †ui

= UDD†U †ui = uiλi,

where the last equality follows from the fact that U †ui has a 1 at position i and is
zero otherwise and DD† = diag(λ1, λ2, . . . , λk, 0, . . . , 0) . This shows that λi is also an
eigenvalues of AA† . We have also shown that {vi : i = k+1, . . . , n} spans the null space
of A and from (2.51) we see that {ui : i = 1, . . . , k} spans the range of A .

The following key result is a simple application of the SVD.

Lemma 18. The linear transformation described by a matrix A ∈ Rn×n maps the unit
cube into a parallelepiped of volume | detA| .

Proof. (Question to the students: do we need to review what a unit cube is, that the
linear transformation maps ei into the vector ai that forms the i -th column of A ,
and that the volume of an n -dimensional object (set) A is

∫
A dx?) From the singular

value decomposition, A = UDV † , where D is diagonal and U and V are orthogonal
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matrices. The linear transformation associated to A is the same as that associated to
U †AV = D . (We are just changing the coordinate system). But D maps the unit vectors
e1, e2, . . . , en into λ1e1, λ2e2, . . . , λnen . Hence, the unit cube is mapped into a rectangle
of sides λ1, λ2, . . . , λn . Its volume is |

∏
λi| = | detD| = | detA| .

Appendix 2.B Densities After Linear Transformations

The previous result leads to the following fundamental result.

Theorem 19. Let X ∈ Rn be a random vector of given pdf fX(x) , A ∈ Rn×n a non-
singular matrix, and Y be defined through the linear transformation Y = AX . The pdf
of Y is given by

fY (y) =
fX(A−1y)

| detA|
.

Outline of the proof : The probability that X is inside an infinitesimally small cube δA
(in n -dimensions) is fX(x∗)δA (plus terms that become negligible as the volume of δA
goes to zero), where x∗ is any point inside δA . Now x∗ maps into y∗ = Ax∗ and δA
into some δB of volume Vol(δB) = Vol(δA)| detA| . Since the probability that Y is
inside δB is the same as the probability that X is inside δA we have (in the limit):

Vol(δB)fY (y∗) = Vol(δA)fX(x∗).

Solving for fY (y∗) yields the desired result.

Appendix 2.C Gaussian Random Vectors

We now study Gaussian random vectors. A Gaussian random vector is nothing else than
a collection of jointly Gaussian random variables. We learn to use vector notation since
this will simplify matters significantly.

Recall that a random variable W is a mapping W : Ω → R from the sample space Ω
to the reals R . W is a Gaussian random variable with mean m and variance σ2 if and
only if (iff) its probability density function (pdf) is

fW (w) =
1√

2πσ2
exp

{
−(w −m)2

2σ2

}
.

Since a Gaussian random variable is completely specified by its mean m and variance
σ2 , we use the short-hand notation N (m,σ2) to denote its pdf. Hence W ∼ N (0, σ2) .

An n -dimensional random vector (n -rv) X is a mapping X : Ω→ Rn . It can be seen as
a collection X = (X1, X2, . . . , Xn)

T of n random variables. The pdf of X is the joint pdf
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of X1, X2, . . . , Xn . The expected value of X , denoted by EX or by X̄ , is the n -tuple
(EX1, EX2, . . . , EXn)

T . The covariance matrix of X is KX = E[(X − X̄)(X − X̄)T ] .
Notice that XXT is an n × n random matrix, i.e., a matrix of random variables, and
the expected value of such a matrix is, by definition, the matrix whose components are
the expected values of those random variables. Notice that a covariance matrix is always
Hermitian.

The pdf of a vector W = (W1,W2, . . . ,Wn)
T that consists of independent and identically

distributed (iid) ∼ N (0, σ2) components is

fW (w) =
n∏
i=1

1√
2πσ2

exp

(
− w2

i

2σ2

)
(2.52)

=
1

(2πσ2)n/2
exp

(
−wTw

2σ2

)
. (2.53)

The following is one of several possible ways to define a Gaussian random vector.

Definition 20. The random vector Y ∈ Rm is a zero-mean Gaussian random vector and
Y1, Y2, . . . , Yn are zero-mean jointly Gaussian random variables, iff there exists a matrix
A ∈ Rm×n such that Y can be expressed as

Y = AW (2.54)

where W is a random vector of iid ∼ N (0, 1) components.

Note 21. From the above definition it follows immediately that linear combination of
zero-mean jointly Gaussian random variables are zero-mean jointly Gaussian random vari-
ables. Indeed, Z = BY = BAW .

Recall that if Y = AW for some nonsingular matrix A ∈ Rn×n , then

fY (y) =
fW (A−1y)

| detA|
.

When W has iid ∼ N (0, 1) components,

fY (y) =
exp

(
− (A−1y)T (A−1y)

2

)
(2π)n/2| detA|

.

The above expression can be simplified and brought to the standard expression

fY (y) =
1√

(2π)n detKY

exp

(
−1

2
yTK−1

Y y

)
(2.55)

using KY = EAW (AW )T = EAWW TAT = AInA
T = AAT to obtain

(A−1y)T (A−1y) = yT (A−1)TA−1y

= yT (AAT )−1y

= yTK−1
Y y
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and √
detKY =

√
detAAT =

√
detA detA =| detA | .

Fact 22. Let Y be a zero-mean random vector with arbitrary covariance matrix KY and
pdf as in (2.55). Since a covariance matrix is Hermitian, we we can write (see Appendix
2.A)

KY = UΛU † (2.56)

where U is unitary and Λ is diagonal. It is immediate to verify that U
√

ΛW has
covariance KY . This shows that an arbitrary zero-mean random vector Y with pdf as
in (2.55) can always be written in the form Y = AW where W has iid ∼ N (0, 1)
components.

The contrary is not true in degenerated cases. We have already seen that (2.55) follows
from (2.54) when A is a non-singular squared matrix. The derivation extends to any
non-rectangular matrix A , provided that it has linearly independent rows. This result is
derived as a homework exercise. In that exercise we also see that it is indeed necessary
that the rows of A be linearly independent since otherwise KY is singular and K−1

Y is
not defined. Then (2.55) is not defined either. An example will show how to handle such
degenerated cases.

It should be pointed out that many authors use (2.55) to define a Gaussian random vector.
We favor (2.54) because it is more general, but also since it makes it straightforward to
prove a number of key results associated to Gaussian random vectors. Some of these are
dealt with in the examples below.

In any case, a zero-mean Gaussian random vector is completely characterized by its co-
variance matrix. Hence the short-hand notation Y ∼ N (0, KY ) .

Note 23. (Degenerate case) Let W ∼ N (0, 1) , A = (1, 1)T , and Y = AW . By our
definition, Y is a Gaussian random vector. However, A is a matrix of linearly dependent
rows implying that Y has linearly dependent components. Indeed Y1 = Y2 . This also
implies that KY is singular: it is a 2× 2 matrix with 1 in each component. As already
pointed out, we can’t use (2.55) to describe the pdf of Y . This immediately raises
the question: how do we compute the probability of events involving Y if we don’t
know its pdf? The answer is easy. Any event involving Y can be rewritten as an
event involving Y1 only (or equivalently involving Y2 only). For instance, the event
{Y1 ∈ [3, 5]} ∩ {Y2 ∈ [4, 6]} occurs iff {Y1 ∈ [4, 5]} . Hence

Pr {Y1 ∈ [3, 5]} ∩ {Y2 ∈ [4, 6]} = Pr {Y1 ∈ [4, 5]} = Q(4)−Q(5).

Exercise 24. Show that the i th component Yi of a Gaussian random vector Y is a
Gaussian random variable.
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Solution: Yi = AY when A = eTi is the unit row vector with 1 in the i -th component
and 0 elsewhere. Hence Yi is a Gaussian random variable. To appreciate the convenience
of working with (2.54) instead of (2.55), compare this answer with the tedious derivation
consisting of integrating over fY to obtain fYi

(see Problem 7).

Exercise 25. Let U be an orthogonal matrix. Determine the pdf of Y = UW .

Solution: Y is zero-mean and Gaussian. Its covariance matrix is KY = UKWUT =
Uσ2InU

T = σ2UUT = σ2In , where In denotes the n × n identiy matrix. Hence, when
an n -dimensional Gaussian random vector with iid ∼ N (0, σ2) components is projected
onto n orthonormal vectors, we obtain n iid ∼ N (0, σ2) random variables. This fact
will be used often.

Exercise 26. (Gaussian random variables are not necessarily jointly Gaussian) Let Y1 ∼
N (0, 1) , let X ∈ {±1} be uniformly distributed, and let Y2 = Y1X . Notice that Y2 has
the same pdf as Y1 . This follows from the fact that the pdf of Y1 is an even function.
Hence Y1 and Y2 are both Gaussian. However, they are not jointly Gaussian. We come
to this conclusion by observing that Z = Y1 + Y2 = Y1(1 +X) is 0 with probability 1/2.
Hence Z can’t be Gaussian.

Exercise 27. Is it true that uncorrelated Gaussian random variables are always indepen-
dent? If you think it is . . . think twice. The construction above labeled “Gaussian random
variables are not necessarily jointly Gaussian” provides a counter example (you should be
able to verify without much effort). However, the statement is true if the random vari-
ables under consideration are jointly Gaussian (the emphasis is on “jointly”). You should
be able to provide ab easy proof using (2.55). The contrary is always true: random vari-
ables (not necessarily Gaussian) that are independent are always uncorrelated. Again,
you should be able to provide the straightforward proof. (You are strongly encouraged
to brainstorm this and similar exercises with other students. Hopefully this will create
healthy discussions. Let us know if you can’t clear every doubt this way . . . we are very
much interested in knowing where the difficulties are.)

Definition 28. The random vector Y is a Gaussian random vector (and Y1, . . . , Yn are
jointly Gaussian random variables) iff Y −m is a zero mean Gaussian random vector as
defined above, where m = EY . If the covariance KY is non-singular (which implies that
no component of Y is determined by a linear combination of other components), then
its pdf is

fY (y) =
1√

(2π)n detKY

exp

(
−1

2
(y − Ey)TK−1

Y (y − Ey)

)
.
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Appendix 2.D A Fact About Triangles

To determine an exact expression of the probability of error, in Example 7 we use the
following fact about triangles.

a sin βa

β

γ

αc

b
a

β

γ

αc

b b sin(180− α)

For a triangle with edges a , b , c and angles α , β , γ (see the figure), the following
relationship holds:

a

sinα
=

b

sin β
=

c

sin γ
. (2.57)

To prove the equality relating a and b we project the common vertex γ onto the extension
of the segment connecting the other two edges (α and β ). This projection gives rise to
two triangles that share a common edge whose length can be written as a sin β and as
b sin(180− α) (see right figure). Using b sin(180− α) = b sinα leads to a sin β = b sinα .
The second equality is proved similarly. 2

Appendix 2.E Inner Product Spaces

Vector Space

We assume that you are familiar with vector spaces. In this Chapter 2 we will be dealing
with the vector space of n -tuples over R but later we will need both the vector space
of n -tuples over C and the vector space of finite-energy complex-valued functions. So
to be as general as needed we assume that the vector space is over the field of complex
numbers, in which case it is called a complex vector space. When the scalar field is R ,
the vector space is called a real vector space.

Inner Product Space

Given a vector space and nothing more, one can introduce the notion of a basis for the
vector space, but one does not have the tool needed to define an orthonormal basis.
Indeed the axioms of a vector space say nothing about geometric ideas such as “length”
or “angle.” To remedy, one endows the vector space with the notion of inner product.

Definition 29. Let V be a vector space over C . An inner product on V is a function
that assigns to each ordered pair of vectors α, β in V a scalar 〈α, β〉 in C in such a way
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that for all α , β , γ in V and all scalars c in C

(a) 〈α+ β, γ〉 = 〈α, γ〉+ 〈β, γ〉
〈cα, β〉 = c〈α, β〉;

(b) 〈β, α〉 = 〈α, β〉∗; (Hermitian Symmertry)

(c) 〈α, α〉 ≥ 0 with equality iff α = 0.

It is implicit in (c) that 〈α, α〉 is real for all α ∈ V . From (a) and (b), we obtain an
additional property

(d) 〈α, β + γ〉 = 〈α, β〉+ 〈α, γ〉
〈α, cβ〉 = c∗〈α, β〉 .

Notice that the above definition is also valid for a vector space over the field of real numbers
but in this case the complex conjugates appearing in (b) and (d) are superfluous; however,
over the field of complex numbers they are necessary for the consistency of the conditions.
Without these complex conjugates, for any α 6= 0 we would have the contradiction:

0 < 〈iα, iα〉 = −1〈α, α〉 < 0,

where the first inequality follows from condition (c) and the fact that iα is a valid vector,
and the equality follows from (a) and (d) (without the complex conjugate).

On Cn there is an inner product that is sometimes called the standard inner product. It
is defined on a = (a1, . . . , an) and b = (b1, . . . , bn) by

〈a, b〉 =
∑
j

ajb
∗
j .

On Rn , the standard inner product is often called the dot or scalar product and denoted
by a · b . Unless explicitly stated otherwise, over Rn and over Cn we will always assume
the standard inner product.

An inner product space is a real or complex vector space, together with a specified inner
product on that space. We will use the letter V to denote a generic inner product space.

Example 30. The vector space Rn equipped with the dot product is an inner product
space and so is the vector space Cn equipped with the standard inner product. 2

By means of the inner product we introduce the notion of length, called norm, of a vector
α , via

‖α‖ =
√
〈α, α〉.

Using linearity, we immediately obtain that the squared norm satisfies

‖α± β‖2 = 〈α± β, α± β〉 = ‖α‖2 + ‖β‖2 ± 2Re{〈α, β〉}. (2.58)
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The above generalizes (a ± b)2 = a2 + b2 ± 2ab, a, b ∈ R , and | a ± b |2=| a |2 + | b |2
±2Re{ab}, a, b ∈ C .

Example 31. Consider the vector space V spanned by a finite collection of complex-
valued finite-energy signals, where addition of vectors and multiplication of a vector with
a scalar (in C ) are defined in the obvious way. You should verify that the axioms of a
vector space are fulfilled. This includes showing that the sum of two finite-energy signals
is a finite-energy signal. The standard inner product for this vectors space is defined as

〈α, β〉 =

∫
α(t)β∗(t)dt

which implies the norm

‖α‖ =

√∫
|α(t)|2dt.

2

Example 32. The previous example extends to the inner product space L2 of all complex-
valued finite-energy functions. This is an infinite dimensional inner product space and
to be careful one has to deal with some technicalities that we will just mention here.
(You may skip the rest of this example if you wish without loosing anything important
for the sequel). If α and β are two finite-energy functions that are identical except on
a countable number of points, then 〈α − β, α − β〉 = 0 (the integral is over a function
that vanishes except for a countable number of points). The definition of inner product
requires that α − β be the zero vector. This seems to be in contradiction with the fact
that α − β is non-zero on a countable number of point. To deal with this apparent
contradiction one can define vectors to be equivalence classes of finite-energy functions.
In other words, if the norm of α−β vanishes then α and β are considered to be the same
vector and α−β is seen as a zero vector. This equivalence may seem artificial at first but
it is actually consistent with the reality that if α− β has zero energy then no instrument
will be able to distinguish between α and β . The signal captured by the antenna of a
receiver is finite energy, thus in L2 . It is for this reason that we are interested in L2 .
However, as we will see, the receiver may obtain a sufficient statistics by projecting the
received signal on a finite-dimention subspace of L2 . During our brief exposures with L2

we will not be confronted with the subtle issues we have just mentioned. 2

Theorem 33. If V is an inner product space, then for any vectors α , β in V and any
scalar c ,

(a) ‖cα‖ = |c|‖α‖

(b) ‖α‖ ≥ 0 with equality iff α = 0

(c) |〈α, β〉| ≤ ‖α‖‖β‖ with equality iff α = cβ for some c .
(Cauchy-Schwarz inequality)

(d) ‖α+ β‖ ≤ ‖α‖+ ‖β‖ with equality iff α = cβ for some non-negative c ∈ R .
(Triangle inequality)
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(e) ‖α+ β‖2 + ‖α− β‖2 = 2(‖α‖2 + ‖β‖2)
(Parallelogram equality)

Proof. Statements (a) and (b) follow immediately from the definitions. We postpone the
proof of the Cauchy-Schwarz inequality to Example 35 since it will be more insightful
once we have defined the concept of a projection. To prove the triangle inequality we
use (2.58) and the Cauchy-Schwarz inequality applied to Re{〈α, β〉} ≤ |〈α, β〉| to prove
that ‖α + β‖2 ≤ (‖α‖+ ‖β‖)2 . You should verify that Re{〈α, β〉} ≤ |〈α, β〉| holds with
equality iff α = cβ for some non-negative c ∈ R . Hence this condition is necessary for the
triangle inequality to hold with equality. It is also sufficient since then also the Cauchy-
Schwarz inequality holds with equality. The parallelogram equality follows immediately
from (2.58) used twice, once with each sign. 2
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At this point we could use the inner product and the norm to define the angle between
two vectors but we don’t have any use for that. Instead, we will make frequent use of the
notion of orthogonality. Two vectors α and β are defined to be orthogonal if 〈α, β〉 = 0.

Theorem 34. (Pythagorean Theorem) If α and β are orthogonal vectors in V , then

‖α+ β‖2 = ‖α‖2 + ‖β‖2.

Proof. The Pythagorean theorem follows immediately from the equality ‖α + β‖2 =
‖α‖2 + ‖β‖2 + 2Re{〈α, β〉} and the fact that 〈α, β〉 = 0 by definition of orthogonality.
2

Given two vectors α, β ∈ V , β 6= 0, we define the projection of α on β as the vector
α|β collinear to β (i.e. of the form cβ for some scalar c ) such that α⊥β = α − α|β is
orthogonal to β . Using the definition of orthogonality, what we want is

0 = 〈α⊥β, β〉 = 〈α− cβ, β〉 = 〈α, β〉 − c‖β‖2.

Solving for c we obtain c = 〈α,β〉
‖β‖2 . Hence

α|β =
〈α, β〉
‖β‖2

β and α⊥β = α− α|β.

The projection of α on β does not depend on the norm of β . To see this let β = bψ for
some b ∈ C . Then

α|β = 〈α, ψ〉ψ = α|ψ,

regardless of b . The norm of the projection is 〈α, ψ〉 = 〈α, β〉/‖β‖ .
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Any non-zero vector β defines a hyperplane by the relationship

{α ∈ V : 〈α, β〉 = 0} .

It is the set of vectors that are orthogonal to β . A hyperplane always contains the zero
vector.

An affine space, defined by a vector β and a scalar c , is an object of the form

{α ∈ V : 〈α, β〉 = c} .

The defining vector and scalar are not unique, unless we agree that we use only normalized
vectors to define hyperplanes. By letting ϕ = β

‖β‖ , the above definition of affine plane may

equivalently be written as {α ∈ V : 〈α, ϕ〉 = c
‖β‖} or even as {α ∈ V : 〈α− c

‖β‖ϕ, ϕ〉 = 0} .
The first shows that at an affine plane is the set of vectors that have the same projection
c
‖β‖ϕ on ϕ . The second form shows that the affine plane is a hyperplane translated by the
vector c

‖β‖ϕ . Some authors make no distinction between affine planes and hyperplanes.
In that case both are called hyperplane.
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Now it is time to prove the Cauchy-Schwarz inequality stated in Theorem 33. We do it
as an application of a projection.

Example 35. (Proof of the Cauchy-Schwarz Inequality). The Cauchy-Schwarz inequality
says states that for any α, β ∈ V , |〈α, β〉| ≤ ‖α‖‖β‖ with equality iff α = cβ for some
scalar c ∈ C . The statement is obviously true if β = 0 . Assume β 6= 0 and write
α = α|β + α⊥β . The Pythagorean theorem states that ‖α‖2 = ‖α|β‖2 + ‖α⊥β‖2 . If
we drop the second term, which is always nonnegative, we obtain ‖α‖2 ≥ ‖α|β‖2 with

equality iff α and β are collinear. From the definition of projection, ‖α|β‖2 = |〈α,β〉|2
‖β‖2 .

Hence ‖α‖2 ≥ |〈α,β〉|2
‖β‖2 with equality equality iff α and β are collinear. This is the Cauchy-

Schwarz inequality. 2
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The Cauchy-Schwarz inequality

Every finite-dimensional vector space has a basis. If β1, β2, . . . , βn is a basis for the inner
product space V and α ∈ V is an arbitrary vector, then there are scalars a1, . . . , an such
that α =

∑
aiβi but finding them may be difficult. However, finding the coefficients of a

vector is particularly easy when the basis is orthonormal.

A basis ϕ1, ϕ2, . . . , ϕn for an inner product space V is orthonormal if

〈ϕi, ϕj〉 =

{
0, i 6= j

1, i = j.

Finding the i -th coefficient ai of an orthonormal expansion α =
∑
aiψi is immediate.

It suffices to observe that all but the i th term of
∑
aiψi are orthogonal to ψi and that

the inner product of the i th term with ψi yields ai . Hence if α =
∑
aiψi then

ai = 〈α, ψi〉.

Observe that ai is the norm of the projection of α on ψi . This should not be surprising
given that the i th term of the orthonormal expansion of α is collinear to ψi and the sum
of all the other terms are orthogonal to ψi .

There is another major advantage of working with an orthonormal basis. If a and b
are the n -tuples of coefficients of the expansion of α and β with respect to the same
orthonormal basis then

〈α, β〉 = 〈a, b〉

where the right hand side inner product is with respect to the standard inner product.
Indeed

〈α, β〉 = 〈
∑

aiψi,
∑
j

bjψj〉

=
∑

ai〈ψi,
∑
j

bjψj〉

=
∑

ai〈ψi, biϕi〉

=
∑

aib
∗
i

= 〈a, b〉.
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Letting β = α the above implies also

‖α‖ = ‖a‖,

where the right hand side is the standard norm‖a‖ =
∑
|ai|2.

An orthonormal set of vectors ψ1, . . . , ψn of an inner product space V is a linearly in-
dependent set. Indeed 0 =

∑
aiψi implies ai = 〈0, ψi〉 = 0. By normalizing the vectors

and recomputing the coefficients one can easily extend this reasoning to a set of orthog-
onal (but not necessarily orthonormal) vectors α1, . . . , αn . They too must be linearly
independent.

The idea of a projection on a vector generalizes to a projection on a subspace. If W is a
subspace of an inner product space V , and α ∈ V , the projection of α on W is defined to
be a vector α|W ∈ W such that α−α|W is orthogonal to all vectors in W . If ψ1, . . . , ψm
is an orthonormal basis for W then the condition that α−α|W is orthogonal to all vectors
of W implies 0 = 〈α−α|W , ψi〉 = 〈α, ψi〉−〈α|W , ψi〉 . This shows that 〈α, ψi〉 = 〈α|W , ψi〉 .
The right side of this equality is the i -th coefficient of the orthonormal expansion of α|W
with respect to the orthonormal basis. This proves that

α|W =
m∑
i=1

〈α, ψi〉ψi

is the unique projection of α on W .

Theorem 36. Let V be an inner product space and let β1, . . . , βn be any collection of
linearly independent vectors in V . Then one may construct orthogonal vectors α1, . . . , αn
in V such that they form a basis for the subspace spanned by β1, . . . , βn .

Proof. The proof is constructive via a procedure known as the Gram-Schmidt orthogo-
nalization procedure. First let α1 = β1 . The other vectors are constructed inductively as
follows. Suppose α1, . . . , αm have been chosen so that they form an orthogonal basis for
the subspace Wm spanned by β1, . . . , βm . We choose the next vector as

αm+1 = βm+1 − βm+1|Wm
, (2.59)

where βm+1|Wm
is the projection of βm+1 on Wm . By definition, αm+1 is orthogonal to ev-

ery vector in Wm , including α1, . . . , αm . Also, αm+1 6= 0 for otherwise βm+1 contradicts
the hypothesis that it is lineary independent of β1, . . . , βm . Therefore α1, . . . , αm+1 is an
orthogonal collection of nonzero vectors in the subspace Wm+1 spanned by β1, . . . , βm+1 .
Therefore it must be a basis for Wm+1 . Thus the vectors α1, . . . , αn may be constructed
one after the other according to (2.59). 2

Corollary 37. Every finite-dimensional vector space has an orthonormal basis.

Proof. Let β1, . . . , βn be a basis for the finite-dimensionall inner product space V . Apply
the Gram-Schmidt procedure to find an orthogonal basis α1, . . . , αn . Then ψ1, . . . , ψn ,
where ψi = αi

‖αi‖ , is an orthonormal basis. 2
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Gram-Schmidt Orthonormalization Procedure

We summarize the Gram-Schmidt procedure, modified so as to produce orthonormal
vectors. If β1, . . . , βn is a linearly independent collection of vectors in the inner product
space V then we may construct a collection ψ1, . . . , ψn that forms an orthonormal basis
for the subspace spanned by β1, . . . , βn as follows: we let ψ1 = β1

‖β‖ and for i = 2, . . . , n
we choose

αi = βi −
i−1∑
j=1

〈βi, ψj〉ψj

ψi =
αi
‖αi‖

.

The following table gives an example of the Gram-Schmidt procedure.

i βi 〈βi, ψj〉 βi|Wi−1
αi = βi − βi|Wi−1

‖αi‖ ψi βi

j < i

1 - - 2

2
0
0



2 1 1

1
1
0



3 0, 1 4

0
1
4


Table 2.1: Application of the Gram-Schmidt orthonormalization procedure.

Axes are marked with unit length intervals.



Chapter 3

Communication Across the Waveform
AWGN Channel

3.1 Introduction

In the previous chapter we have learned how to communicate across the Vector AWGN
(Additive White Gaussian Noise) channel. Given a transmitter for that channel, we
now know what a receiver that minimizes the error probability should do and how to
evaluate or bound the resulting error probability. In this chapter we will deal with a
channel model which is closer to reality, namely the Waveform AWGN channel. Apart
form the channel model, the main objectives of this and the previous chapters are the
same: understand what a receiver should do to minimize the error probability and learn
techniques to evaluate the receiver performance. We will also learn that the transmitter
and the receiver for the waveform channel may be obtained as natural extensions from
the transmitter and receiver for the vector channel studied in the previous chapter. The
extension of the transmitter is the Waveform Generator and that of the receiver is the
Baseband Front-End, both shown in Figure 1.2. No new technique will be needed to
evaluate the error probability.

The starting point for this chapter is the system model shown in Figure 3.1. As usual, we
assume that the channel is given (which means that we know the power spectral density
N0 of the white Gaussian noise), and that we have to design the Transmitter (TX) and
the Receiver (RX).

The operation of the Waveform Transmitter is similar to that of the Vector Transmitter
of the previous chapter except that the output S(t) is now an element of a set of m
finite-energy waveforms

S(t) ∈ {s0(t), . . . , sm−1(t)} ⊂ L2.

The task of the receiver is to implement a ML decision rule for the following hypothesis

75
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- TX

H = i ∈ H
-

si(t)

N(t)

6
�
��

-

R(t)

RX -
Ĥ ∈ H

Figure 3.1: Communication across the AWGN channel.

testing problem:
H = i : R(t) = si(t) +N(t),

where N(t) is a zero-mean white Gaussian noise process with (two-sided) power spectral
density N0/2 . (N0 is the one-sided power spectral density, namely what one would
measure with an instrument.) The source picks the index i according to some probability
PH(i) (typically uniform) over the message set H .

We will see that, without loss of generality, we may (and should) think of the transmitter as
consisting of a part that maps the message H into an n -tuple, as in the previous chapter,
followed by a waveform generator that maps the n -tuple into a waveform. Similarly, we
will see that the receiver may consist of a front-end that takes the channel output and
produces an n -tuple that is a sufficient statistic. From the waveform generator input to
the receiver front-end output, we see a vector channel of the kind studied in the previous
chapter. Hence, we know already what an optimal receiver should do with the sufficient
statistic produced by the receiver front end.

In this chapter we assume familiarity with the linear space L2 of finite energy functions
and with the concept of white Gaussian noise (WGN) process. Throughout the chapter
we will assume that the set {si(t) : i ∈ H} is given. The problem of choosing this set
conveniently will be studied in subsequent chapters.

3.2 The Binary Equiprobable Case

We start with the binary hypothesis case since it allows us to focus on the essential.
Generalizing to M hypothesis will be straightforward.

There are two hypotheses. When H = i , i ∈ H = {0, 1} , we send the waveform si(t) . To
avoid distractions, we assume PH(1) = 1/2 . The receiver observes R(t) = si(t) + N(t) ,
where N(t) is white Gaussian noise of constant power spectral density N0/2 . We are
interested in the receiver that minimizes the probability of error.
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3.2.1 Sufficient Statistics via Projections

The strategy is to reduce the new (waveform) hypothesis testing problem to the familiar
problem where we observe n -tuples.

The key idea is that waveforms of an inner product space can be represented by n -tuples.
Which inner product space should we work with? We would like to use the smallest
possible one, i.e., the one spanned by s0 and s1 . Let us call this space W . There is a
potential problem though: the noise is not in W , hence R = si +N is not in W either.

If we project the received waveform onto W , we obtain a waveform Y = R|W which
consists of R minus the portion of the noise which is orthogonal to W (see Figure 3.2).
The intuition is that, in so doing, we remove just noise from the received waveform. More
formally, a MAP decision rule based on R|W results in the same probability of error as
one based on R iff R|W is a sufficient statistic or, equivalently, if the portion N⊥ of the
noise being removed is irrelevant. This is the case if, conditioned on R|W and H , the
pdf of N⊥ does not depend on H . But this is indeed the case since any finite collection
of samples from N⊥ is independent of both H and R|W .

Based on the above argument, we consider R|W as the observable. To be consistent with
our notation we will use Y for R|W and Z for N|W .

We can now restate our hypothesis testing problem:

H = i : Y = si + Z.

We hope that this is a progress since Y , si , and Z are all in W . After choosing a basis
{ψ1, ψ2} for W , e.g. via the Gram Schmidt procedure on s0 and s1 , the corresponding
n -tuples Y , si , and Z are well defined. Specifically:

Y = (Y1, Y2)
T where

Yi = 〈R,ψi〉, i = 1, 2,

sk = (sk1, sk2)
T where

ski = 〈sk, ψi〉, i = 1, 2,

and

Z = (Z1, Z2)
T where

Zi = (N,ψi), i = 1, 2.

Hereafter we will use the following convention. We use lowercase fonts for deterministic
vectors in L2 such as si . For random vectors in L2 we use capital letters, such as S .
The corresponding n tuples will be denoted with bold letters such as si and S .

The hypothesis testing problem based on Y is now the familiar

H = i : Y = si + Z Z ∼ N (0,
N0

2
I2).
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Figure 3.2: Projection of R onto W . It is assumed that H = i . Thinner
vectors are in W

3.2.2 Optimal Test

The test that minimizes the error probability is the ML decision rule:

‖y − s0‖2
Ĥ = 1
≥
<

Ĥ = 0

‖y − s1‖2.

As usual, ties may be resolved either way.

3.2.3 Receiver Structures

In this section we deal with receiver structures. There are various ways to implement the
receiver since :

(a) the ML test can be rewritten in various ways.

(b) there are two basic ways to implement a projection;
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Hereafter is a list of equivalent ML tests. Each of them either suggests a viable imple-
mentation or provides valuable insight . The tests are:

‖y − s0‖

Ĥ = 1
≥
<

Ĥ = 0

‖y − s1‖ (T1)

〈y, s1〉 −
‖s1‖2

2

Ĥ = 1
≥
<

Ĥ = 0

〈y, s0〉 −
‖s0‖2

2
(T2)

〈R, s1〉 −
‖s1‖2

2

Ĥ = 1
≥
<

Ĥ = 0

〈R, s0〉 −
‖s0‖2

2
(T3)

Test (T1) is the test derived in the previous section after taking the square root on both
sides. Since the square root of a nonnegative number is a monotonic operation, the test
outcome remains unchanged. Test (T1) is useful to visualize decoding regions and to
compute the probability of error. It says that the decoding region of s0 is the set of y
that are closer to s0 than to s1 .

Figure 3.3 shows the block diagram of a receiver inspired by (T1). The receiver front-end
maps R into Y = (Y1, Y2) . This part of the receiver deals with waveforms and in the
past it has been implemented via analog circuitry. The slicer implements the test (T1).
We will refer often to the slicer. It is a conceptual device that knows the decoding regions
and checks which decoding region contains y . The slicer shown in the Figure 3.3 assumes
antipodal signals, i.e., s0 = −s1 , and ψ1 = s1/‖s1‖ . In this case the signal space is
one-dimensional and Y2 is irrelevant.

A slicer for a 2 -dimensional signal space spanned by orthogonal signals s0 and s1 is
shown in Figure 3.4, where we defined ψ1 = s0/‖s0‖ and ψ2 = s1/‖s1‖ .

Once we have a description of the decoding regions, it is conceptually easy to compute
the probability of error under each hypothesis. For instance, the probability of error given
that H = 0 is the probability that an iid Gaussian random vector Z of variance N0

2
in

each component centered at s0 ends up in the decoding region of s1 . This is the integral
over the decoding region of s1 of a Gaussian p.d.f. centered at s0 .

Depending on the shape of the decoding region of s1 , carrying out the integration may or
may not be easy. It is easy in general when the decoding region is bounded by perpendic-
ular half-planes as in Figure 3.3 and 3.4. In this case the result can simply be expressed
in terms of Q -functions. Explicit examples will be given later.

Perhaps the biggest advantage of test (T1) is the geometrical insight it gives as shown
by the slicer. It is, however, not the most economical test in terms of number of steps
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Figure 3.3: Implementation of test (T1). The front-end is based on correlators.
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Figure 3.4: Slicer for two orthogonal signals
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Figure 3.5: Receiver implementation following (T2)

needed to implement it verbatim.

Test (T2) is obtained from (T1) using the relationship

‖y − si‖2 = 〈y − si,y − si〉
= ‖y‖2 − 2Re{〈y, si〉}+ ‖si‖2,

after canceling out common terms, multiplying each side by −1/2 , and using the fact
that a > b iff −a < −b . Test (T2) is implemented by the block diagram of Figure 3.5.

The added value of the slicer in Figure 3.5 is that its operation is completely specified
in terms of easy-to-implement operations. However, the slicer in Figure 3.3 gives more
geometrical insight.

Test (T3) is obtained from (T2) via Parseval’s relationship and a bit more to account for
the fact that projecting R onto si is the same as projecting Y . Specifically, for i = 1, 2 ,

〈y, si〉 = 〈Y, si〉
= 〈Y +N⊥, si〉
= 〈R, si〉.

Test (T3) is implemented by the block diagram in Figure 3.6.

Even tough test (T2) and (T3) look similar, they differ fundamentally and practically.
First of all (T3) does not require finding a basis for the signal space spanned by si, i = 1, 2 .
As a side benefit this proves that the receiver performance does not depend on the basis
used to perform (T2) (or (T1) for that matter).

Second, Test (T2) requires an extra layer of computation, namely that needed to perform
the inner products 〈y, si〉 . This step comes for free in (T3).

However, the number of integrators needed in Figure 3.6 equals the number m of hy-
potheses (2 in our case), whereas that in Figure 3.5 equals to dimensionality n of the
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Figure 3.6: Receiver implementation following (T3)

signal space W . We know that n ≤ m and one can easily construct examples where
equality holds or where n� m . In the latter case it is preferable to implement test (T2).

Each of the tests (T1), (T2), and (T3) can be implemented in two ways. One way is
shown in Figs. 3.3, 3.5 and 3.6, respectively. The other way makes use of the fact that a
projection

〈R, s〉 =

∫
R(t)s∗(t)dt

can always be implemented by means of a filter of impulse response h(t) = s∗(T − t) as
shown in Figure 3.7 (b), where T is an arbitrary delay selected in such a way as to make
h a causal impulse response.

To verify that the implementation of Figure (3.7)(b) also leads to 〈R, s〉 , we proceed as
follows. Let y be the filter output when the input is R . If h(t) = s∗(T − t) , t ∈ R , is
the filter impulse response, then

y(t) =

∫
R(α) h(t− α) dα =

∫
R(α) s∗(T + α− t) dα.

At t = T the output is

y(T ) =

∫
R(α) s∗(α) dα,

which is indeed 〈R, s〉 (by definition). The implementation of Figure 3.7(b) is referred to
as matched-filter implementation of the receiver front-end.

In each of the receiver front ends shown in Figs. 3.3, 3.5 and 3.6, we can substitute
matched filters for correlators.
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(b)

-
R(t)

s∗(T − t)
t = T

-@@ 〈R, s〉

(a)

-
R(t)

×m
6

s(t)

- Integrator - 〈R, s〉

Figure 3.7: Two ways to implement the projection 〈R, s〉 , namely via a
“correlator” (a) and via a “matched filter” (b).

3.2.4 Probability of Error

Computing the probability of error is straightforward when we have only two hypotheses.
From test (T1) we see that when H = 0 we make an error if Y is closer to s1 than to

s0 . This happens if the projection of the noise N in direction s1 − s0 exceeds ‖s1−s0‖
2

.
This event has probability.

Pe(0) = Q

(
‖s1 − s0‖

2σ

)
where σ2 = N0

2
is the variance of the projection of the noise in any direction.

By symmetry, Pe(1) = Pe(0) . Hence

Pe =
1

2
Pe(1) +

1

2
Pe(0) = Q

(
‖s1 − s0‖√

2N0

)
,

where

‖s1 − s0‖ = ‖s1 − s0‖ =

√∫
[s1(t)− s0(t)]2dt.

It is interesting to observe that the probability of error depends only on the distance
‖s1 − s0‖ and not on the particular shape of the waveforms s0 and s1 .

In the following example we represent a rectangular pulse by an indicator function.

Example 38. Consider the following signal choices and verify that, in all cases, the signal
space representation is s0 = (

√
E , 0)T and s1 = (0,

√
E)T . To reach this conclusion, it is
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enough to verify that 〈si, sj〉 = Eδij , where δij equals 1 if i = j and 0 otherwise. This
means that, in each case, s0 and s2 are orthogonal.

Choice 1 (Rectangular Pulse Position Modulation) :

s0(t) =

√
E
T

1[0,T ](t)

s1(t) =

√
E
T

1[T,2T ](t).

Rectangular pulses can easily be generated, e.g. by a switch. They are used to communi-
cate binary symbols within a circuit. A drawback of rectangular pulses is that they have
infinite support in the frequency domain.

Choice 2 (Frequency Shift Keying):

s0(t) =

√
2E
T

sin

(
πk

t

T

)
1[0,T ](t)

s1(t) =

√
2E
T

sin

(
πl
t

T

)
1[0,T ](t),

where k and l are positive integers, k 6= l . With a large value of k and l , these signals
could be used for wireless communication. As they are they also have infinite support
in the frequency domain. Using the trigonometric identity sin(α) sin(β) = cos(α − β) −
cos(α+ β) , it is straightforward to verify that the signals are orthogonal.

Choice 3 (Sinc Pulse Position Modulation):

s0(t) =

√
E
T

sinc

(
t

T

)
s1(t) =

√
E
T

sinc

(
t− T
T

)
The biggest advantage of sinc pulses is that they have finite support in the frequency
domain. This means that they have infinite support in the time domain. In practice one
uses a truncated version of the time domain signal.

Choice 4 (Spread Spectrum):

s0(t) =

√
1

T

n∑
j=1

s0j1[0,T
n

]

(
t− j T

n

)

s1(t) =

√
1

T

n∑
j=1

s1j1[0,T
n

]

(
t− j T

n

)

where s0 = (s01, . . . , s0n)
T and s1 = (s11, . . . , s1n)

T are orthogonal and have square norm
E . This signaling method is called spread spectrum. It uses much bandwidth but it has
an inherent robustness with respect to interfering (non-white) signals.
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As a function of time, the above signal choices vary form choice to choice quite significantly.
Nevertheless, as you should be able to convince yourself quickly, on an AWGN channel
they all lead to the same probability of error.

3.3 The m-ary Case And The Vector Channel

The solution to the binary hypothesis testing problem derived thus far easily generalizes
to the m -ary hypothesis testing problem that we re-formulate for convenience:

H = j : R = sj +N, j ∈ H,

where H = {1, 2, . . . ,m} , S = {s1, s2, . . . , sm} is the signal constellation which is as-
sumed to be known to the receiver, N is white Gaussian noise, and PH(i) is the prob-
ability that hypothesis Hj , j ∈ H , is selected. Here R , sj , and N are functions of
time.

We summarize the steps leading to the optimal receivers, leaving out details since they
are handled as in the binary case.

First we assume that we have selected a basis {ψ1, ψ2, . . . , ψn} for the vector space
spanned by s1, s2, . . . , sm , denoted W = W{s1, s2, . . . , sm} . Like for the binary case,
it will turn out that an optimal receiver can be implemented without going through the
step of finding a basis.

At the receiver we obtain a sufficient statistic by projecting the received signal R onto
each of the basis vector. The result is:

Y = (Y1, Y2, . . . , Yn)
T where

Yi = 〈R,ψi〉, i = 1, . . . , n.

The signal Y =
∑
Yiψi differs from the received signal R by the component of the noise

which is orthogonal to the signal space W . Let si = (si1, . . . , sin)
T be the n -tuple whose

components are the coefficient of si with respect to the selected basis. Then

si =
n∑
j=1

sijψj.

It is instructive to visualize the transmitter and the receiver as shown in Figure 3.8. As
indicated in this figure, we may think of the cascade of the waveform generator, waveform
channel, and receiver front end as of a vector1 channel. The vector channel is a suitable
channel model to describe (in mathematical terms) the statistical behavior of the channel
output given the input. It is also suitable to derive the receiver that minimizes the
probability of error. It is also the channel model of choice in information theory to derive
the channel capacity. The channel capacity is the maximal rate at which it is possible to
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Figure 3.8: The waveform generator and receiver front-end transform the
waveform channel into the vector channel.

transmit information in a reliable way across a physical channel by a suitable choice of
the transmitter/receiver pair.

The Vector Receiver “sees” the vector hypothesis testing problem

H = j : Y = sj + Z ∼ N (sj,
N0

2
In)

studied in Chapter 2.

The receiver observes y and decides for Ĥ = j only if

PH(j)f
(j)
Y (y) = max

k
{PH(k)f

(k)
Y (y)}

where we have introduce the notation f
(k)
Y (y) for fY |H(y|k) .

Any receiver that satisfies this decision rule minimizes the probability of error. If the
maximum is not unique, the receiver may declare any of the hypotheses that achieves the
maximum.

For the additive white Gaussian channel under consideration

f
(j)
Y (y) =

1

(2πσ2)
n
2

exp

(
−‖y − sj‖2

2σ2

)
where σ2 = N0

2
.

1More appropriately, this channel should be called n -tuple channel.
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Plugging into the above decoding rule, taking the log which is a monotonic function,
multiplying by minus N0 , and canceling terms that do not depend on j , we obtain that
a MAP decoder decides for one of the j ∈ H that minimizes

−N0 lnPH(j) + ‖y − sj‖2.

The expression should be compared to test (T1) of the previous section. The manipula-
tions of ‖y − sj‖2 that have led to test (T2) and (T3) are valid also here. In particular,
the equivalent of (T2) consists of maximizing.

〈y, sj〉+ cj

where cj = 1
2
(N0 ln PH(j)− ‖sj‖2).

Finally, we can use Parseval’s relationship to substitute 〈R, sj〉 for 〈Y , sj〉 and get rid of
the need to find an orthonormal basis. This leads to the generalization of (T3), namely

〈R, sj〉+ cj.

Figure 3.9 shows three MAP receivers where the receiver front end is implemented via a
bank of matched filters. Three alternative forms are obtained by using correlators instead
of matched filters.

In the first figure, the slicer partitions Cn into decoding regions. The decoding region for
H = j is the set of points y ∈ Cn for which

−N0 ln PH(k) + ‖y − sk‖2

is minimized when k = j .

Notice that in the first two implementations there are n matched filters, where n is the
dimension of the signal space W spanned by S , whereas in the third implementation
the number of matched filters equals the number m of signals in S . In general, n ≤ m .
Sometimes n = m . In this case the third implementation is preferable to the second
since it does not require the weighing matrix and does not require finding a basis for W .
Sometimes n = 1 whereas m is large. Then the second implementation is preferable
since it requires fewer filters.

3.4 Problems

Problem 1. (Matched Filter Implementation.)

In this problem, we consider the implementation of matched filter receivers. In particular,
we consider Frequency Shift Keying (FSK) with the following signals:

sj(t) =

{ √
2
T

cos 2π
nj

T
t, for 0 ≤ t ≤ T,

0, otherwise,
(3.1)
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Figure 3.9: Three block diagrams of an optimal receiver. Each receiver front
end may alternatively be implemented via correlators.
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where nj ∈ Z and 0 ≤ j ≤ m − 1 . Thus, the communications scheme consists of m
signals sj(t) of different frequencies

nj

T

(i) Determine the impulse response hj(t) of the matched filter for the signal sj(t) . Plot
hj(t) .

(ii) Sketch the matched filter receiver. How many matched filters are needed?

(iii) For −T ≤ t ≤ 3T , sketch the output of the matched filter with impulse response
hj(t) when the input is sj(t) . (Hint: We recommend you to use Matlab.)

(iv) Consider the following ideal resonance circuit:

CL

i(t)

u(t)

For this circuit, the voltage response to a unit impulse of current is

h(t) =
1

C
cos

t√
LC

. (3.2)

Show how this can be used to implement the matched filter for signal sj(t) . Determine
how L and C should be chosen. Hint: Suppose that i(t) = sj(t) . In that case, what is
u(t)?

Problem 2. (On-Off Signaling)

Consider the following equiprobable binary hypothesis testing problem specified by:

H = 0 : Y (t) = s(t) +N(t)

H = 1 : Y (t) = N(t)

where N(t) is AWGN (Additive White Gaussian Noise) of power spectral density N0/2
and s(t) is the signal shown in the Figure (a) below.

(a) First consider a receiver that only observes Y (t0) for some fixed t0 . Does it make
sense to choose Ĥ based on Y (t0)? Explain.

(b) Describe the maximum-likelihood receiver for the observable Y (t) , t ∈ R .

(c) Determine the error probability for the receiver you described in (b).

(d) Can you realize your receiver of part (b) using a filter with impulse response h(t)
shown in Figure (b)?
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Problem 3. (Matched Filter Basics)

Consider a communication system that uses antipodal signals Si ∈ {−1, 1} . Using a fixed
function h(t) , the transmitted waveform S(t) is

S(t) =
K∑
k=1

Sk h(t− kT ).

The function h(t) and its shifts by multiples of T form an orthonormal set, i.e.,∫ ∞

−∞
h(t)h(t− kT )dt =

{
0, k 6= 0
1, k = 0.

Hint: You don’t need Parts (a) and (b) to solve Part (c).

(a) Suppose S(t) is filtered at the receiver by the matched filter with impulse response
h(−t) . That is, the filtered waveform is R(t) =

∫∞
−∞ S(τ)h(τ − t)dτ . Show that the

samples of this waveform at multiples of T are R(mT ) = Sm , for 1 ≤ m ≤ K .

(b) Now suppose that the channel has an echo in it and behaves like a filter of impulse
response f(t) = δ(t)+ρδ(t−T )) , where ρ is some constant between −1 and 1 . Assume
that the transmitted waveform S(t) is filtered by f(t) , then filtered at the receiver by
h(−t) . The resulting waveform R̃(t) is again sampled at multiples of T . Determine the
samples R̃(mT ) , for 1 ≤ m ≤ K .

(c) Suppose that the k th received sample is Yk = Sk +αSk−1 +Zk , where Zk ∼ N (0, σ2)
and 0 ≤ α < 1 is a constant. Sk and Sk−1 are independent random variables that take
on the values 1 and −1 with equal probability. Suppose that the detector decides Ŝk = 1
if Yk > 0 , and decides Ŝk = −1 otherwise. Find the probability of error for this receiver.

Problem 4. (Matched Filter Intuition.)

In this problem, we develop some further intuition about matched filters.
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We have seen that an optimal receiver front end for the signal set {sj(t)}m−1
j=0 reduces the

received (noisy) signal R(t) to the m real numbers 〈R, sj〉 , j = 0, . . . ,m − 1 . We gain
additional intuition about the operation 〈R, sj〉 by considering

R(t) = s(t) +N(t), (3.3)

where N(t) is additive white Gaussian noise of power spectral density N0/2 and s(t)
is an arbitrary but fixed signal. Let h(t) be an arbitrary waveform, and consider the
receiver operation

Y = 〈R, h〉 = 〈s, h〉+ 〈N, h〉. (3.4)

The signal-to-noise ratio (SNR) is thus

SNR =
|〈s, h〉|2

E [|〈N, h〉|2]
. (3.5)

Notice that the SNR is not changed when h(t) is multiplied by a constant. Therefore, we
assume that h(t) is a unit energy signal and denote it by φ(t) . Then,

E
[
|〈N, φ〉|2

]
=

N0

2
. (3.6)

(i) Use Cauchy-Schwarz inequality to give an upper bound on the SNR. What is the
condition for equality in the Cauchy-Schwarz inequality? Find the φ(t) that maximizes
the SNR. What is the relationship between the maximizing φ(t) and the signal s(t)?

(ii) To further illustrate this point, take φ and s to be two-dimensional vectors and use
a picture to discuss why your result in (i) makes sense.

(iii) Take φ = (φ1, φ2)
T and s = (s1, s2)

T and show how a high school student (without
knowing about Cauchy-Schwarz inequality) would have found the matched filter. Hint:
You have to maximize 〈s, φ〉 subject to the constraint that φ has unit energy.

(iv) Hence to maximize the SNR, for each value of t we have to weigh (multiply) R(t)
with s(t) and then integrate. Verify with a picture (convolution) that the output at time

T of a filter with input s(t) and impulse response h(t) = s(T − t) is indeed
∫ T

0
s2(t)dt .

(v) We may also look at the situation in terms of Fourier transforms. Write out the filter
operation in the frequency domain. Express in terms of S(f) = F{s(t)} .

Problem 5. (Optimal receiver for signaling in non-white Gaussian noise.)

We consider the receiver design problem for signals used in non-white additive Gaussian
noise. That is, we are given a set of signals {sj(t)}m−1

j=0 as usual, but the noise added to
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those signals is no longer white; rather, it is a Gaussian stochastic process with a given
power spectral density

SN(f) = G2(f), (3.7)

where we assume that G(f) 6= 0 inside the bandwidth of the signal set {sj(t)}m−1
j=0 . The

problem is to design the receiver that minimizes the probability of error.

(i) Find a way to transform the above problem into one that you can solve, and derive
the optimum receiver.

(ii) Suppose there is an interval [f0, f0 + ∆] inside the bandwidth of the signal set
{sj(t)}m−1

j=0 for which G(f) = 0 . What do you do? Describe in words.

Problem 6. (Antipodal signaling in non-white Gaussian noise.)

In this problem, antipodal signaling (i.e. s0(t) = −s1(t) ) is to be used in non-white
additive Gaussian noise of power spectral density

SN(f) = G2(f), (3.8)

where we assume that G(f) 6= 0 inside the bandwidth of the signal s(t) .

How should the signal s(t) be chosen (as a function of G(f) ) such as to minimize the
probability of error? Hint: For ML decoding of antipodal signaling in AWGN (of fixed
variance), the Pr{e} depends only on the signal energy.

Problem 7. (Mismatched Receiver.)

Let the received waveform Y (t) be given by

Y (t) = cX s(t) +N(t), (3.9)

where c > 0 is some deterministic constant, X is a random variable that takes on the
values {3, 1,−1,−3} equiprobably, s(t) is the deterministic waveform

s(t) =

{
1, if 0 ≤ t < 1
0, otherwise,

(3.10)

and N(t) is white Gaussian noise of spectral density N0

2
.

(a) Describe the receiver that, based on the received waveform Y (t) , decides on the value
of X with least probability of error. Be sure to indicate precisely when your decision rule
would declare “+3”, “+1”, “−1”, and “−3”.

(b) Find the probability of error of the detector you have found in Part (a).
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(c) Suppose now that you still use the detector you have found in Part (a), but that the
received waveform is actually

Y (t) =
3

4
cX s(t) +N(t), (3.11)

i.e., you were mis-informed about the signal amplitude. What is the probability of error
now?

(d) Suppose now that you still use the detector you have found in Part (a) and that Y (t)
is according to Equation (3.9), but that the noise is colored. In fact, N(t) is a zero-mean
stationary Gaussian noise process of auto-covariance function

KN(τ) = E[N(t)N(t+ τ)] =
1

4α
e−|τ |/α, (3.12)

where 0 < α <∞ is some deterministic real parameter. What is the probability of error
now?

Problem 8. (QAM receiver)

Consider a transmitter which transmits waveforms of the form,

s(t) =

{
s1

√
2
T

cos 2πfct+ s2

√
2
T

sin 2πfct, for 0 ≤ t ≤ T,

0, otherwise,
(3.13)

where 2fcT ∈ Z . (s1, s2) ∈ {(
√
E,
√
E), (−

√
E,
√
E), (−

√
E,−
√
E), (
√
E,−
√
E)} with

equal probability. The signal received at the receiver is corrupted by AWGN of power
spectral density N0

2
.

(a) Specify the receiver for this transmission scheme.
(b) Draw the decoding regions and find the probability of error.

Problem 9. Consider the following functions S0(t) , S1(t) and S2(t) .

(Gram-Schmidt for Three Signals)

(i) Using the Gram-Schmidt procedure, determine a basis of the space spanned by
{s0(t), s1(t), s2(t)} . Denote the basis functions by φ0(t) , φ1(t) and φ2(t) .

(ii) Let

V1 =

 3
−1

1

 and V2 =

 −1
2
3


be two points in the space spanned by {φ0(t), φ1(t), φ2(t)} . What is their corresponding
signal, V1(t) and V2(t)? (You can simply draw a detailed graph.)

(iii) Compute
∫
V1(t)V2(t)dt .



94 Chapter 3.

1

2

1 2 3−1

−2

S0(t)

1

2

1 2 3

−2

−1

S1(t)

1

2

1 3−1

−2

2

S2(t)

Problem 10. Consider the following communication chain. We have 2k possible hypothe-
ses with k ∈ N to convey through a waveform channel. When hypothesis i is selected,
the transmitted signal is si(t) and the received signal is given by R(t) = si(t) + N(t) ,
where N(t) denotes a white Gaussian noise with double-sided power spectral density N0

2
.

Assume that the transmitter uses the position of a pulse ψ(t) in an interval [0, T ] , in
order to convey the desired hypothesis, i.e., to send hypothesis i , the transmitter sends
the signal ψi(t) = ψ(t− iT

2k ) .

(i) If the pulse is given by the waveform ψ(t) depicted below. What is the value of A
that gives us signals of energy equal to one as a function of k and T ?

ψ(t)

A

0 T
2k

t

(ii) We want to transmit the hypothesis i = 3 followed by the hypothesis j = 2k − 1 .
Plot the waveform you will see at the output of the transmitter, using the pulse given in
the previous question.

(iii) Sketch the optimal receiver.
What is the minimum number of filters you need for the optimal receiver? Explain.

(iv) What is the major drawback of this signaling scheme? Explain.

Problem 11. (Communication Chain with two receive antennas)
Consider the following communication chain, where we have two possible hypotheses H0

and H1 . Assume that PH(H0) = PH(H1) = 1
2
. The transmitter uses antipodal signaling.

To transmit H0 , the transmitter sends a unit energy pulse p(t) , and to transmit H1 , it
sends −p(t) . That is, the transmitted signal is X(t) = ±p(t) . The observation consists
of Y1(t) and Y2(t) as shown below. The signal along each “path” is an attenuated and
delayed version of the transmitted signal X(t) . The noise is additive white Gaussian with
double sided power spectral density N0/2 . Also, the noise added to the two observations
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is independent and independent of the data. The goal of the receiver is to decide which
hypothesis was transmitted, based on its observation.

We will look at two different scenarios: either the receiver has access to each individual
signal Y1(t) and Y2(t) , or the receiver has only access to the combined observation Y (t) =
Y1(t) + Y2(t) .

X(t)

β1δ(t− τ1)

β2δ(t− τ2)

Y1(t)

Y2(t)

Y (t)

WGN

WGN

a. The case where the receiver has only access to the combined output Y (t) .

1. In this case, observe that we can write the received waveform as ±g(t) + Z(t) .
What are g(t) and Z(t) and what are the statistical properties of Z(t)?

Hint: Recall that
∫
δ(τ − τ1)p(t− τ)dτ = p(t− τ1) .

2. What is the optimal receiver for this case? Your answer can be in the form of a
block diagram that shows how to process Y (t) or in the form of equations. In
either case, specify how the decision is made between H0 or H1 .

3. Assume that
∫
p(t−τ1)p(t−τ2)dt = γ , where −1 ≤ γ ≤ 1 . Find the probability

of error for this optimal receiver, express it in terms of the Q function, β1 , β2 ,
γ and N0/2 .

b. The case where the receiver has access to the individual observations Y1(t) and Y2(t) .

1. Argue that the performance of the optimal receiver for this case can be no worse
than that of the optimal receiver for part (a).

2. Compute the sufficient statistics (Y1, Y2) , where Y1 =
∫
Y1(t)p(t − τ1)dt and

Y2 =
∫
Y2(t)p(t− τ2)dt . Show that this sufficient statistic (Y1, Y2) has the form

(Y1, Y2) = (β1 + Z1, β2 + Z2) under H0 , and (−β1 + Z1,−β2 + Z2) under H1 ,
where Z1 and Z2 are independent zero-mean Gaussian random variables of
variance N0/2 .

3. Using the LLR (Log-Likelihood Ratio), find the optimum decision rule for this
case.
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Hint: It may help to draw the two hypotheses as points in R2 . If we let V =
(V1, V2) be a Gaussian random vector of mean m = (m1,m2) and covariance

matrix Σ = σ2I , then its pdf is pV (v1, v2) = 1
2πσ2 exp

(
− (v1−m1)2

2σ2 − (v2−m2)2

2σ2

)
.

4. What is the optimal receiver for this case? Your answer can be in the form of
a block diagram that shows how to process Y1(t) and Y2(t) or in the form of
equations. In either case, specify how the decision is made between H0 or H1 .

5. Find the probability of error for this optimal receiver, express it in terms of the
Q function, β1 , β2 and N0 .

c. Comparison of the two cases

1. In the case of β2 = 0 , that is the second observation is solely noise, give the
probability of error for both cases (a) and (b). What is the difference between
them? Explain why.

Problem 12. (Delayed Signals)

One of two signals shown in the figure below is transmitted over the additive white
Gaussian noise channel. There is no bandwidth constraint and either signal is selected
with probability 1/2 .

√
1
T

- t

6

0 T 2T

s0(t)

√
1
T

- t

6

0 T 2T 3T

s1(t)

(a) Draw a block diagram of a maximum likelihood receiver. Be as specific as you can.
Try to use the smallest possible number of filters and/or correlators.

(b) Determine the error probability in terms of the Q -function, assuming that the power
spectral density of the noise is N0

2
= 5 [ W

Hz
] .

Problem 13. (Antenna Array)

Consider an L -element antenna array as shown in the figure below.

Transmit antennasL
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Let u(t)βi be the (complex-valued baseband equivalent) signal transmitted at antenna
element i , i = 1, 2, . . . , L (according to some indexing which is irrelevant here) and let

v(t) =
L∑
i=1

u(t− τD)βiαi

(plus noise) be the sum-signal at the receiver antenna, where αi is the path strength for
the signal transmitted at antenna element i and τD is the (common) path delay.

(a) Choose the vector β = (β1, β2, . . . , βL)T that maximizes the signal energy at the
receiver, subject to the constraint ‖ β ‖= 1 . The signal energy is defined as Ev =∫
|v(t)|2dt . Hint Use the Cauchy-Schwarz inequality: for any two vectors a and b

in Cn , |〈a,b〉|2 ≤‖ a ‖2‖ b ‖2 with equality iff a and b are linearly dependent.

(b) Let u(t) =
√
Euφ(t) where φ(t) has unit energy. Determine the received signal

power as a function of L when β is selected as in (a) and α = (α, α, . . . , α)T for
some complex number α .

(c) In the above problem the received energy grows monotonically with L while the
transmit energy is constant. Does this violate energy conservation or some other
fundamental low of physics? Hint: an antenna array is not an isotropic antenna (i.e.
an antenna that sends the same energy in all directions).

Problem 14. (Cioffi)

The signal set

s0(t) = sinc2(t)

s1(t) =
√

2sinc2(t) cos(4πt)

is used to communicate across an AWGN channel of power spectral density N0

2
.

(a) Find the Fourier transforms of the above signals and plot them.

(b) Sketch a block diagram of a ML receiver for the above signal set.

(c) Determine its error probability of your receiver assuming that s0(t) and s1(t) are
equally likely.

(d) If you keep the same receiver, but use s0(t) with probability 1
3

and s1(t) with
probability 2

3
, does the error probability increase, decrease, or remain the same?

Justify your answer.

Problem 15. (Probabilities in Different Signal Spaces)

Let N(t) be a zero-mean white Gaussian process of power spectral density N0

2
. Let g1(t) ,

g2(t) , and g3(t) be waveforms as shown in the following figure.
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-tg1(t)

0 T

1
g2(t) - t

0

T/2

T

1

−1

g3(t) -t

−1

0 T

(a) Determine the norm ‖ gi ‖, i = 1, 2, 3 .

(b) Let Zi be the projection of N(t) onto gi(t) . Write down the mathematical expression
that describes this projection, i.e. how you obtain Zi from N(t) and gi(t) .

(c) Describe the object Z1 , i.e. tell us everything you can say about it. Be as concise as
you can.

(d) Are Z1 and Z2 independent? Justify your answer.

(e) (i) Describe the object Z = (Z1, Z2) . (We are interested in what it is, not on how
it is obtained.)

(ii) Find the probability Pa that Z lies in the square labeled (a) in the figure below.

(iii) Find the probability Pb that Z lies in the square (b) of the same figure. Justify
your answer.

(f) (i) Describe the object W = (Z1, Z3) .

(ii) Find the probability Qa that W lies in the square (a).

(iii) Find the probability Qc that W lies in the square (c).

-

6

Z1

Z2 or Z3

1 2

1

2

(a)

- Z1

6Z2

(b)

�
�

@
@

�
�

@
@

(0,−
√

2)

(0,−2
√

2)

-

6

Z1

Z2 or Z3

1 2

−1

−2

(c)

Problem 16. (Gram Schmidt for Two Signals)

(a) Use Gram Schmidt procedure to find an orthonormal basis for the vector space
spanned by the functions shown below. Clearly indicate every step of the proce-
dure. Make sure that s1 , s2 , and the orthonormal basis are clearly visible.

(b) Let s(t) = βsinc(αt) . Plot s(t) (qualitatively but label your plot appropriately)
and determine the area A =

∫∞
−∞ s(t)dt .
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-ts1(t)

0 T

1

-ts2(t)

0 T/2

2

Problem 17. (ML Receiver with a Single Causal Filter)

You want to design a Maximum Likelihood (ML) receiver for a system that communicates
an equiprobable binary hypothesis by means of the signals s1(t) and s2(t) = s1(t− Td) ,
where s1(t) is shown in the figure and Td is a fixed number assumed to be known at the
receiver.

-

6s1(t)

����
����

t
T

The channel is the usual AWGN channel with noise power spectral density N0/2 . At the
receiver front end you are allowed to use a single causal filter of impulse response h(t) (A
causal filter is one whose impulse response is 0 for t < 0 ).

(a) Describe the h(t) that you chose for your receiver.

(b) Sketch a block diagram of your receiver. Be specific about the sampling times.

(c) Assuming that Td > T , determine the error probability for the receiver as a function
of N0 and Es (Es = ||s1(t)||2 ).

Problem 18. (Signal Space Distance)

Let there be an orthonormal basis {φm(t)}N−1
m=0 for a given space S of functions. Then,

every function s(t) ∈ S can be written as

s(t) =
N−1∑
m=0

smφm(t), (3.14)

with sm = 〈s(t), φm(t)〉 .
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Show that the squared L2 distance d2
i,j between two waveforms si(t) and sj(t) , which is

defined as

d2
i,j =

∫
(si(t)− sj(t))2 dt, (3.15)

is equal to the signal space distance

d2
i,j =

N−1∑
m=0

(si,m − sj,m)2 . (3.16)

Note: In communications, it is often preferable to consider the vector of coefficients
s = (s0, . . . , sN−1)

T rather than the waveform s(t) itself. We call s the signal space
representation of the waveform s(t) .

Problem 19. (Waveform Receiver)

Consider the signals s0(t) and s1(t) shown in the figure.

t

s0(t)

0 T 2T

1

−1

t

s1(t)

0 T 2T

1

−1

Figure 3.10: Signal waveforms

(a) Determine an orthonormal basis {ψ0(t), ψ1(t)} for the space spanned by {s0(t), s1(t)}
and find the n-tuples of coefficients s0 and s1 that correspond to s0(t) and s1(t) ,
respectively.

(b) Let X be a uniformly distributed binary random variable that takes values in {0, 1} .
We want to communicate the value of X over an additive white Gaussian noise
channel. When X = 0 , we send S(t) = s0(t) , and when X = 1 , we send S(t) =
s1(t) . The received signal at the destination is

Y (t) = S(t) + Z(t),

where Z(t) is AWGN of power spectral density N0

2
.

(i) On the back of this page, draw an optimal matched filter receiver for this case.
Specifically say how the decision is made.

(ii) What is the output of the matched filter(s) when X = 0 and the noise variance
is zero ( N0

2
= 0 )?
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(iii) Describe the output of the matched filter when S(t) = 0 and the noise variance
is N0

2
> 0 .

(c) Plot the s0 and s1 that you have found in part (a), and determine the error proba-
bility Pe of this scheme as a function of T and N0 .

(d) Find a suitable waveform v(t) , such that the new signals ŝ0(t) = s0(t) − v(t) and
ŝ1(t) = s1(t)−v(t) have minimal energy and plot the resulting ŝ0(t) and ŝ1(t) . Hint:
you may first want to find v , the n-tuple of coefficients that corresponds to v(t) .

(e) Compare ŝ0(t) and ŝ1(t) to s0(t) and s1(t) , respectively, and comment on the part
v(t) that has been removed.
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Appendix 3.A Rectangle and Sinc as Fourier Transform Pairs

The Fourier transform of a rectangular pulses is a sinc pulse. Often one has to go back
and forth between such Fourier pairs. The purpose of this appendix is to make it easier
to figure out the details.

First of all let us recall that a function g and its Fourier transform gF are related by

g(u) =

∫
gF(α) exp(j2πuα)dα

gF(v) =

∫
g(α) exp(−j2πvα)dα.

Notice that gF(0) is the area under g and g(0) is the area under gF .

Next let us recall that sinc(x) = sin(πx)
πx

is the function that equals 1 at x = 0 and equals
0 at all other integer values of x . Hence if a, b ∈ R are arbitrary constants, asinc(bx)
equals a at x = 0 and and equals 0 at nonzero multiples of 1/b .

If you could remember that the area under asinc(bx) is a/b then, from the two facts
above, you could conclude that its Fourier transform, which you know is a rectangle, has
hight equals a/b and area a . Hence the width of this rectangle must be b .

It is actually easy to remember that the area under asinc(bx) is a/b : it is the area of
the triangle described by the main lobe of asinc(bx) , namely the area of the triangle with
coordinates (−1/b, 0) , (0, a) , (1/b, 0) .

Appendix 3.B White Gaussian Noise

We assume that you are familiar with the concept of White Gaussian Noise. The purpose
of this appendix is just to write down what you absolutely need to remember, for the
purpose of this Chapter, about White Gaussian Noise.

If N(t) is White Gaussian Noise of double-sided spectral density N0

2
then:

• Its covariance function is

KN(τ)
4
=
N0

2
δ(τ), ∀τ.

• Its spectrum (the Fourier transform of the covariance function) is

SN(f) =
N0

2
.

• If

Zi =

∫ ∞

−∞
N(t)gi(t)dt, i = 1, . . . , K,
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then (Z1, . . . , ZN) is a zero-mean Gaussian random vector and for any 1 ≤ i , j ≤ K ,

E[ZiZj] = E

[∫ ∞

−∞
N(t)gi(t)

∫ ∞

−∞
N(ξ)gi(ξ)dξ

]
=

∫ ∞

−∞

∫ ∞

−∞
E[N(t)N(ξ)]gi(Hgj(ξ)dtξ

=

∫ ∞

−∞

∫ ∞

−∞

N0

2
δ(t− ξ)gi(t)gj(s)dtdξ

=

∫ ∞

−∞

N0

2
gi(t)gj(t)dt

In particular, if g1(t), . . . , gk(t) are an orthonormal set then Z1, . . . , ZK are iid N (0, N0

2
) .
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Chapter 4

Signal Design Trade-Offs

4.1 Introduction

It is time to shift our focus to the transmitter and take a look at some of the options we
have in terms of choosing the signal constellation. The goal is to build up some intuition
about the impact that those options have on fundamental performance measures such as
transmission rate, bandwidth, power, and error probability. Throughout this section we
assume that the channel is the AWGN channel and that the receiver implements a ML
decision rule.

To put things into perspective, we mention from the outset that the problem of choosing a
convenient signal constellation is not as clean-cut as the receiver design problem that has
kept us busy until now. The reason is that the receiver design problem has a clear objec-
tive, namely to minimize the error probability, and an essentially unique solution, a MAP
decision rule. In contrast, choosing a good signal constellation is making a tradeoff among
conflicting objectives. For instance, if we could, we would choose a signal constellation
that contains a very large number m of signals of very small duration T and very small
bandwidth B . If we could choose these parameters at will, we could also achieve any
desired rate log2m

TB
(expressed in bits per second per Hz). In addition, we would choose

our signals so that they use very little energy and result in a very small error probability.
These are conflicting goals.

Besides the quantities already mentioned, other quantities that will come up in our dis-
cussion are the number k = log2m of bits associated to each signal, the average time
Tb = T/k it takes to transmit one bit, the dimensionality n of the signal space, the energy
per bit Eb , the block error probability Pe and the bit error probability Pb .

105



106 Chapter 4.

4.2 Transformations That Do Not Affect Pe

Two sets of waveforms can look very different yet lead to the same probability of error.
In this section we take a look at some of the transformations that change the signal
constellation without affecting the error probability. There are at least two obvious reasons
why we may want to evoke such a transformation: (i) we may save ourselves some time
if we recognize that the probability of error associated to the constellation we are using
is the same as that of another constellation for which we have already determined the
error probability or for which we know an easy way to determine it; (ii) given a signal
constellation that has the desired probability of error, we may be able to transform it into
one that has the same probability of error and uses less energy, or less bandwidth, or less
time.

4.2.1 Isometric Transformations In Rn

An isometry in Rn is a distance-preserving transformation a : Rn → Rn . Hence for any
two points p, q ∈ Rn , the distance from p to q equals the distance from a(p) to a(q) .

If we apply the same isometry to every point of a signal constellation and to every decoding
region, the probability of error (for the AWGN channel) remains the same. This intuitive
fact can be verified mathematically as follows. Let

g(γ) =
1

(2πσ2)n/2
exp

(
− γ2

2σ2

)
, γ ∈ R

so that for Z ∼ N (0, σ2In) we can write fZ(z) = g(‖z‖2) . Then for any isometry
a : Rn → Rn we have

Pc(i) = Pr{Y ∈ Ri|S = si}

=

∫
y∈Ri

g(‖y − si‖)dy

(a)
=

∫
y∈Ri

g(‖a(y)− a(si)‖)dy

(b)
=

∫
a(y)∈a(Ri)

g(‖a(y)− a(si)‖)dy

(c)
=

∫
α∈a(Ri)

g(‖α− a(si)‖)dα = Pr{Y ∈ a(Ri)|S = a(si)},

where in (a) we used the distance preserving property of an isometry, in (b) we used the
fact that y ∈ Ri iff a(y) ∈ a(Ri) , and in (c) we made the change of variable α = a(y)
and used the fact that the Jacobian of an isometry is ±1 . The last line is the probability
of decoding correctly when the transmitter sends a(si) and the corresponding decoding
region is a(Ri) .
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Example 39. The composition of a translation and a rotation is an isometry. The figure
below shows an original signal set and a translated and rotated copy. Both have the same
probability of error but not the same energy.

-

6

s

s

s

s
ψ1

ψ2

-

6

s
s

s
s ψ1

ψ2

2

Given {s0, s1, . . . , sm−1} , we are interested in finding the translating vector a so that the
average energy of {s′0, s′1, . . . , s′m−1} , where s′i = si − a , is minimized. The appropriate
choice of a is (see Problem 1)

a =
∑
i

PH(i)si.

From now on we will use E to denote the average energy of the signal constellation at
hand. Sometimes we will use Eb to denote the average energy per bit. Hence for a signal
set {s0, s1, . . . , sm−1} , where signal si is used with probability PH(i) , we have

E =
∑
i

PH(i)‖si‖2

Eb =
E

logm
,

where logm is the number of bits of information that we convey when we communicate
one of m possible choices.

When we make an isometric transformation as defined in this subsection, the signal space
in which we are living does not change (the basis is the same). In the next section we
consider isometric transformations that carry the signal space from one subspace of L2

to another.

4.2.2 Changing the Orthonormal Basis

The error probability depends solely on the position of the signals in the signal space.
We may think of constructing various sets of time-domain signals in the following way.
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We first choose a signal set in the signal space. From this set we construct a set of time-
domain waveforms by selecting an orthonormal basis. We then construct a second set of
time-domain waveforms by selecting a second orthonormal basis. The procedure may be
repeated indefinitely. The resulting sets of waveforms may look very different. For instance
one set may be of signals that have finite support (i.e. they vanish when t is outside a
specified time interval), whereas another set may have infinite support. Nevertheless the
associated average probability of error is identical for all signal sets obtained as described.
Notice that changing the basis constitutes an isometric transformation in L2 (as opposed
to an isometry in Rn as in the previous section).

Example 40. Let the signals in the signal space be s0 = (
√
E , 0)T and s1 = (0,

√
E)T .

This choice completely determines the error probability and the average energy. It does
not say anything, however, about the signals s0(t) and s1(t) , except that they are or-
thogonal to one another. Example 38 shows four possible choices for s0(t) and s1(t) .
(There are infinitively many other possibilities).

4.3 Time, Bandwidth, and Dimensionality

The bandwidth plays an important role in practice and should be included in our discus-
sion on signal constellations. As a start we will focus on baseband signals, i.e. signals that
have their spectral components centered around the origin.

One is tempted to define the bandwidth of a baseband signal s(t) to be B if the support
of sF(t) is [−B

2
, B

2
] . This definition is not useful in practice since all man-made signals

s(t) have finite support (in the time domain) and thus sF(f) has infinite support.1

A better definition (but not the only one that makes sense) is to fix a number η ∈ (0, 1)
and say that the baseband signal s(t) has bandwidth B if∫ B

−B
|sF(f)|2df = ‖s‖2(1− η).

In words, the signal has bandwidth B if B is the smallest number such that the interval
(−B,B) contains 100(1− η)% of the signal power. The bandwidth changes if we change
η . Reasonable values for η are η = 0.1 and η = 0.01 .

This definition allows us to relate time, bandwidth, and dimensionality. If we let η = 1
12

and define

L2(T,B) =

{
s(t) ∈ L2 : s(t) = 0, t 6∈ [−T

2
,
T

2
] and

∫ B

−B
|sF(f)|2df ≥ ‖s‖2(1− η)

}
then one can show that the dimensionality of L2(T,B) is n = b2TB+1c (see Wozencraft
& Jacobs for more on this). As T goes to infinity, we see that the number of dimensions

1The support of a real or complex valued signal x(t) , t ∈ R is the set of those t for which x(t) 6= 0 .
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per second, n
T

, goes to 2B . Moreover, if one changes the value of η , then the essentially
linear relationship between n

T
and B remains (but the constant in front of B will be

different than 2).

4.4 Examples

The aim of this section is to sharpen our intuition by looking at some examples.

Example 41. (PAM) In this example we consider Pulse Amplitude Modulation (PAM).
For i ∈ {0, 1, . . . , (m − 1)} , let si be a unique element of the signal space constellation{
±
√
Ew, ±3

√
Ew, ±5

√
Ew, . . . ,±(m− 1)

√
Ew
}

and let si(t) = siψ(t) , where ψ is an
arbitrary unit-energy waveform.2 Figure 4.1 shows the signal space constellation for m =
6 .

-

-5
√
Ew -3

√
Ew -

√
Ew

√
Ew 3

√
Ew 5

√
Ew

r r r r r r ψ

Figure 4.1: Signal Space Constellation for 6 -ary PAM.

-
R(t)

ψ(T − t)

Sampler

t = T

@@ Y
Slicer

Ĥ

Figure 4.2: PAM Receiver

Naturally enough, in the receiver block diagram of Figure 4.2 projects the received wave-
form onto the unique elements of the orthonormal basis. The alternative of projecting
onto each one of the m possible waveform signals by means of m filters would have been
non-sense. The slicer finds one of the i for which si is as close to y as to any other
element of the signal space constellation.

Determining the probability of error is straightforward. If i corresponds to one of the two

end points, Pe(i) = Q( d
2σ

) , where d
2

=
√
Ew and σ =

√
N0

2
. For the remaining m − 2

signal points, the probability of error is twice that of the end pints. Taking the average,
we obtain

Pe =

(
2− 2

m

)
Q

(√
2Ew
N0

)
. (4.1)

2We are following our convention to use bold symbols such as si for elements of the signal space, even
though in this case the signal space has dimension 1 .
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Another quantity of interest is the average energy E . A simple approximation to de-
termine the average energy is obtained by computing the second moment of a random
variable X that, instead of being uniformly distributed over the signal space constella-
tion

{
±
√
Ew, ±3

√
Ew, ±5

√
Ew, . . . ,±(m− 1)

√
Ew
}

, is uniformly distributed over the
interval [−m

√
Ew,m

√
Ew] . The second moment of this random variable is

E[X2] =
1

m
√
Ew

∫ m
√
Ew

0

s2ds =
m2Ew

3
.

This approximation becomes better as the elements of the signal space constellation be-
come denser in the interval used for the approximation, which is the case if we let the
number k of bits grow and keep the average energy per bit equal to some constant Eb .
In fact, the number of elements of the signal space constellation will grow exponentially
in k and the number

√
Ew that determines the spacing between them will decrease ex-

ponentially in k . The latter claim is quickly verified by letting E = kEb and choosing√
Ew so that E = EX2 . A quick calculation shows that EX2 = m2Ew

3
, which yields√

Ew =
√

3E
m

=
√

3kEb

2k . This goes to zero exponentially fast as k goes to infinity. 2

The next example uses a two-dimensionsional constellation.

Example 42. (Phase-Shift-Keying (PSK): Single Shot) Let τ = [0, T ] and define

si(t) =

√
2E
T

cos(2πf0t+
2π

m
i)1τ (t), i = 0, 1, . . . ,m− 1. (4.2)

We assume f0T = k
2

for some integer k , so that ‖si‖2 = E for all i . The signal space
representation may be obtained by using the trigonometric equivalence cos(α + β) =
cos(α) cos(β)− sin(α) sin(β) to rewrite (4.2) as

si(t) = si,1ψ1(t) + si,2ψ2(t),

where

si1 =
√
E cos

(
2πi
m

)
, ψ1(t) =

√
2
T

cos(2πf0t)1τ (t),

si2 =
√
E sin

(
2πi
m

)
, ψ2(t) = −

√
2
T

sin(2πf0t)1τ (t).

Hence, the n -tuple representation of the signals is

si =
√
E
(

cos 2πi/m
sin 2πi/m

)
.

In Example 7 we have already studied this constellation and derived the following upper
bound to the error probability

Pe ≤ 2Q

(√
E
σ2

sin
π

m

)
,
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where σ2 = N0

2
is the variance of the noise in each coordinate.

From the decoding regions plotted in Example 7 we also immediately see that for each
0 ≤ i, j ≤ m−1 , there is an isometry a : R2 → R2 such that a(si) = sj and a(Ri) = Rj .
Thus, as an application of what we have learned in the previous section, we can tell the
rather obvious fact that Pe(i) is the same for all i ∈ H .

As in the previous example we are interested in understanding what happens as k goes
to infinity while Eb remains constant. Since E = kEb grows linearly with k , the circle
that contains the signal points has radius

√
E =

√
kEb that grows with

√
k , while the

number m = 2k of points on this circle grows exponentially with k . Hence the minimum
distance between points goes to zero (indeed exponentially fast). As a consequence, the
argument of the Q function that upperbounds the probability of error for PSK goes to
0 and the probability of error goes to 1 . Recall from Example 7 that the upperbound
becomes tight as m grows. 2

As they are, the signal constellations used in the above two examples are not suitable
to transmit a large amount of data. Indeed, to do so, we would have to let m be large
enough so that log2m is the number of bits we want to transmit. As m grows, the
probability of error goes to 1 . The problem with these two examples is that, as m grows,
we are trying to pack more and more signal points into a space that also grows in size but
does not grow fast enough. The space becomes “crowded” as m grows, meaning that the
minimum distance becomes smaller, and the probability of error increases.

In the next example we try to do better. So far we have not made use of the fact that we
should expect to use more time to transmit more bits. In both of the above examples, the
length T of the time interval used to communicate was constant. In the next example
we let T grow linearly with the number of bits. This will free up a number of dimensions
that grows linearly with k . (Recall that n = 2BT is possible.) Each dimension may
be used with the signal constellation of Example 41. Alternatively, every two dimensions
may be used with the constellation of Example 42. Other possibilities exist.

Example 43. (Bit by Bit on a Pulse Train) The idea is to transmit a signal of the form

Si(t) =
k∑
j=1

Sjψj(t), (4.3)

and let ψj(t) = ψ(t − jT ) for some appropriate basic pulse ψ(t) while fulfilling the
requirement 〈ψi, ψj〉 = δij . Assuming that it is indeed possible to find such a pulse, we
obtain

Si(t) =
k∑
j=i

Sjψ(t− jTs). (4.4)

In this example we use binary symbols, i.e., Sj ∈ {±
√
Eb} , j = 1, 2, . . . , k . To be specific,

we let Sj =
√
EbDj , where Dj ∈ {±1} is the random variable that represents the j th
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source bit. (For this example, it is convenient to consider bits as taking value in {±1}
rather than in {0, 1} .) The subscript b indicates that Eb is the energy per bit. For
reasons that should be obvious, the above signaling method will be called bit-by-bit on a
pulse train.

There are various possible choices for ψ(t) . Common choices for ψ(t) are sinc pulses,
rectangular pulses, and raised-cosine pulses (to be defined later). We will see how to
choose ϕ(t) in Chapter 5.

To gain insight in the operation of the receiver and to determine the error probability,
it is always a good idea to try to picture the signal space constellation. In this case
s0, . . . , sm−1 , m = 2k , are the vertices of a k -dimensional hypercube as shown in the
figures below for k = 1, 2 .

k = 1 -
0
qs ss0 s1

−
√
Eb

√
Eb

ψ1

k = 2 - ψ1

6

ψ2

s s
s2 s3

s ss1 s0 =
√
Eb(1, 1)

From the picture, you should be able to see what the decoding regions are, but let us
proceed analytically. The ML receiver decide that the constellation point used by the

sender is one of the s = (s1, s2, . . . , sk) ∈ {±Eb}k that maximizes 〈y, s〉 − ‖s‖2
2

. Since
‖s‖2 is the same for all constellation points, the previous expression is maximized iff
〈y, si〉 =

∑
yjsj is maximized. We do so by making sure that the right hand side has

non-negative terms, which means that we pick the sign of sj to match the sign of yj .
When yj = 0 , it does not matter which sign we choose for sj . Hence we may define

sign(y) =

{
1 y ≥ 1

0 y < 0
,

and let our ML receiver be the one that decides the j th bit according to

d̂j = sign(yj).

The next figure shows the block diagram of our ML receiver. Notice that we need only
one matched filter to do the k projections. This is one of the reasons why we choose
ψi(t) = ψ(t− iTs) . Other reasons will be discussed in the next chapter.
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R(t)

ψ(−t)
t = jT

j = 1, 2, . . . , k

@@
Yj

sign(Yi)
D̂j

We now compute the error probability. As usual, we first compute the error probability
conditioned on the event S = s = (s1, . . . , sk) for some arbitrary constellation point s .
From the geometry of the signal constellation, we expect that the error probability will
not depend on s . If sj is positive, Yj =

√
Eb+Zj and D̂j will be correct iff Zj ≥ −

√
Eb .

This happens with probability 1 − Q(
√
Eb

σ
) . Reasoning similarly, you should verify that

the probability of error is the same if sj is negative. Now let Cj be the event that the
decoder makes the correct decision of bit j . The probability of Cj depends only on Zj .
The independence of the noise components implies the independence of the events C1 ,
C2 , . . . , Ck . Thus, the probability that all k bits are decoded correctly when S = s is

Pc(s) =

[
1−Q

(√
Eb
σ

)]k
.

Since this probability does not depend on s , we obtain that the unconditional error
probability is also the same, namely

Pc =

[
1−Q

(√
Eb
σ

)]k
.

Notice that Pc → 0 as k →∞ . However, the probability that a specific symbol (bit) be

decoded incorrectly is Q(
√
Eb

σ
) . This is constant with respect to k .

The following properties (due to our choice ψj(t) = ψ(t − jT ) ) are worth noticing: (i)
k may be arbitrary and may vary from one message file to the other without changing
the structure of the transmitter and the receiver. (This would not be true with a general
choice of ψ1, . . . , ψk .); (ii) The transmitter does not have to wait until it has received
all k information bits to start transmission. This is important in real time applications,
e.g. speech, video, etc.; (iii) A ML receiver decides for each bit independently. Moreover,
it can decide bit i as soon as the signal transmitted in the i th time interval has been
received. All of the above properties are desirable for practical systems. 2

The drawback of bit-by-bit signaling is that Pc → 0 as k →∞ . Hence, as it is, it is not
appropriate to communicate long files either. We are, however, in a better situation than
with the first two examples of this section. In those examples the probability of error was
going to one since signal points were getting closer as k increased. To the contrary, in
bit-by-bit on a pulse train the probability that we make an error in decoding one or more
of the k bits goes to one because the number of neighbors increases. Coding will fix this
problem by ensuring that the distance between neighboring signal points grows enough
to compensate for the growing number of neighbors.
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While in the last example we have chosen to transmit a single bit per dimension, we could
have transmitted instead some small number of bits per dimension by means of one of the
methods discussed in the previous two examples. In that case we call the signaling scheme
symbol by symbol on a pulse train. Symbol by symbol on a pulse train will come up often
in the remainder of this course. In fact it is the basis for most digital communication
systems.

The following question seems natural at this point: Is it possible to map k bits into a
signal si and avoid that Pc → 0 as k → ∞? The next example shows that it is indeed
possible.

Example 44. (Frequency Shift Keying (FSK): An Example Of Orthogonal Signaling) Let
n = m = 2k . We do this by using m equi-norm orthogonal functions s1(t), . . . , sm(t) :

si =
√
Eψi, 〈ψi, ψj〉 = δij.

This is called block orthogonal signaling. The name stems from the fact that one collects
a block of k bits and maps them into one of 2k orthogonal waveforms. Notice that
‖si‖ =

√
E for all i .

There are many ways to choose the 2k waveforms ψi . One way is to choose ψi(t) =
ψ(t− iT ) for some basic pulse ψ(t) such that 〈ψ(t− iT ), ψ(t− jT )〉 = δij as in bit-by-bit
signaling. For reasons that should be obvious, this is sometimes called pulse position
modulation. Notice, however, that now we need 2k such shifts of ψ as opposed to only
k such shifts. Another way is what is called m -FSK (m -ary frequency shift keying).
Specifically,

si(t) =

√
2E
T

cos(2πfit)1τ (t) (4.5)

for some τ = [0, T ] and i = 1, 2, . . . ,m . (For FSK it is convenient to index this way
rather than letting i = 0, 1, . . . ,m− 1 as usual.) For convenience we assume fiT = ki/2
for some integer ki such that ki 6= kj if i 6= j . Then

〈si, sj〉 =
2E
T

∫ T

0

cos(2πfit) cos(2πfjt)dt

=
2E
T

∫ T

0

[
1

2
cos[2π(fi + fj)t] +

1

2
cos[2π(fi − fj)t]

]
dt

=
E
T

∫ T

0

cos[2π(fi − fj)t]dt

= Eδij.

Letting ψi(t) =
√

2
T

cos 2πfit1τ (t) we obtain

si =
√
Eψi, i = 1, . . . ,m. (4.6)

Hence we have an orthogonal signal set as desired.
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When m ≥ 3 , it is not easy to visualize the decoding regions. However we can proceed
analytically using the fact that si is 0 everywhere except at position i where it is

√
E .

Hence,

ĤML(y) = arg max
i
〈y, si〉 −

E
2

= arg max
i
〈y, si〉

= arg max
i
yi.

To compute (or bound) the error probability, we start as usual with a fixed si . We pick
i = 1 . When H = 1 ,

Yj =

{
Zj if j 6= 1,√
E + Zj if j = 1.

Then
Pc(1) = Pr{Y1 > Z2, Y1 > Z3, . . . , Y1, > Zm|H = 1}.

To evaluate the right side, we start by conditioning on Y1 = α , where α ∈ R is an
arbitrary number

Pr{c|H = 1, Y1 = α} = Pr{α > Z2, . . . , α > Zm}

=

[
1−Q

(
α√
N0/2

)]m−1

,

and then remove the conditioning on Y1 ,

Pc(1) =

∫ ∞

−∞
fY1|H(α|1)

[
1−Q

(
α√
N0/2

)]m−1

dα

=

∫ ∞

−∞

1√
πN0

e
− (α−

√
E)2

N0

[
1−Q

(
α√
N0/2

)]m−1

dα,
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where we used the fact that when H = 1 , Y1 ∼ N (
√
E , N0

2
) . The above expression for

Pc(1) cannot be simplified further but one can evaluate it numerically. By symmetry,

Pc = Pc(1) = Pc(i)

for all i .

The union of events bound is especially useful when the signal set {s1, . . . , sm} is com-
pletely symmetric, like for orthogonal signals. In this case:

Pe = Pe(i) ≤ (m− 1)Q

(
d

2σ

)
= (m− 1)Q

(√
E
N0

)

< 2k exp

[
− E

2N0

]
= exp

[
−k
(
E/k
2N0

− ln 2

)]
,

where we used σ2 = N0

2
and d =

√
2E . The latter follows from d = ‖si − sj‖ and

‖si − sj‖2 = ‖si‖2 + ‖sj‖2 − 2〈si, sj〉 = ‖si‖2 + ‖sj‖2 = 2E ,

which is Pythagorean’s Theorem.

Here E is the signal’s energy. If we let E = Ebk , meaning that we let the signal’s energy
grow linearly with the number of bits as in bit-by-bit signaling, then we obtain

Pe < e
−k( Eb

2N0
−ln 2)

.

Here Pe → 0 as k →∞ , provided that Eb

N0
> 2 ln 2. (2 ln 2 is approximately 1.39 .)

2

A useful application of the energy minimization idea (See Problem 1) applied to an or-
thogonal signal constellation leads to the simplex signal set.
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4.5 Bit By Bit Versus Block Orthogonal

In one of the last two examples we have let the number of dimensions n increased linearly
with the number k of bits and in the other example we have let n increased exponentially
with k . In both cases we kept the energy per bit Eb fixed, which means that the signal
energy E = kEb grew linearly with the number k of bits. Let us compare the two cases.

In bit-by-bit on a pulse train the bandwidth is constant (we have not proved this yet,
but this is consistent with the asymptotic limit 2B = n/T seen in Section 4.3 applied
with T = nTs ), and the time and the energy increased linearly with k . These are all
desirable properties. (We have also seen that the delay at the sender and at the receiver
are small and that we need only one matched filter to do the projections but we will not
take complexity and delay into this discussion). The drawback of bit-by-bit on a pulse
train was found to be the fact that the probability of error goes to 1 as k goes to infinity.
The union of events bound is a useful tool to understand what is going on. Let us use it
to bound the probability of error when H = i . The union of events bound has one term
for each alternative j . The dominating terms in the bound are those that correspond to
signals sj that are the closest neighbors to si . There are k closest neighbors, obtained
by changing si in exactly one component, and each of them is at distance 2

√
Eb from

si (see the figure below). As k increases, the number of dominant terms goes up and so
does the probability of error.
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-k = 2

6

2
√
Eb

s s
s s

k = 1 -
0
qs s2
√
Eb

Let us now consider block orthogonal signaling. Since the dimensionality of the space it
occupies grows exponentially with k , the expression n = 2BT tells us that either the
time or the bandwidth has to grow exponentially also. This is a significant drawback.
Now let us consider the error probability. Using the bound

Q

(
d

2σ

)
≤ 1

2
exp

[
d2

8σ2

]
=

1

2
exp

[
− kEb

2N0

]
we see that the probability that the noise carries a signal closer to a specific neighbor goes

down as exp
(
− kEb

2N0

)
. There are 2k − 1 = ek ln 2 − 1 nearest neighbors (all alternative

signals are nearest neighbors). For Eb

2N0
> k ln 2 , the growth in distance dominates the

probability of error behavior. For Eb

2N0
< k ln 2 the number of neighbors dominates.

Finally notice that the bit error probability Pb can not be larger than the block error
probability Pe . Indeed they are the same iff every time that the decoder selects a wrong
message the bit sequence that corresponds to this message has all bits flipped with respect
to the bit sequence that corresponds to the correct message.

4.6 Conclusion

We have discussed some of the trade-offs between the number of transmitted bits, the
duration, the bandwidth, and the energy of the signal we use to transmit those bits,
and the resulting error probability. We have seen that, rather surprisingly, it is possible
to transmit an increasing number k of bits at a fixed energy per bit Eb and make the
probability that even a single bit is decoded incorrectly go to zero as k increases. However,
the scheme we used to prove this has the undesirable property of requiring an exponential
growth of the time bandwidth product. Ideally we would like to make the probability of
error go to zero with a scheme similar to bit by bit on a pulse train. Is it possible? The
answer is yes and the technique to do so is coding. We will give an example of coding in
Chapter 6.

The study of the fundamental relationships between the rate at which we want to commu-
nicate (e.g. in bits per second per Hz), the power of the signal (measured at the receiver),
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and the probability of error that can be achieved is a typical subject of information theory.
For instance, the capacity of the additive white Gaussian noise channel of power spectral
density N0 is

C = B log2

(
1 +

P

NoB

)
[bits/sec],

where B is the bandwidth [Hz] and P is the power (energy per second) [Watts] that
we are allowed to use. One can show that at rates smaller than C one can make the
communication arbitrarily reliable. This is not possible at rates above C .

4.7 Problems

Problem 1. (Minimum-energy Signals.)

Consider a given signal constellation consisting of vectors {s1, s2, . . . , sm} . Let signal si
occur with probability pi . In this problem, we study the influence of moving the origin
of the coordinate system of the signal constellation. That is, we study the properties of
the signal constellation {s1 − a, s2 − a, . . . , sm − a} as a function of a .

(i) Draw a sample signal constellation, and draw its shift by a sample vector a .

(ii) Does the average error probability, Pr{e} , depend on the value of a? Explain.

(iii) The average energy per symbol depends on the value of a . For a given signal constel-
lation {s1, s2, . . . , sm} and given signal probabilities pi , prove that the value of a that
minimizes the average energy per symbol is the centroid (the center of gravity) of the
signal constellation, i.e.,

a =
m∑
i=1

pisi. (4.7)

Hint: First prove that if X is a real-valued zero-mean random variable and b ∈ R , then
E[X2] ≤ E[(X − b)2] with equality iff b = 0 . Then extend your proof to vectors and
consider X = S − E[S] where S = si with probability pi .

Problem 2. (Orthogonal Signal Sets.)

Consider the following situation: A signal set {sj(t)}m−1
j=0 has the property that all signals

have the same energy Es and that they are mutually orthogonal:

〈si, sj〉 = Esδij. (4.8)

Assume also that all signals are equally likely. The goal is to transform this signal set
into a minimum-energy signal set {s∗j(t)}m−1

j=0 . It will prove useful to also introduce the

unit-energy signals φj(t) such that sj(t) =
√
Esφj(t) .
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(i) Find the minimum-energy signal set {s∗j(t)}m−1
j=0 .

(ii) What is the dimension of span{s∗0(t), . . . , s∗m−1(t)}? For m = 3 , sketch {sj(t)}m−1
j=0

and the corresponding minimum-energy signal set.

(iii) What is the average energy per symbol if {s∗j(t)}m−1
j=0 is used? What are the savings

in energy (compared to when {sj(t)}m−1
j=0 is used) as a function of m?

Problem 3. (Antipodal Signaling with Rayleigh Fading.)

Suppose that we use antipodal signaling (i.e s0(t) = −s1(t) ). When the energy per
symbol is Eb and the power spectral density of the additive white Gaussian noise in the
channel is N0/2 , then we know that the average probability of error is

Pr{e} = Q

(√
Eb

N0/2

)
. (4.9)

In mobile communications, one of the dominating effects is fading. A simple model
of fading is as follows: Let the channel attenuate the signal by a random variable A .
Specifically, if si is transmitted, the received signal is Y = Asi + N . The probability
density function of A depends on the particular channel that is to be modeled.3 Suppose
A assumes the value a . From the receiver point of view this is as if there is no fading
and the transmitter uses the signals as0(t) and −as0(t) . Hence,

Pr{e|A = a} = Q

(√
a2Eb
N0/2

)
. (4.10)

The average probability of error can thus be computed by taking the expectation over the
random variable A , i.e.

Pr{e} = EA[Pr{e|A}] (4.11)

An interesting, yet simple model is to take A to be a Rayleigh random variable, i.e.

fA(a) =

{
2ae−a

2
, if a ≥ 0,

0, otherwise..
(4.12)

This type of fading, which can be justified especially for wireless communications is called
Rayleigh fading.

(i) Compute the average probability of error for antipodal signaling subject to Rayleigh
fading.

(ii) Comment on the difference between Eqn. (4.9) (the average error probability without
fading) and your result in (i) (the average error probability with Rayleigh fading). Is it
significant? For an average error probability Pr{e} = 10−5 , find the necessary Eb/N0 for
both cases.

3In a more realistic model, not only the amplitude, but also the phase of the channel transfer function
is a random variable.
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Problem 4. (i) The root-mean square (rms) bandwidth of a low-pass signal g(t) of finite
energy is defined by

Wrms =

[∫∞
−∞ f 2|G(f)|2df∫∞
−∞ |G(f)|2df

]1/2

where |G(f)|2| is the energy spectral density of the signal. Correspondingly, the root
mean-square (rms) duration of the signal is defined by

Trms =

[∫∞
−∞ t2|g(t)|2dt∫∞
−∞ |g(t)|2dt

]1/2

.

Using these definitions and assuming that |g(t)| → 0 faster than 1/
√
|t| as |t| → ∞ ,

show that

TrmsWrms ≥
1

4π
.

Hint: Use Schwarz’s inequality{∫ ∞

−∞
[g∗1(t)g2(t) + g1(t)g

∗
2(t)]dt

}2

≤ 4

∫ ∞

−∞
|g1(t)|2dt

∫ ∞

−∞
|g2(t)|2dt

in which we set
g1(t) = tg(t)

and

g2(t) =
dg(t)

dt
.

(ii) Consider a Gaussian pulse defined by

g(t) = exp(−πt2).

Show that for this signal, the equality

TrmsWrms =
1

4π

can be reached.

Hint:

exp(−πt2) F←→ exp(−πf 2).

Problem 5. (Minimum Energy for Orthogonal Signaling)

Let H ∈ {1, . . . ,m} be uniformly distributed and consider the communication problem
described by:

H = i : Y = si + Z, Z ∼ N (0, σ2Im),
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where s1, . . . , sm , si ∈ Rm , is a set of constant-energy orthogonal signals. Without loss
of generality we assume

si =
√
Eei,

where ei is the i th unit vector in Rm , i.e., the vector that contains 1 at position i and
0 elsewhere, and E is some positive constant.

(a) Describe the statistic of Yj (the j th component of Y ) for j = 1, . . . ,m given that
H = 1 .

(b) Consider a suboptimal receiver that uses a threshold t = α
√
E where 0 < α < 1 .

The receiver declares Ĥ = i if i is the only integer such that Yi ≥ t . If there is no
such i or there is more than one index i for which Yi ≥ t , the receiver declares that
it can’t decide. This will be viewed as an error.

Let Ei = {Yi ≥ t} , Ec
i = {Yi < t} , and describe, in words, the meaning of the event

E1 ∩ Ec
2 ∩ Ec

3 ∩ · · · ∩ Ec
m.

(c) Find an upper bound to the probability that the above event does not occur when
H = 1 . Express your result using the Q function.

(d) Now we let E and lnm go to ∞ while keeping their ratio constant, namely E =
Eb lnm log2 e . (Here Eb is the energy per transmitted bit.) Find the smallest value
of Eb/σ2 (according to your bound) for which the error probability goes to zero as E
goes to ∞ . Hint: Use m− 1 < m = exp(lnm) and Q(x) < 1

2
exp(−x2

2
) .

Problem 6. (Pulse Amplitude Modulated Signals)

Consider using the signal set

si(t) = siφ(t), i = 0, 1, . . . ,m− 1,

where φ(t) is a unit-energy waveform, si ∈ {±d
2
,±3

2
d, . . . ,±m−1

2
d} , and m ≥ 2 is an

even integer.

(a) Assuming that all signals are equally likely, determine the average energy Es as a
function of m . Hint:

∑n
i=0 i

2 = n
6

+ n2

2
+ n3

3
. Note: If you prefer you may determine

an approximation of the average energy by assuming that S(t) = Sφ(t) and S is a
continuous random variable which is uniformly distributed in the interval [−m

2
d, m

2
d] .

(b) Draw a block diagram for the ML receiver, assuming that the channel is AWGN with
power spectral density N0

2
.

(c) Give an expression for the error probability.

(d) For large values of m , the probability of error is essentially independent of m but
the energy is not. Let k be the number of bits you send every time you transmit
si(t) for some i , and rewrite Es as a function of k . For large values of k , how does
the energy behaves when k increases by 1?
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Controlling the Spectrum

5.1 Introduction

In many applications, notably cellular communications, the power spectral density of the
transmitted signal has to fit a certain frequency-domain mask. This restriction is enforced
to limit the amount of interference that a user can cause to users of adjacent bands. In
this chapter we learn some basics on how to fulfill certain frequency domain constraints.
We will always assume the additive white Gaussian noise (AWGN) channel with noise
power spectral density N0

2
.

Before reading the next section you may want to review the sampling theorem in the
appendix of this chapter.

5.2 The Ideal Lowpass Case

An instructive case to start with is when the spectrum of the transmitted signal has to
vanish outside a frequency interval [−B,B] for some bandwidth B . When this is the case
we talk about lowpass communication. Sometimes the limitation is due to regulations and
sometimes it is due to the channel characteristic. For instance, analog telephone lines have
a lowpass filter with cut-off frequency roughly at 4 KHz. In either case it is convenient to
immagine that the channel model is that of Figure 5.1 where the channel impulse response
h is that of an ideal lowpass filter, i.e.,

hF(f) =

{
1, |f | ≤ B

0, otherwise.

The sampling theorem is the right tool to deal with this situation:

123
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- h(t) -�
��
-

6

N(t)

AWGN, No

2

Figure 5.1: Lowpass channel model.

Theorem 45. (Sampling Theorem)1 Let s(t) be a function in L2 that is lowpass limited
to B . Then s(t) is specified by its values at a sequence of points spaced T = 1

2B
apart.

In particular

s(t) =
∞∑

n=−∞

s(nT ) sinc(
t

T
− n) (5.1)

where sinc(t) = sin(πt)
πt

. 2

The sinc pulse does not have unit energy. Hence we define (its normalized version)
ψ(t) = 1√

T
sinc ( t

T
) . The set {ψ(t − jT )}∞j=−∞ forms an orthonormal set. Hence (5.1)

can be rewritten as

s(t) =
∞∑

j=−∞

sjψ(t− jT ), ψ(t) =
1√
T

sinc (
t

T
) (5.2)

where sj = s(jT )
√
T . This highlights the way the sampling theorem should be seen,

namely as an orthogonal (but not orthonormal) expansion. In this expansion the basis
is formed by time translates of sinc pulses. Implicit in the sampling theorem is that the
set {ψ(t− iT )}∞i=−∞ is a complete orthonormal basis for the inner product space of finite
energy waveforms that are lowpass limited to B = 1

2T
.

Now let us go back to our communication problem. The filter in the channel model
is lowpass. Hence, any component of the transmitted signal s(t) that lies outside the
frequency range [−B,B] will not be visible to the receiver; thus we may as well consider
only signals s(t) that have no frequency components outside [−B,B] . All such signals
may be written in the form (5.2). Hence, without loss of generality, we may decide to
transmit only signals of the form (5.2). Notice that (5.2) is the familiar form

∑
j sjψj(t)

with ψj(t) = ψ(t− jT ) . For these signals the filter is transparent, which implies that the
optimal receiver derived in Chapter 3 for the AWGN channel (without lowpass filter) is
also optimal for the channel model at hand. Figure 5.2 shows the system block diagram.
For now sj is a symbol that may take values in any discrete subset of R such as PAM.
(Later on we will see that there is a benefit in letting it be from a discrete subsets of C .
An example of this is PSK where symbols are seen as elements of C rather than of R2 )

1See the Appendix for a proof of the sampling Theorem.
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Figure 5.2: Lowpass system.

It is interesting to observe that the sampling theorem is somewhat used backwards in
the diagram of Figure 5.2 . Until now you have probably seen sampling being done at
the source and reconstruction at the destination. In Figure 5.2 the reconstruction part of
the sampling theorem is used at the sender, and the sampling part at the receiver. The
receiver also contains a filter with impulse response ψ(−t) but this filter only scales s(t) .
In fact, due to the symmetry of the sinc pulse, ψ(−t) = ψ(t) . Hence the filter at the
receiver is an ideal lowpass (up to some scaling factor) that lets s(τ) through and cuts
off the components of the noise N(t) that fall outside [−B,B] . It is also interesting to
observe that the sender and the receiver have the same structure as that of bit-by-bit on
a pulse train described in Example 43.

From the input to the output of the block diagram of Figure 5.2 we see the discrete-time
Gaussian channel depicted in Figure 5.3 and studied in Chapter 2. The channel takes and
delivers a new symbol every T seconds. In the sampling theorem sj is an arbitrary real
number, but we would only use values that are element of the signal constellation. As we
will see, the spectrum does not change if subsequent symbols are selected independently.
If a symbol carries ks bits, i.e. it is element of a constellation that contains 2ks signal
points, then the system carries ks

T
bits per second.

sj -�
��
- Yj = sj + Zj

6

Z

iid ∼ N (0, N0

2
)

Figure 5.3: Equivalent discrete time channel.
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5.3 Generalization Using Nyquist Pulses

The system described in the previous section, if implemented, produces a strictly rectan-
gular spectrum. Nobody requires the spectrum to end with a strictly vertical edge and
for a good reason: it would require using sinc pulses and sinc pulses are both non-causal
and of infinite duration. What if we do not use sinc pulses?

The front end of the receiver of Figure 5.2 is optimal provided that {ψ(t − iT )}, i ∈ Z ,
is an orthonormal sequence. As long as this is the case, the probability of error will not
depend on ψ . However, ψ does affect the spectrum of the transmitted signal. We will
se that the power spectral density of the transitted signal when symbols are iid and have

second moment E is E|ψF (f)|2
T

. This suggests that we may want to choose ψ starting from
its Fourier transform ψF . Nyquist theorem, that we now derive, gives the necessary and
sufficient condition that ψF has to satisfy to ensure that the time domain pulse ψ and
its shifts form an orthonormal sequence, i.e.,∫ ∞

−∞
ψ(t− nT )ψ∗(t)dt = δn. (5.3)

First define the following periodic function of period 1
T

g(f) =
∑
k∈Z

ψF(f +
k

T
)ψ∗F(f +

k

T
).

We can now transform (5.3) as follows:

δn =

∫ ∞

−∞
ψ(t− nT )ψ∗(t)dt

(a)
=

∫ ∞

−∞
ψF(f)ψ∗F(f)e−j2πnTfdf

(b)
=

∫ 1
2T

− 1
2T

g(f)e−j2πnTfdf,

(5.4)

where in (a) we used Parseval’s relationship and the shift property of the Fourier trans-
form, and in (b) we made repeated use of the fact that for an arbitrary function u(x) and
an arbitrary interval [−a

2
+ ia, a

2
+ ia] in the domain of u ,∫ a

2
+ia

−a
2
+ia

u(x)dx =

∫ a
2

−a
2

u(x+ ia)dx.

But the last expression in (5.4) is An

T
, where An is the n -th Fourier series coefficient of

g(f) (see 5.9). Comparing the first and the last term in (5.4), we also see that A0 = T
and An = 0, n 6= 0. This means that g(f) = T . Since g(f) has period 1

T
, g(t) is

constant over all f ∈ R iff it is constant over an arbitrary interval of length 1
T

.

We have proved the following
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Theorem 46. (Nyquist). A waveform ψ(t) is orthonormal to each shift ψ(t − nT ) if
and only if

∞∑
k=−∞

|ψF(f +
k

T
)|2 = T for all f in some interval of length

1

T
. (5.5)

2

Waveforms that fulfill Nyquist theorem are called Nyquist pulses. A few comments are in
order:

(a) Often we are interested in Nyquist pulses that have small bandwidth, between 1/2T
and 1/T . For pulses that are strictly bandlimited to 1/T or less, the Nyquist criterion
is satisfied if and only if |ψF( 1

2T
− ε)|2 + |ψF(− 1

2T
− ε)|2 = T for ε ∈ [− 1

2T
, 1

2T
]

(See the picture below). If we assume (as we do) that ψ(t) is real-valued, then
|ψF(−f)|2 = |ψF(f)|2 . In this case the above relationship is equivalent to

|ψF(
1

2T
− ε)|2 + |ψF(

1

2T
+ ε)|2 = T, ε ∈ [0,

1

2T
].

This means that |ψF( 1
2T

)|2 = T
2

and the amount by which |ψF(f)|2 increases when
we go from f = 1

2T
to f = 1

2T
− ε equals the decrease when we go from f = 1

2T
to

f = 1
2T

+ ε .

- f

6

T

�
����� HH

H
HHH

|ψF(f)|2 and |ψF(f − 1
T
)|2

����
�� HH

H
HHH

?

|ψF( 1
2T
− ε)|2 + |ψF(− 1

2T
− ε)|2 = T

1
2T

1
T

Figure 5.4: Nyquist condition for pulses ψF(f) that have support within [− 1
T
, 1
T
] .

(b) The sinc pulse is just a special case of a Nyquist pulse. It has the smallest possible
bandwidth, namely 1/2T [Hz], among all pulses that satisfy Nyquist criterion for a
given T . (Draw a picture if this is not clear to you).

(c) Nyquist criterion is a condition expressed in the frequency domain. It is equivalent
to the time domain condition (5.3). Hence if one asks you to “verify that ψ(t) fulfills
Nyquist criterion” it does not mean that you have to take the Fourier transform of
ψ and then check that ψF fulfills (5.5). It may be easier to check if ψ fulfills the
time-domain condition (5.3).
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(d) Any pulse ψ(t) that satisfies

|ψF(f)|2 =


T, |f | ≤ 1−α

2T
T
2

(
1 + cos

[
πT
α

(
|f | − 1−α

2T

)])
, 1−α

2T
< |f | < 1+α

2T

0, otherwise

for some α ∈ (0, 1) fulfills Nyquist criterion. Such a pulse is called a root-raised-
cosine pulse. (Draw a picture).

(e) We have derived Nyquist criterion inspired by what we have done in Section 5.2.
However, Nyquist criterion is not limited to lowpass signals. If ψ fulfills Nyquist
criterion and has bandpass characteristic then it will give rise to a bandpass signal
s(t) .

5.4 Summary and Conclusion

The communication problem, as we see it in this course, consists of signaling to a recipient
a message chosen by a sender. The message is one out of m possible messages. Each
message has a unique signal used as a proxis to communicate the message across the
channel.

Regardless of how we pick the m signals, which are assumed to be finite-energy and
known to the sender and the receiver, there exists an orthonormal basis ψ1 . . . ψn and a
constellation of points s0, . . . , sm−1 in Cn (the signal space) such that

si(t) =
n∑
j=1

sijψj(t), i = 0, . . . ,m− 1. (5.6)

A minimum-probability-of-error receiver that observes the received signal R may decide
which message was signaled by means of a vector Y = (Y1, . . . , Yn)

T ∈ Cn where Yj =
〈R,ψj〉 .

It is up to us to decide if we want to start by choosing the m waveforms si , i = 0, . . . ,m−1
and then use the Gram Schmidt procedure to find an orthonormal basis ψ1 . . . ψn and
the associated signal-space points s0 . . . , sm−1 , or if we want to start with an arbitrary
orthonormal basis ψ1 . . . ψn and a selection of m signal-space points s0 . . . , sm−1 and let
the signaling waveforms be obtained through (5.6). The latter approach has the advantage
of decoupling design choices that can be made independently: The orthonormal basis
affects the duration of the signals and the bandwidth, whereas the signal space points
affects the transmit power and the probability of error.

In Chapter 4 we have already come across the idea of letting ψ1, . . . ψn be obtained from
a single pulse ψ by the assignment ψi(t) = ψ(t− iT ) . In that occasion we motivated our
choice by saying that a single matched filter is sufficient to generate the n components
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of Y . In the present chapter we have seen that choosing the orthonormal basis by time-
translating a sigle pulse also lets us control the power spectral density of the transmitted

signal which is E |ψF (f)|2
T

. There is a restriction though: we are allowed to use ψ(t− iT )
as ψi(t) iff

〈ψ(t), ψ(t− iT )〉 = δi. (5.7)

The main result of this chapter was the derivation of Nyquist condition: it tells us which

functions |ψF (f)|2
T

(thus which power spectral densities) are compatible with (5.7).
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5.5 Problems

Problem 1. Consider the transmitted signal, S(t) =
∑

iXiψ(t− iT ) , where Xi ∈ {±1}
are i.i.d random variables and {ψ(t − iT )}∞i=−∞ forms an orthonormal set. Let Y (t) be
the matched filter output at the receiver. Then in the absence of noise, Xi ’s are the
samples of Y (t) , sampled at integer multiples of T i.e Y (iT ) = Xi . In this MATLAB
exercise we will try to see how crucial it is to sample at t = iT as opposed to t = iT + ε .
Towards that goal we plot the so-called eye diagram.

An eye diagram is the plot of Y (t+ iT ) versus t ∈ [−T
2
, T

2
] , plotted on top of each other

for each i = 0 · · ·K − 1 , where K is the number of transmitted symbols. Thus at t = 0
on the eye diagram lies our sampling points mentioned earlier.
(a) Assuming K = 100 , T = 1 and 10 samples per time period T , plot the eye diagrams
when,

(i) ψ(t) is a raised cosine with α = 1 .

(ii) ψ(t) is a raised cosine with α = 1
2
.

(iii)ψ(t) is a raised cosine with α = 0 (or sinc ).
(b) From the plotted eye diagrams what can you say about the cruciality of the sampling
points with respect to α .

Problem 2. (Nyquist Pulses.)

(i) Consider the following |θF(f)|2 . The unit on the frequency axis is 1/T and the unit
on the vertical axis is T . Which ones correspond to Nyquist pulses θ(t) for symbol rate
1/T ? Note: Figure (d) shows a sinc 2 function.

!1.5 !1 !0.5 0 0.5 1 1.5
!0.5

0

0.5

1

1.5

2
(a)

f
!1.5 !1 !0.5 0 0.5 1 1.5

!0.5

0

0.5

1

1.5

2
(b)

f

!1.5 !1 !0.5 0 0.5 1 1.5
!0.5

0

0.5

1

1.5

2
(c)

f
!3 !2 !1 0 1 2 3

0

0.2

0.4

0.6

0.8

1
(d)

f

(ii) Design a (non-trivial) Nyquist pulse yourself.
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(iii) Sketch the block diagram of a binary communication system that employs Nyquist
pulses. Write out the formula for the signal after the matched filter. Explain the advan-
tages of using Nyquist pulses.

Problem 3. (Nyquist Pulses.)

Consider a pulse p(t) defined via its Fourier transform pF(f) as follows:

1

f [Hz]
f0 + B

2
−f0 + B

2
−f0 − B

2
f0 − B

2

pF(f)

(a) What is the expression for p(t)? (If you can’t determine a mathematical expression,
you may draw p(t) qualitatively).

(b) Determine the constant c so that ψ(t) = cp(t) has unit energy.

(c) Assume that f0 − B
2

= B and consider the infinite set of functions · · · , ψ(t + T ) ,
ψ(t) , ψ(t−T ) , ψ(t−2T ) , · · · . Do they form an orthonormal set for T = 1

2B
? (Explain).

(d) Determine all possible values of f0 − B
2

so that · · · , ψ(t + T ) , ψ(t) , ψ(t − T ) ,
ψ(t− 2T ) , · · · forms an orthonormal set.

Problem 4. (Bandpass Sampling)

(a) Let fs be fixed. Consider a bandpass signal s(t) with support [−(l + 1)fs

2
,−l fs

2
] ∪

[l fs

2
, (l + 1)fs

2
] . Prove that s(t) can be reconstructed from samples of the form s(kTs) ,

where k ∈ Z and Ts = 1
fs

.

Hint: If we define hF(f) = 1[−(l+1) fs
2
,−l fs

2
]∪[l fs

2
,(l+1) fs

2
](f) , then sF(f) = s̃F(f)hF(f) ,

where s̃F(f) =
∑

k∈Z sF(f − fsk) is the periodic extension of sF(f) .

(b) Now, let the signal s(t) be as given in the following Figure:

f [Hz]
1812

|S(f)|

−18 −12
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For the following sampling frequencies fs , indicate (with yes or no) whether or not the
signal s(t) can be reconstructed from its samples taken every Ts = 1

fs
seconds apart.

(i) fs = 10Hz

(ii) fs = 12Hz

(iii) fs = 14Hz

(iv) fs = 16Hz

(v) fs = 18Hz

Problem 5. (Nyquist Criterion) Consider transmitting

S(t) =
∞∑

i=−∞

Xiψ(t− iT )

across an AWGN channel, where ψ(t) is a Nyquist pulse. We know that an optimal thing
to do at the receiver front end is to send the received signal R(t) through the filter with
impulse response ψ∗(−t) and sample the filter output Y (t) at time t = iT .

(a) Show that, in absence of noise, the filter output Y (iT ) equals Xi .

(b) Now assume that you transmit S(t) =
∑∞

i=−∞Xip(t − iT ) and let the received
signal through a filter of real-valued impulse response q(t) . You would like to retain the
property that, in absence of noise, the filter output at time t = iT be Xi . Show that
this is equivalent to ∫ ∞

−∞
p(kT + t)q(−t)dt = δ(k).

(c) Show that the equivalent condition in the frequency domain is

∞∑
l=−∞

pF(f − l

T
)q∗F(f − l

T
) = T for− 1

2T
≤ f ≤ 1

2T
.

Problem 6. (Minimum Energy Bandpass Signals)

Let the transmitted bandpass signal be of the form

x(t) = a cos(2π(fc +
1

T
)t) + b cos(2π(fc +

2

T
)t)

where a and b are parameters, a ∈ {0, 1} and b ∈ {0, 1} .
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(a) Find the baseband equivalent signal xE(t) for the transmitted signal.

(b) Draw the constellation for the set of signals corresponding to all choices of a and b
in either baseband or bandpass.

(c) If a = {0, 1} equally likely and b = {0, 1} equally likely find the average energy of
the baseband signal. Is this a minimum energy configuration? If not how can you
modify the constellation so that it is minimum energy?

Problem 7. (Signals and Sampling: Multiple Choice Test)

Mark the correct choice.

(a) Consider the signal x(t) = cos(2πt)
(

sin(πt)
πt

)2

. Assume that we sample x(t) with

sampling period T . What is the maximum T that guarantees signal recovery?

a) T = 1/8 b) T = 1/4 c) T = 1/2

(b) Consider the three signals s1(t) = 1, s2(t) = cos(2πt), s3(t) = sin2(πt) , for 0 ≤ t ≤ 1 .
What is the dimension of the signal space spanned by {s1(t), s2(t), s3(t)}?
a) 1 b) 2 c) 3

(c) You are given a pulse p(t) with spectrum pF(f) = T (1− |f |T ) , 0 ≤ |f | ≤ 1
T

. What
is the value of

∫
p(t)p(t− 3T )dt? (Hint: First think, then calculate!)

a) 0 b) 3T c) 1
3T
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Appendix 5.A Fourier Series and Sampling Theorem

We briefly review the Fourier series focusing on the big picture and on how to remember
things.

Let f(x) be a periodic function, x ∈ R . It has period p if f(x) = f(x+p) for all x ∈ R .
Its fundamental period is the smallest such p . We are using the “physically unbiased”
variable x instead of t (which usually represents time) since we want to emphasize that
we are dealing with a general periodic function, not necessarily a function of time.

The periodic function f(x) can be represented as a linear combination of complex expo-
nentials of the form ej2π

x
p
i . These are all the complex exponentials that have period p .

Hence
f(x) =

∑
i∈Z

Ai e
j2π x

p
i (5.8)

for some sequence of coefficients . . . A−1, A0, A1, . . . with value in C . This says that
a function of fundamental period p may be written as a linear combination of all the
complex exponentials of period p . You should remember this.

The expression for Ai can also be easily remembered (derived). Two functions of funda-
mental period p are identical iff they coincide over a period. Hence to check if a given
series of coefficients . . . A−1, A0, A1, . . . is the correct series, it is sufficient to verify that

f(x)1[− p
2
, p
2
](x) =

∑
i∈Z

√
pAi

ej
2π
p
xi

√
p

1[− p
2
, p
2
](x).

Since φi(x) = e
j 2π

p xi

√
p

1[− p
2
, p
2
](x), i ∈ Z , is an orthonormal basis, the right side of the above

expression is an orthonormal expansion of the left. The coefficients of an orthonormal
expansion are always found in the same way, namely

√
pAi = 〈f, φ〉.

Hence

Ai =
1

p

∫ p
2

− p
2

f(x)e−j
2π
p
xidx. (5.9)

We hope that this will make it easier for you to remember (or re-derive) (5.8) and (5.9).

As an example of the utility of this relationship we derive the sampling theorem. Recall
that the sampling theorem states that any L2 function s(t) which is bandlimited to B
may be written as

s(t) =
∑
k

s(kT ) sinc

(
t− nT
T

)
where T = 1

2B
.
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Proof of the sampling theorem: By assumption, sF(f) = 0 , f /∈ [−B,B] . Hence, we may
think of sF(f) as being obtained by multiplying its periodic extension, say s̃F(f) , with
1[−B,B](f) . The periodic extension may be written as a Fourier series, yielding

sF(f) = s̃F(f)1[−B,B](f) =
∑
k

Ake
+j 2π

2B
fk1[−B,B](f).

Taking the Fourier transform on both sides, using

1[−B,B](f)⇔ 1

T
sinc(

t

T
), T =

1

2B
,

and the time shift property of the Fourier transform

h(t− τ)⇔ hF(f)e−j2πfτ ,

we obtain

s(t) =
∑
k

Ak
T

sinc

(
t+ kT

T

)
.

We still need to determine Ak

T
. It is straightforward to determine Ak from its definition,

but it is easier to observe that if we plug in t = nT on both sides of the expression above
we obtain s(nT ) = A−n

T
. This completes the proof. To show that it is straightforward,

we also determine Ak from the definition:

Ak =
1

2B

∫ B

−B
sF(f)e−j

2π
2B
kfdf =

1

2B

∫ ∞

−∞
sF(f)e−j

2π
2B
kfdf = Ts(−kT ),

where the first equality is the definition of the Fourier coefficient Ak , the second uses
the fact that sF(f) = 0 for f /∈ [−B,B] , and the third is the inverse Fourier transform
evaluated at t = −kT . 2

Appendix 5.B Power Spectral Density

In this appendix e derive an expression for the power spectral density of a general signal
in the form

X(t) =
∞∑

i=−∞

Xiψ(t− iT −Θ), (5.10)

where ψ(t) is some unit-energy pulse, {Xi}∞i=−∞ is a discrete-time wide-sense stationary
sequence, and Θ is a random variable that is uniformly distributed over the interval
[0, T ) . Except for the random delay Θ and the fact that the symbol sequence is infinite,
this signal has the general form of symbol-by-symbol on a pulse train. Accounting for
a random delay Θ is both realistic and necessary. It is realistic since without it it we
would imply that an observer of the signal X(t) uses a time reference known to the
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sender and that the sender emits the signal in such a way that by the time it reaches the
observer it has a predetermined position on the time line. In reality, an observer expects
a random shift in time due to clock misalignments but also due to the time it takes for
the signal to reach the observer. The reason why we have not mentioned Θ so far is that
its presence up until now would have made no difference other than making the notation
more combersome. Now we need Θ since without it the stochastic process X(t) is not
wide-sense stationary and its power spectral density is not defined.

The first step towards the power spectral density is to compute the correlation RX(t +
τ, t) := E[X(t+ τ)X∗(t)] . It will be expressed as a function of

RX [i] = E[Xj+iXj] (5.11)

and

Rψ(v) =

∫ ∞

−∞
ψ(α+ v)ψ(α)dα : (5.12)

RX(t+ τ, t) = E[X(t+ τ)X∗(t)]

= E[
∞∑

i=−∞

Xiψ(t+ τ − iT −Θ)
∞∑

j=−∞

X∗
jψ

∗(t− jT −Θ)]

= E[
∞∑

i=−∞

∞∑
j=−∞

XiX
∗
jψ(t+ τ − iT −Θ)ψ∗(t− jT −Θ)]

=
∞∑

i=−∞

∞∑
j=−∞

E[XiX
∗
j ]E[ψ(t+ τ − iT −Θ)ψ∗(t− jT −Θ)]

=
∞∑

i=−∞

∞∑
j=−∞

RX [i− j]E[ψ(t+ τ − iT −Θ)ψ∗(t− jT −Θ)]

=
∞∑

k=−∞

RX [k]
∞∑

i=−∞

1

T

∫ T

0

ψ(t+ τ − iT − θ)ψ∗(t− iT + kT − θ)dθ

=
∞∑

k=−∞

RX [k]
1

T

∫ ∞

−∞
ψ(t+ τ − θ)ψ∗(t+ kT − θ)dθ.

Hence

RX(τ) =
∞∑

k=−∞

RX [k]
1

T
Rψ(τ − kT ), (5.13)

where, with a slight abuse of notation, we have written RX(τ) instead of RX(t+ τ, t) to
emphasize that RX(t + τ, t) depends only on the difference τ between the first and the
second variable. It is straightforward to verify that E[X(t)] does not depend on t either.
Hence X(t) is a wide-sense stationary process.



5.B. Power Spectral Density 137

The power spectral density SX is the Fourier transform of RX . Hence,

SX(f) =
|ψF(f)|2

T

∑
k

RX [k] exp(−j2πkfT ).

Notice that the summation is the discrete-time Fourier transform of {RX [k]}∞k=−∞ eval-
uated at fT .

In many cases of interest {Xi}∞i=−∞ is a zero-mean iid sequence. Then RX [k] = Eδk
where E = E[|Xj|2] and the formulas simplify to

RX(τ) = ERψ(τ) (5.14)

SX(f) = E |ψF(f)|2

T
. (5.15)

Example 47. When ψ(t) =
√

1
T
sinc( t

T
) and RX [k] = Eδk , the spectrum is SX(f) =

E1[−B,B](f) , where B = 1
2T

. By integrating the power spectral density we obtain the
power 2BE = E

T
. This is consistent with our expectation: When we use the pulse sinc( t

T
)

we expect to obtain a spectrum which is flat for all frequencies in [−B,B] and vanishes
outside this interval. The energy per symbol is E . Hence the power is E

T
. 2
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Chapter 6

Convolutional Coding and Viterbi
Decoding

In Chapter 3 we have seen that each element of the signal constellation can be written as
si(t) =

∑
sijϕj(t) and we used this fact to derive the MAP (and the ML) receiver for the

AWGN channel. At that stage it was convenient to assume that the signal constellation
si(t) , i = 1, 2, . . . ,m had been given to us. In so doing we did not have to worry about
choosing the signal constellation and it made it clear that the approach we followed is
quite general.

In practice, one picks the signal constellation by choosing directly what goes into the
right hand side of si(t) =

∑
sijϕj(t) . In Chapter 4 we have seen that, whenever possible,

choosing ϕj(t) = ϕ(t − jT ) has a number of desirable properties. This is possible if
we can find a convenient pulse ϕ(t) such that the resulting ϕj(t) = ϕ(t − jT ) form an
orthonormal set. In Chapter 5 we have seen how to choose ϕ(t) as a function of the
spectral slope we want to achieve. In the present chapter we show how to choose the
sij of si(t) =

∑
sijϕj(t) . Up to a scaling factor, we will let them be the outputs of a

convolutional encoder.

The receiver will implement the Viterbi algorithms – a neat and clever way to decode
efficiently in many circumstances. To analyze the bit-error probability we will introduce
a few new tools, notably detour flow graphs and generating functions.

The signals that we will construct will have the following properties: The transmitter and
the receiver adapt naturally to the number k of bits that need to be communicated and
the duration of the transmission grows linearly with the number of bits; the bandwidth is
constant (independently of the number of bits transmitted) and the encoding and decoding
operations are done at low complexity and essentially “on the fly.” As usual, we assume
that signals are passed through the AWGN channel.

139
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Figure 6.1: Rate 1
2

convolutional encoder.

6.1 The Transmitter

Like in bit-by-bit on a pulse train, we assume that the entire transmitted signal has the
form1

si(t) =
n∑
j=1

sijψ(t− jT ),

where i ∈ {0, 1, . . . , 2k − 1} for some integer k ,

sij = xij
√
Es

xij ∈ {±1}.

In both cases we will go straight from the bit sequence to the symbol sequence without
explicitly passing through the message index i that labels si(t) . Unlike for bit-by-bit on
a pulse train, k < n . This implies that when the index i runs over all possible 2k values,
the codeword x = (xi1, . . . , xin) does not range over all possible 2n n -length sequences
with value in {±1}n . Only a subset of such sequences are used. This is what coding is
all about. It helps since the fact that not all sequences with components taking value in
±1 produce a valid signal decreases the chances that a transmitted signal plus noise looks
more like an alternative signal rather than the original. In bit-by-bit on a pulse train we
would not speak of coding since any n tuple in {±Eb}n is a valid signal space point. For
block-orthogonal signaling all components of si except one are zero. This is a form of
coding.

The next step is to specify the signal space points that we use. We specify our 2k sequences
xi1, . . . , xin by means of an encoder. For our encoder, depicted in Figure ??, n = 2k .

The encoder input is a uniformly distributed k -length random vector D = (D1, . . . Dk)
that models the information bits (the source output) to be transmitted. The k encoder

1For most of what we do in this chapter we could assume that the signal has the general form
si(t) =

∑n
j=1 sijψj(t) . We prefer to be more specific and focus to situations of real practical interest.
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output pairs are serialized to form an n -length random sequence X = (X1, X2, . . . , Xn)
used to modulate the pulse train. Hence X

√
Eb is the corresponding signal space point.

The multiplication symbol in Figure ?? represents the usual multiplication over R . How-
ever, this operation is actually the addition over the field that one can define on the set
{±1} . Hence the encoder is linear. More on this in problem 6.

There are alternative ways to describe the encoder. One such alternative way that will
turn out to be useful in determining the error probability is by means of the state diagram
shown below.

1,1

−1,1

−1,−1

1,−1

1|1, 1

1| − 1, 1

1| − 1,−1

−1|1, 1

1|1,−1

−1| − 1, 1

−1| − 1,−1

−1|1,−1

This is a four state machine. Each box represents a state. States are labeled by the
content of the two shift registers of the encoder (previous picture). Arrows represent
transitions. There are two possible transitions from each state. The input symbol Dj

decides which of the two possible transitions is taken at time j . Transitions are labeled
by Dj|X2j−1, X2j .

We agree that initially the encoder is in some arbitrary but fixed state. We assume that
this state is (1, 1) .

The following example shows a source output sequence of length k = 5 and the corre-
sponding encoder output sequence of length n = 10.

Dj 1 −1 −1 1 1
X2j−1, X2j 1, 1 −1,−1 −1, 1 −1, 1 −1,−1

j 1 2 3 4 5
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6.2 The Receiver

Let ‖ si ‖2=
∑n

j=1Esx
2
ij = nEs be the signal’s energy (the same for all signals).

A maximum likelihood (ML) decoder decides for one of the i that maximizes

〈r, si〉 −
nEs
2
,

where the second term is irrelevant since it does not depend on i and r is the received
signal.

Hence the ML decoder picks (one of) the sequence(s) si1, . . . , sin that maximizes∫
r(t)

n∑
j=1

sijψ(t− jT )dt

=
n∑
j=1

sij

∫
r(t)ψ(t− jT )dt

=
n∑
j=1

sijyj

=
√
Es

n∑
j=1

xijyj

where we have defined

yj =

∫
r(t)ψ(t− jT )dt.

Recall that yj is the output at time jT of the filter with impulse response ψ(−t) and
input r(t) .

The difficulty in finding one of the i that maximizes 〈xi,y〉 is that it appears at first
that we have to test all 2k such inner products. Typically k is much larger than 100.
If k = 100 , with a computer that does 109 inner products 〈xi,y〉 in a second it takes
roughly (using 230 to approximate 109 ) 2100/230 = 270 seconds to compute all inner
products. This makes almost 4× 1013 years. The universe is only 20× 109 years old!

What we need is a method that finds the maximum 〈x,y〉 by making a number of
operations that grows linearly (as opposed to exponentially) in k . By cleverly making
use of the encoder structure we will see that this can be done. The result is the Viterbi
algorithm.

To describe the Viterbi algorithm (VA) we need the notion of a trellis. The trellis is an
unfolded transition diagram that keeps track of the passage of time. If we assume that we
start at state (1, 1) , that we transmit k = 5 source digits, and that we append 2 dummy
source digits to ensure that at the end of the transmission the encoder is again in state
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(1, 1) , the trellis diagram looks as in the top drawing of figure 6.2. For each index i ,
there is exactly one path in the trellis between the root (the leftmost node) and the toor2

(the rightmost node) which is labeled by the sequence xi .

Unlike in the state diagram, in the mentioned trellis we have labeled transitions with the
encoder output symbols only. We have dropped the encoder input from the label since
we have ordered states in such a way that the lower branch leaving a state at depth j
corresponds to Dj = 1. Hence it is straightforward to associate a path in the trellis with
the corresponding source sequence.

To decode we do the following. Let y = (y1, y2 . . . yn)
T be the n tuple of matched filter

output symbols. Each xi corresponds to a path in the trellis and the sequence of labels
that we read out along that path is exactly xi . We use y to relabel the path in the
trellis corresponding to xi . Specifically instead of xi,2j−1, xi,2j we now write the branch
metric 〈(xi,2j−1xi,2j)

T , (y2j−1, y2j)
T 〉 . Then, by adding the path metric along the path

corresponding to xi we obtain
∑

j〈(xi,2j−1xi,2j)
T , (y2j−1, y2j)

T 〉 = 〈xi,y〉 . We call this
the path metric. The path metric is the sum of the branch metric along a specific path
between root and toor. The second trellis in Fig. 6.2 has been labeled with branch
metrics.

Maximum likelihood decoding now amounts to finding (one of) the path(s) with the
largest path metrics. The VA is an efficient way to do this. It is convenient to think of
the trellis as a road map with branch metrics instead of distances. The job of the VA is
to find the longest (not the shortest) path between root and toor. How to do this is best
explained by means of an example. (See example in class and bottom two trellises in Fig.
6.2).

2Toor is root read backwards.
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Figure 6.2: The Viterbi algorithm. Top figure: Trellis representing the encoder.
The upper transition leaving a state corresponds to source symbol −1 , the lower

transition to source symbol 1 . Transitions are labeled with the corresponding
output symbols; Second figure: Transitions have been labeled with the branch

metric corresponding to the received sequence
(1, 3), (−2, 1), (4,−1), (5, 5), (−3,−3), (1,−6), (2,−4) (parentheses have been

inserted for convenience only); Third figure: Each state has been labeled with the
metric of the surviving path and non-surviving transitions have been dashed; Fourth
figure: Tracing back from the end we find the decoded path (bold). It corresponds

to source sequence 1, 1, 1, 1,−1, 1, 1 .
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6.3 Bit-Error Probability

We assume that the initial state is (1, 1) and we transmit a number k of bits.

As we have done so far, we determine (an upper bound to) the probability of error by
first conditioning on a fixed transmitted signal. It will turn out that our expression does
not depend on the selected transmitted signal.

Each signal that can be produced by the transmitter has a corresponding trellis path.
The actual path that we assume as being the correct one when we compute (or when we
bound) the bit error probability will be called the reference path. For now, the reference
path is the all-one path. This is the path generated by the all-one source symbols. The
corresponding encoder output sequence also consists of all ones. In this section we assume
that trellis paths are labeled by the corresponding input sequence.

The first new concept needed is that of a detour. Detours are those segments of the path
selected by the Viterbi decoder that do not correspond to the reference path.3 A detour
starts at a node where the decoded path diverges from the reference path and ends at
some later node where the decoded path merges again with the reference path. (See the
figure below.)

Start 2nd detour

Start 1st detour End 1st detour

Toor

All 1 path

Root

End 2nd detour

6.3.1 Counting Detours

The basic idea to determine the bit error probability is simple. For each detour we
determine the probability that the Viterbi decoder takes this detour and the number of
information bit errors i we make when this happens. These two quantities allow us, in
principle, to determine the average bit-error probability. We will actually work with an
upper bound to the probability that the Viterbi decoder takes a given detour. For a
given detour, our upper bound will depend on the number d of discrepancies between the
encoder output sequence corresponding to the detour and that of the reference path.

Example 48. Regardless of the reference path, for our example there is a shortest detour
starting at any state in the trellis (provided we are sufficiently away from the final state
to avoid ”edge effect”). This shortest detour spans 3 trellis sections. (A trellis section is
the portion of the trellis between all states at one depth and all states at the next depth).
The corresponding parameters are i = 1 and d = 5 . 2

3For an analogy, think of the trellis as a road map, of the reference path as of an intended road for
your journey, and the path selected by the Viterbi decoder as of the actual road that you take. Once on
a while you are forced to take a detour with respect to the intended road.
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To avoid end effects, in this section we will assume that the trellis is semi infinite, i.e.,
it extends to infinity to the right. For any given point (depth) on the reference path,
how many detours are there with given parameters i and d? We now proceed to find
this number, denoted by a(i, d) . It will be one of the main ingredient in determining our
upper bound to the bit error probability.

There is a one-to-one correspondence between a detour with respect to the all-one path
and a path between state a and e in the following detour flow graph.

Start Enda e

db

c
D

D2ID2

ID

ID

D

I

The label I iDd , ( i and d nonnegative integers), on a transition denotes that this tran-
sition increases the discrepancies between the two input sequences (reference path and
detour) by i and between the two output sequences by d .

Now we show how to determine a(i, d) . We will actually determine the generating function
T (I,D) of a(i, d) defined as

T (I,D) =
∑
i,d

I iDda(i, d)

You should think of I and D as “place holders” without any physical meaning. It is like
describing the coefficients a0, a1, . . . , an−1 by means of the polynomial p(x) = a0 + a1x+
. . .+an−1x

n−1 . In our case, as we will see, having the generating function T (I,D) is more
convenient than having a(i, d) for all i and all d . We determine T (I,D) recursively as
follows. We introduce auxiliary generating functions, one for each intermediate state of
the detour flow graph, namely:

Tb(I,D) =
∑
i,d

I iDdab(i, d) (6.1)

Tc(I,D) =
∑
i,d

I iDdac(i, d) (6.2)

Td(I,D) =
∑
i,d

I iDdad(i, d) (6.3)
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As a(i, d) is the number of paths in the detour flow graph that start at Start, end at End,
and have parameters i and d , so ab(i, d) is the number of paths in the detour flow graph
that start at Start, end at b , and have parameters i and d . Similar definitions apply for
ac(i, d) and ad(i, d) . From the detour flow graph, we immediately see that the following
relationships hold:

Writing Tc instead of Tc(I,D) we have the following relationships:

Tb = Ta ID
2 + Td I

Tc = Tb ID + Tc ID

Td = TbD + TcD

T = TdD
2

The above system may be solved for T by pure formal manipulations. (Like solving a
system of equations). The result is

T (I,D) =
ID5

1− 2ID
.

The above expression T (I,D) is what we need. However, to show that one can indeed
obtain a(i, d) from T (I,D) , using the expansion 1

1−x = 1 + x+ x2 + x3 + · · · we write

T (I,D) =
ID5

1− 2ID
= ID5(1 + 2ID + (2ID)2 + (2ID)3 + · · · (6.4)

= ID5 + 2I2D6 + 22I3D7 + 23I4D8 + · · · (6.5)

This means that there is one path with parameters d = 5, i = 1, that there are two
paths with d = 6, i = 2, etc. In general, for i = 1, 2, . . . we have

a(i, d) =

{
2i−1, d = i+ 4

0, otherwise.

You can verify on the detour flow graph that there is a detour with i = 1 and d = 5, two
detours with d = 2 d = 6, four with i = 3, d = 7, etc. Next we show that a(i, d) does
not depend on the reference path, provided that the encoder is linear.

Let D∗ be the set of finite length strings of symbols in {±1} . Let a ∈ D∗ , be the
reference encoder-input sequence. Let f : D∗ → D∗ be the encoder map. Hence f(a) is
the encoder output that corresponds to input sequence a .

For a sequence a ∈ D∗ and positive integers k, l , we define alk = (ak, ak+1, . . . , al) to be
the subsequence that starts with index k and ends with index l , k ≤ l . The set of all
such sequences is denoted by {±1}lk .

We will be interested in knowing how many “-1”are contained in a given sequence a ∈
{±1}lk . Let w(a) denote this number.

w(a) =| {j : aj = −1} |
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Let Aj,i,d be the set of all treillis paths that contain a detour that leave the all-one
sequence at depth j (j = 0, 1, . . .) and has parameters i and d , i.e.

Ai,j,d =
{
c ∈ {±1}∞1 : w(cj1) = 0, cj+1 = −1, w(c) = i, w(f(c)) = d

}
Then a(i, d) =| Aj,i,d | , where the right hand side does not depend on the depth j since
the encoder is time-invariant in the following sense. If input a = a1, a2, . . . produces a
detour to the all-one path that starts at depth j and has parameters i and d , then the
input 1,a = 1, a1, a2, . . . produces a detour that starts at depth j+1 and has parameters
i and d .

Similarly, define Ai,j,d(a) to be the set of all treillis paths that contain a detour that
starts at time i and has parameters i and d when we consider the path label f(a) as
the reference path:

Aj,i,d(a) =
{
e ∈ D∗ : w((ea)j1) = 0, (ea)j+1 = −1, w(ea) = i, w(f(e)f(a)) = d

}
,

where ea denotes the componentwise product of e and a .

Let aj,i,d(a)
4
=| Aj,i,d(a) | be the number of such detours. We want to show that for all a ∈

D∗ , aj,i,d(a) = a(i, d) . It suffices to show that there exists a one-to-one correspondence
between the elements of Aj,i,d(a) and those of Aj,i,d . We claim that the mapping

g : Aj,i,d(a)→ Aj,i,d

that sends e ∈ Aj,i,d(a) to ea is such a correspondence.

If we let c = ea and use the definition of Aj,i,d(a) and the linearity of f which implies
f(e)f(a) = f(ea) = f(c) , we see immediately that c ∈ Aj,i,d. Now let c ∈ Aj,i,d . The
inverse mapping g−1 maps c to e = ca . Using the definition of Aj,i,d , the fact that
ea = caa = c and the linearity of f which implies f(e)f(a) = f(ea) = f(c) we
immediately verify that c ∈ Aj,i,d(a) . This completes the proof.

6.4 Upper Bound to Pb

We are now ready for the final step, namely the derivation of a tight upper bound to the
bit-error probability.

Fix an arbitrary encoder input sequence, let x = x1, x2 . . . , xn be the corresponding
encoder output sequence and s =

√
Esx be the corresponding point in signal space. The

transmitted signal is

s(t) =
∑

siψ(t− iT ).

We transmit this signal over an AWGN channel with power spectral density N0/2 . Let
r(t) = s(t) + z(t) be the received signal (where z(t) is a sample path of the noise process
Z(t) ) and let

y = (y1, . . . , yn)
T , yi = 〈r, ψi〉
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be a sufficient statistic.

The Viterbi algorithm labels each branch in the trellis with the corresponding branch
metric and finds the path through the trellis with the largest path metric. A branch
from depth j to j + 1 with output symbols x2j−1, x2j is assigned the branch metric
y2j−1x2j−1 + y2jx2j .

The ML path selected by the Viterbi decoder may contain several detours. Let wj ,
j = 0, 1, . . . , k − 1 , be the number of errors made on a detour that begins at depth j .
If at depth j the VD is on the correct path or if it follows a detour started earlier then
we let wj = 0. Let Wj be the corresponding random variable (over all possible noise
realizations).

The total of source symbol errors for the path selected by the VD is

k−1∑
j=0

wj

and 1
k

∑k−1
j=0 wj is the fraction errors with respect to the k source symbols. Hence we

define the bit-error probability

Pb
4
= E

1

k

[
k−1∑
j=0

Wj

]
=

1

k

k−1∑
j=0

EWj

Let us now focus on a detour. If it starts at depth j and ends at depth l = j + m ,
then the corresponding encoder-output symbols are some 2m tuple ū ∈ {±1}2m . Let
u = (x2j, . . . , x2l−1)

T ∈ {±1}2m be the corresponding sub-sequence of the correct path
and ρ = (y2j, . . . , y2l−1)

T the corresponding channel output subsequence.

Detour starts at depth

Detour ends at depth
l = j +m

j
ū

u

Let d be the number of positions in which u and ū differ (also called Hamming distance
d(u, ū) between u and ū ).

Notice that the Euclidean distance between the corresponding waveforms is the distance
between

√
Esu and

√
Esū which is dE = 2

√
Esd .

A necessary (but not sufficient) condition for the Viterbi decoder to take the detour under
consideration is that

〈ρ,
√
Esu〉 ≤ 〈ρ,

√
Esū〉.
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This condition is satisfied iff

‖ ρ−
√
Esu ‖2≥‖ ρ−

√
Esū ‖2 .

If u is the correct sequence and ū is the only alternative, then the above event happens
with probability

Q

(
dE
2

1

σ

)
where σ2 = N0

2
and dE = 2

√
Esd .

Recall (the Bhattacharyya bound for the Gaussian channel) that

Q

(
dE
2σ

)
= Q

(√
2Esd

N0

)
≤ e

−Esd
N0 = zd,

where we have defined z = e
−Es

N0 .

For the purpose of the next step in the calculation, let us imagine that we enumerate
all detours that leave at depth j the correct path. Explicitely, if there are Lmax such
detours, let us assign to each detour a unique index from the set {1, 2, . . . , Lmax} and let
i(l) be the Hamming distance between the information subsequence that corresponds to
detour l and that of the correct path. Let d(l) be the Hamming distance between the
encoder output subsequence that corresponds to the l th detour and that of the correct
patch. With this notation,

EWj =
Lmax∑
l=1

i(l)πl

where πl stands for the probability that detour l is taken. Using πl ≤ zd(l) we obtain

EWj ≤
Lmax∑
l=1

i(l)zd(l)

=
∞∑
i=1

∞∑
d=0

izda(i, d),

where a(i, d) = |{l : i(l) = i, d(l) = d}| . Using the relationship

∞∑
i=1

if(i) =
∂

∂I

∞∑
i=0

I if(i)

∣∣∣∣
I=1

,

which holds for any function f , we may write

EWj ≤
∂

∂I

∞∑
i=1

∞∑
d=0

I izda(i, d)

∣∣∣∣
I=1

=
∂

∂I
T (I,D)

∣∣∣∣
I=1,D=z

.
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Since the upperbound to EWj does not depend on j , in the following expression it can
be moved in front of the sum to obtain

Pb =
1

k

k−1∑
j=0

EWj ≤
∂

∂I
T (I,D)

∣∣∣∣
I=1,D=z

.

This result can be generalized to an encoder that, in each trellis section, takes k0 infor-
mation symbols and produces n0 channel symbols, n0 ≥ k0 (in our example k0 = 1 and
n0 = 2) , and for any memoryless channel (not just the AWGN).

In our particular example

T (D, I) =
ID5

1− 2ID
∂T

∂I
=

D5

(1− 2ID)2
.

Thus

Pb ≤
z5

(1− 2z)2
,

where z = e
− Eb

2N0 and Es = Eb

2
(we are transmitting two channel symbols per information

bit).

6.5 Concluding Remarks

What have we done and how does it compare to what we have done before?

It is convenient to think of the bit-by-bit as our starting point.

s(t) =
n−1∑
i=0

siψ(t− iT )

si ∈ {±
√
Es}.

The relevant design choices for this system are:

Rb = Rs =
1

T
bit rate

Eb = Es energy per bit

Pb = Q

(√
Es
σ

)
, bit-error probability.

Using σ =
√

N0

2
and the upper bound Q(x) ≤ e−

x2

2 we obtain

Pb ≤ e
−Eb

N0 .
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The novelty of this chapter was to have an encoder in front of the bit-by-bit on a pulse
train. The encoder trades Pb for Rb . The new parameters are:

Rb =
Rs

2
=

1

2Ts

Eb =
Es
r

= 2Es

Pb ≤
z5

(1− 2z)2
where z = e

− Eb
2N0 .

where r is the dimensionless rate of the encoder in bits
symbol

(r = 1
2

in our example).
It should be emphasized that source symbols are called bits since they carry one bit of
information each. The notion of bits as a unit of information will be introduced to you
in the Information Theory class (7th semester). For now it suffices to say that a binary
random variable carries one bit of information iff it is uniformly distributed, and each
symbol of a sequence of binary random variables carries one bit of information if, in
addition, the symbols are i.i.d.

For a fixed encoder output rate, the power spectral density of the transmitted signal
is the same as that of an uncoded system with the same symbol rate (see Homework).
However, the encoder output has a symbol rate which is twice that of the encoder input
rate. Hence, in effect, we are occupying twice as much bandwidth. We have reduced
the bit-error probability but we have increased the bandwidth by a factor two. With
more powerful codes we can further decrease the bit error probability without further
expanding the bandwidth. As already mentioned in the previous chapter, there is a
fundamental limit, studied in information theory (seen next semester) that says that we
can make the error probability arbitrarily small as long as the bit rate is smaller than a
computable number called channel capacity. For the AWGN channel with bandwidth B ,

the channel capacity is B log2

(
1 + P

BN0

)
[bits/sec], where P is the transmitted power.

The probability of error may be made arbitrarily small by a clever choice of signaling
method. In fact, across a bandlimited channel, one may always transmit signals of the
form

si(t) =
∑
j

sijψ(t− jT )

where ψ(t) = 1√
T
sinc( t

T
) . This follows from the sampling theorem. In general, however,

the sij is not constrained to be of the form {±
√
Es} . Like in the example of this chapter,

the signal space points used to make the probability of error arbitrary small are obtained
from an encoder.

As already mentioned, the encoder is just meant to form appropriate signal points in
n dimensions, where n is typically large. Intuitively speaking, here is what a large n
buys us. Let us start first from the opposite situation and let us assume that we are
operating in one dimension like in pulse amplitude modulation (PAM). Independently of
the transmitted point s , the received point y = s + Z , can be anywhere in R (certain
regions are more likely than other and if we choose the decoding region according to the
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MAP rule then we minimize the error probability, but there is a limit to how small we can
make the probability of error). If we move to n dimensions, then we send some s ∈ Rn

and receive y = s + Z , where Z ∼ N (0, Inσ
2) . By the law of large numbers,

√
1
n

∑
z2
i

goes to σ as n goes to infinity. This means that with probability going to 1 , Y will be
in a thin shell of radios

√
nσ around s . Intuitively, the key here is that in n dimensional

space there are points in Rn that are “off limit” for Y = s+Z . This was not the case for
the corresponding one-dimensional problem. By choosing the signal points cleverly, there
is a hope that we can find a large number of such points that can be distinguished from
one another with hight probability even after they have been sent through the channel.

6.6 Problems

Problem 1. (Power Spectral Density of the convolutional code that was considered in
class.)

Block-orthogonal signaling may be the simplest coding method that achieves Pr{e} → 0
as N → ∞ for a non-zero data rate. However, we have seen in class that the price to
pay is that block-orthogonal signaling requires infinite bandwidth to make Pr{e} → 0 .
This may be a small problem for one space explorer communicating to another; however,
for terrestrial applications, there are always constraints on the bandwidth consumption.
Therefore, in the examination of any coding method, an important issue is to compute
its bandwidth consumption. Compute the bandwidth occupied by the rate−1/2 convo-
lutional code studied in this chapter. The signal that is put onto the channel is given
by

X(t) =
∞∑

i=−∞

Xi

√
Esψ(t− iTs), (6.6)

where ψ(t) is some unit-energy function of duration Ts and we assume that the trellis
extends to infinity on both ends, but as usual we actually assume that the signal is the
wide-sense stationary signal

X̃(t) =
∞∑

i=−∞

Xi

√
Esψ(t− iTs − T0), (6.7)

where T0 is a random delay which is uniformly distributed over the interval [0, Ts) .

(i) Find the expectation E[XiXj] for i = j , for (i, j) = (2n, 2n + 1) and for (i, j) =
(2n, 2n+ 2) for the convolutional code that was studied in class. Then give the autocor-
relation function RX [i− j] = E[XiXj] for all i and j . Hint: Consider the infinite trellis
of the code. Recall that the convolution code studied in the class can be defined as

X2n = DnDn−2

X2n+1 = DnDn−1Dn−2
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dn dn−1 dn−2s s
- x2n+1

- x2n

1, 1 s s
−1, 1 s s
1,−1 s s
−1,−1 s sState

Figure 6.3: (2, 3) convolutiojal encoder: x3n = dndn−2 ; x3n+1 = dn−1dn−2 ;
x3n+2 = dndn−1dn−2 .

(ii) Find the autocorrelation function of the signal X̃(t) , that is

RX̃(τ) = E[X̃(t)X̃(t+ τ)] (6.8)

in terms of RX [k] and Rψ(τ) = 1
Ts

∫ Ts

0
ψ(t+ τ)ψ(t)dt .

(iii) Give the expression of power spectral density of the signal X̃(t) .

(iv) Find and plot the power spectral density that results when ψ(t) is a rectangular
pulse of width Ts centered at 0 .

Problem 2. For the convolutional encoder shown below on the left, fill in the section of
the trellis shown below on the right, that is, find the correct arrows and label them with
the corresponding output value pairs (x2n, x2n+1) . The input sequence dn takes values
in {±1} .

Problem 3. Consider the convolutional code described by the trellis section below on the
left. You may assume that each of the encoder output symbols (x2n, x2n+1) , are mapped
into orthogonal waveforms, φ1(t) if xi = +1 and φ2(t) if xi = −1 . The waveforms
are of equal energy Es . At the receiver we perform matched filtering with the filters
matched to φ1(t) and φ2(t) . Suppose the output of the matched filter at time n are
(y2n, y2n+1) = (1,−2) . Find the branch metric values to be used by the Viterbi algorithm
and enter them into the trellis section on the right.
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STATESTATE

−1,−1

1,−1

−1, 1

1, 1

−1,−1

1,−1

−1, 1

1, 1 1, 1

1, 1

1,−1

1,−1

−1,−1
−1,−1

−1, 1−1, 1

Problem 4. In the trellis below, the received sequence has already been preprocessed.
The labels on the edges of the trellis are the branch metric values. Find the maximum
likelihood path.

STATE

−1

1 −23

−3

−1

2

1

−1

1

−2

−2

2

2

5

2

3

−3

Problem 5. (Intersymbol Interference)

An information sequence U = (U1, U2, . . . , U5) , Ui ∈ {0, 1} is transmitted over a noisy
intersymbol interference channel. The i th sample of the receiver-front-end filter (e.g. a
filter matched to the pulse used by the sender)

Yi = Si + Zi,

where the noise Zi forms an independent and identically distributed (i.i.d.) sequence of
Gaussian random variables,

Si =
∞∑
j=0

Ui−jhj, i = 1, 2, . . .

and

hi =


1, i = 0
−2, i = 1
0, otherwise.

You may assume that Ui = 0 for i ≥ 6 and i ≤ 0 .
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(a) Rewrite Si in a form that explicitly shows by which symbols of the information
sequence it is affected.

(b) Sketch a trellis representation of a finite state machine that produces the output
sequence S = (S1, S2, . . . , S6) from the input sequence U = (U1, U2, . . . , U5) . Label each
trellis transition with the specific value of Ui|Si .

(c) Specify a metric f(s, y) =
∑6

i=1 f(si, yi) whose minimization or maximization with
respect to s leads to a maximum likelihood decision on S . Specify if your metric needs
to be minimized or maximized. Hint: Think of a vector channel Y = S + Z , where
Z = (Z1, . . . , Z6) is a sequence of i.i.d. components with Zi ∼ N (0, σ2) .

(d) Assume Y = (Y1, Y2, · · · , Y5, Y6) = (2, 0,−1, 1, 0,−1) . Find the maximum likelihood
estimate of the information sequence U . Please: Do not write into the trellis that you
have drawn in Part (b); work on a copy of that trellis.

Problem 6. (Linear Transformations.)

(i)(a) First review the notion of a field. (See e.g. K. Hoffman and R. Kunze, Linear
Algebra, Prentice Hall or your favorite linear algebra book.)

Now consider the set F = {0, 1} with the following addition and multiplication tables:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

Does F , “+”, and “×” form a field?

(i)(b) Repeat using F = {±1} and the following addition and multiplication tables:

+ 1 −1
1 1 −1
−1 −1 1

× 1 −1
1 1 1
−1 1 −1

(ii)(a) Now first review the notion of a vector space.

Let F , + and × be as defined in (i)(a). Let V = F∞ . (The latter is the set of infinite
sequences with components in F . Does V , F , + and × form a vector space?

(ii)(b) Repeat using F , + and × as in (i)(b).

(iii)(a) Review the concept of linear transformation from a vector space I to a vector
space O . Now let f : I → O be the mapping implemented by the encoder described in
this chapter. Specifically, let x = f(d) be specified by

x2j−1 = dj−1 ⊕ dj−2 ⊕ dj−3

x2j = dj ⊕ dj−2.
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dn dn−1 dn−2s s
- x3n

- x3n+1

- x3n+2

Figure 6.4: Convolutional encoder. x3n = dndn−2 ; x3n+1 = dn−1dn−2 ;
x3n+2 = dndn−1dn−2 .

Is this encoder linear?

Problem 7. (Rate 1/3 Convolutional Code.)

Consider the following convolutional code, to be used for the transmission of some infor-
mation sequence di ∈ {−1, 1} :

(i) Draw the state diagram for this encoder.

(ii) Suppose that this code is decoded using the Viterbi algorithm. Draw the detour
flowgraph.

(iii) This encoder/decoder is used on an AWGN channel. The energy available per source
digit is Eb and the power spectral density of the noise is N0/2 . Give an upper bound on
the bit error probability Pb as a function of Eb/N0 .

Problem 8. (Convolutional Code.)

The following equations define a convolutional code for a data sequence di ∈ {−1, 1} :

x3n = d2n · d2n−1 · d2n−2 (6.9)

x3n+1 = d2n+1 · d2n−2 (6.10)

x3n+2 = d2n+1 · d2n · d2n−2 (6.11)

(i) Draw an implementation of the encoder of this convolutional code, using only delay
elements D and multipliers. Hint: Split the data sequence d into two sequences, one
containing only the even-indexed samples, the other containing only the odd-indexed
samples.
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(ii) What is the rate of this convolutional code?

(iii) Draw the state diagram for this convolutional encoder.

(iv) Does the formula for the upper bound on Pb that was derived in class still hold? If
not, make the appropriate changes.

(v) (optional) Now suppose that the code is used on an AWGN channel. The energy
available per source digit is Eb and the power spectral density of the noise is N0/2 . Give
the detour flowgraph, and derive an upper bound on the bit error probability Pb as a
function of Eb/N0 .

Problem 9. (PSD of a Basic Encoder)

Consider the transmitter shown in Figure 6.5, when . . . D−i, Di, Di+1, . . . is a sequence of
independent and uniformly distributed random variables taking value in {±1} .

Dk

- Delay -�
��
- p(t) -

s(t)Dk−1 −
Xk

6

Figure 6.5: Encoder

The transmitted signal is

s(t) =
∞∑

i=−∞

Xip(t− iT −Θ),

where Θ is a random variable, uniformly distributed in [0, T ] .

Xi = Di −Di−1

p(t) = 1[−T
2
,T
2 ](t).

(a) Determine RX [k] = E[Xi+kXi] .

(b) Determine Rp(τ) =
∫∞
−∞ p(t+ τ)p(t)dt .

(c) Determine the autocorrelation function Rs(τ) of the signal s(t) .

(d) Determine the power spectral density Ss(f) .

Problem 10. (Convolutional Encoder, Decoder and Error Probability Analysis)

Consider a channel, where a transmitter wants to send a sequence {Dj} taking values
in {−1,+1} , for j = 0, 1, 2, · · · , k − 1 . This sequence is encoded using a convolutional
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encoder. The channel adds white Gaussian noise to the transmitted signal. If we let Xj

denote the transmitted value, then, the received value is: Yj = Xj +Zj , where {Zj} is a
sequence of i.i.d. zero-mean Gaussian random variables with variance N0

2
. The receiver

has to decide which sequence was transmitted using the optimal decoding rule.

(a) Convolutional Encoder

Consider the convolutional encoder corresponding to the finite state machine drawn
below. The transitions are labeled by Dj|X2j, X2j+1 , and the states by Dj−1, Dj−2 .
We assume that the initial content of the memory is (1, 1) .

1 | 1, −1

1,−1
−1 | −1, −1

−1 | 1, 1

−1,1

1 | 1, 1

−1 | −1, 1

1,1

−1,−1
1 | −1, −1

1 | −1, 1
−1 | 1, −1

(i) What is the rate of this encoder?

(ii) Sketch the filter (composed of shift registers and multipliers) corresponding to
this finite state machine. How many shift registers do you need?

(iii) Draw a section of the trellis representing this encoder.

(b) Viterbi Decoder

Let X i
j denote the output of the convolutional encoder at time j when we transmit

hypothesis i , i = 0, · · · ,m− 1 , where m is the number of different hypotheses.

Assume that the received vector is Ȳ = (Y1, Y2, Y3, Y4, Y5, Y6) = (−1,−3,−2, 0, 2, 3) .
It is the task of the receiver to decide which hypothesis i was chosen or, equivalently,
which vector X̄ i = (X i

1, X
i
2, X

i
3, X

i
4, X

i
5, X

i
6) was transmitted.

(i) Use the Viterbi algorithm to find the most probable transmitted vector X̄ i .

(c) Performance Analysis
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(i) Suppose that this code is decoded using the Viterbi algorithm. Draw the detour
flow graph, and label the edges by the input weight using the symbol I , and
the output weight using the symbol D .

(ii) Considering the following generating function

T (I,D) =
ID4

1− 3ID
,

What is the value of ∑
i,d

ia(i, d)e
− d

2N0 ,

where a(i, d) is the number of detours with i bit errors and d channel errors?
First compute this expression, then give an interpretation in terms of probability
of error of this quantity.

Hints: Recall that the generating function is defined as T (I,D) =
∑

i,d a(i, d)D
dI i .

You may also use the formula
∑∞

k=1 kq
k−1 = 1

(1−q)2 if |q| < 1 .

Problem 11. (Trellis with Antipodal Signals)

Assume that the sequence X1, X2, . . . is sent over an additive white Gaussian noise chan-
nel, i.e.,

Yi = Xi + Zi,

where the Zi are i.i.d. zero-mean Gaussian random variables with variance σ2 . The
sequence Xi is the output of a convolutional encoder described by the following trellis.

+1
1, 1

1,
−1

−1
−1,−1
−1, 1

j − 1 j

1, 1

1,
−1

−1,−1
−1, 1

j + 1

As the figure shows, the trellis has two states labeled with +1 and −1 , respectively. The
probability assigned to each of the two branches leaving any given state is 1/2 . The trellis
is also labeled with the output produced when a branch is traversed and with the trellis
depths j − 1 , j , j + 1 .

(a) Consider the two paths in the following picture. Which of the two paths is more likely
if the corresponding channel output subsequence y2j−1, y2j, y2j+1, y2(j+1) is 3,−5, 7, 2?
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1, 1

1,
−1

j − 1 j

1, 1

−1, 1

j + 1

y = 3,−5 7, 2

(b) Now, consider the following two paths with the same channel output as in the previous
question. Find again the most likely of the two paths.

1, 1

1,
−1

j − 1 j

1,
−1

−1,−1
j + 1

y = 3,−5 7, 2

(c) If you have made no mistake in the previous two questions, the state at depth j of
the most likely paths is the same in both cases. This is no coincidence as we will now
prove.

The first step is to remark that the metric has to be as in the following picture for
some value of a , b , c , and d .

+1 −a

−b

−1
a

b

j − 1 j

−c

−d

c

d

j + 1

(i) Now let us denote by σk ∈ {±1} the state at depth k , k = 0, 1, · · · , of the
maximum likelihood path. Assume that a genie tells you that σj−1 = 1 and
σj+1 = 1 . In terms of a, b, c, d , write down a necessary condition for σj = 1 .
(The condition is also sufficient up to ties.)

(ii) Now assume that σj−1 = 1 and σj+1 = −1 . What is the condition for choosing
σj = 1?

(iii) Now assume that σj−1 = −1 and σj+1 = 1 . What is the condition for σj = 1?

(iv) Now assume that σj−1 = −1 and σj+1 = −1 . What is the condition for σj = 1?
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(v) Are the four conditions equivalent? Justify your answer.

(d) Comment on the advantage, if any, implied by your answer to part (v) of question
(c).

Problem 12. (Convolutional Code: Complete Analysis)

(a) Convolutional Encoder

Consider the following convolutional encoder. The input sequence Dj takes values in
{−1,+1} for j = 0, 1, 2, · · · , k−1 . The output sequence, call it Xj , j = 0, · · · , 2k−
1 , is the result of passing Dj through the filter shown below, where we assume that
the initial content of the memory is 1.

Dj
-

×m -

6

X2j

X2j+1
Shift

register

(i) In the case k = 3 , how many different hypotheses can the transmitter send
using the input sequence (D0, D1, D2) , call this number m .

(ii) Draw the finite state machine corresponding to this encoder. Label the transi-
tions with the corresponding input and output bits. How many states does this
finite state machine have?

(iii) Draw a section of the trellis representing this encoder.

(iv) What is the rate of this encoder?
(number of information bits /number of transmitted bits).

(b) Viterbi Decoder

Consider the channel defined by Yj = X i
j + Zj . Let X i

j denote the ouput of the
convolutional encoder at time j when we transmit hypothesis i , i = 0, · · · ,m − 1 .
Further, assume that Zj is a zero-mean Gaussian random variable with variance
σ2 = 4 and let Yj be the output of the channel.

Assume that the received vector is Ȳ = (Y1, Y2, Y3, Y4, Y5, Y6) = (1, 2,−2,−1, 0, 3) .
It is the task of the receiver to decide which hypothesis i was chosen or, equivalently,
which vector X̄ i = (X i

1, X
i
2, X

i
3, X

i
4, X

i
5, X

i
6) was transmitted.
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(i) Without using the Viterbi algorithm, write formally (in terms of Ȳ and X̄ i )
the optimal decision rule. Can you simplify this rule to express it as a function
of inner products of vectors? In that case, how many inner products do you
have to compute to find the optimal decision?

(ii) Use the Viterbi algorithm to find the most probable transmitted vector X̄ i .

(c) Performance Analysis.

(i) Draw the detour flow graph corresponding to this decoder and label the edges
by the input weight using the symbol I , the output weight (of both branches)
using the symbol D .

Problem 13. (Viterbi for the Binary Erasure Channel)

Consider the following convolutional encoder. The input sequence belongs to the binary
alphabet {0, 1} . (This means we are using XOR over {0, 1} instead of multiplication
over {±1} .)

dn dn−1 dn−2

x2n

x2n+1

• What is the rate of the encoder?

• Draw one trellis section for the above encoder.

• Consider communication of this sequence through the channel known as Binary Era-
sure Channel (BEC). The input of the channel belongs to {0, 1} and the output
belongs to {0, 1, ?} . The “?” denotes an erasure which means that the output is
equally likely to be either 0 or 1 . The transition probabilities of the channel are
given by

PY |X(0 | 0) = PY |X(1 | 1) = 1− ε,
PY |X(? | 0) = PY |X(? | 1) = ε.

Starting from first principles derive the branch metric of the optimal (MAP) decoder.
(Hint: Start with p(x | y) . Hopefully you are not scared of ∞?)
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• Assuming that the initial state is (0, 0) , what is the most likely input corresponding
to {0, ?, ?, 1, 0, 1}?

• What is the maximum number of erasures the code can correct? (Hint: What is
the minimum distance of the code? Just guess from the trellis, don’t use the detour
graph. :-) )

Problem 14. (Power Spectrum: Manchester Pulse)

In this problem you will derive the power spectrum of a signal

X(t) =
∞∑

i=−∞

Xiφ(t− iTs −Θ)

where {Xi}∞i=−∞ is an iid sequence of uniformly distributed random variables taking
values in {±

√
Es} , Θ is uniformly distributed in the interval [0, Ts] , and φ(t) is the

so-called Manchester pulse shown in the following figure

t

φ(t)

0 TS

1√
TS

- 1√
TS

(a) Let r(t) =
√

1
Ts

1[−Ts
4
,Ts

4
](t) be a rectangular pulse. Plot r(t) and rF(f) , both ap-

propriately labeled, and write down a mathematical expression for rF(f) .

(b) Derive an expression for |φF(f)|2 . Your expression should be of the form A sinm()
()n for

some A , m , and n . Hint: Write φ(t) in terms of r(t) and recall that sin x = ejx−e−jx

2j

where j =
√
−1 .

(c) Determine RX [k]
4
= E[Xi+kXi] and the power spectrum

SX(f) =
|φF(f)|2

TS

∞∑
k=−∞

RX [k]e−j2πkfTs .



Chapter 7

Communication Across Bandpass
AWGN Channels

7.1 Introduction

In the last part of this course we consider communication across bandpass AWGN chan-
nels. The block diagram of a general channel model is shown in Fig. 7.1. It is similar
to the ideal lowpass channel model considered in Section 5.2, but the filter’s frequency
response is now that of an ideal bandpass filter, i.e.,

hF(f) =

{
1, ||f | − f0| ≤ B

2

0, otherwise.

N(t) is white Gaussian noise of power spectral density N0

2
.

- h(t) -�
��
-

6

N(t)

Figure 7.1: Bandpass AWGN Channel

There are various reasons for being interested in knowing how to communicate across a
bandpass AWGN channel. Some of them are rooted into physics and some are dictated
by practical choices. Among the former we mention that in wireless communications
the channel seen between the transmit and the receiver antenna is always a bandpass
channel (low frequency components do not generate electromagnetic waves capable of
traveling long distances with small attenuation). The usable bandwidth of this channel

165
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is typically quite large however (it depends on the antennas among other things). More
severe restrictions are dictated by international agreements that specify which portion of
the electromagnetic spectrum can be used for what.

Regardless whether we have decided to use the better portion of the bandpass determined
by physical constraints, or because we are complying with international regulations, what
we “see” is often a bandpass channel as the one in Fig. 7.1.

If f0 and B are in a certain relationship (See Problem 3 of Chapter 5), then ψ(t) =
h(t)/ ‖ h ‖ fulfills the Nyquist criterion. In this case we can, in principle, proceed exactly
as in the Chapter 5 using this ψ(t) as the basic pulse.

Now we proceed to derive an alternative (more general and widely used) approach that
works regardless of the center frequency f0 and bandwidth B . The idea is to produce
a baseband signal via a baseband Nyquist pulse ψ(t) and then shift the spectrum of
the obtained signal (that we will denote by sE(t) ) to the desired location for s(t) . The
receiver will do a somewhat inverse operation.

7.2 Baseband Equivalent of a Passband Signal

In this section we learn that for each passband signal s(t) and for each “center frequency”
f0 (typically a frequency in the middle of the positive support set of sF(f) ), there is a
well-defined baseband signal sE(t) called the baseband equivalent of s(t) . One can go
from s(t) to sE(t) and back by means of a relatively simple operation. You may want to
review the Appendix before reading on.

We care about sE(t) since at the transmitter it is often much easier to “assemble” sE(t)
and then convert it to s(t) rather than aiming directly at s(t) . Similarly, at the receiver
it is easier to deal with the baseband equivalent of the received signal rather than with
the received signal itself.

What makes sE(t) easier to work with is the fact that it contains relatively low frequencies.
For a low frequency signals a wire is like a pipe. The same wire can act as an antenna to
high-frequency signals. This means interference among signals that are not supposed to
interfere. It also means that the signal at the output of an amplifier may feedback to the
input and turn the amplifier into an oscillator (much as when you put a microphone near
the speaker).

The other reason why we prefer to work with baseband signals as much as possible is that
an amplifier is good only in a given frequency range. Now sE(t) has a fixed frequency
range, whereas we want the center frequency of s(t) to be selectable within some wider
range. This means that an amplifier for s(t) is a more sophisticated device than one for
sE(t) . To be more concrete, sE(t) could have a bandwidth of a few MHz, whereas we
may want to be able to vary the center frequency of s(t) over hundreds of MHz.

Translating the center frequency of an analytic signal ŝ(t) can be easily done using the
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frequency shift property of the Fourier transform: we just multiply it by ej2πf∆t where
f∆ is the desired frequency translate. (See figure below)

After

Before f

0
f

f∆

0

Let s(t) be a real-valued bandpass signal. By this we mean that sF(|f | − f0) = 0 for
|f | − f0 ≥ B for some B . The Fourier transform (amplitude only) of such a signal is
shown on the top figure below. The figure also depicts the analytic equivalent signal ŝ(t)
(middle figure) and the signal

sE(t) = ŝ(t)e−j2πf0t (Complex-Valued Baseband-Equivalent of s(t) )

whose Fourier transform is
sE,F(f) = ŝF(f + f0)

(bottom figure). (The figure does not show the scaling by
√

2 in going from s(t) to ŝ(t) .)

f

f
0

f
0

0

Going the other way is straightforward. As shown in the Appendix, from sE(t) one
immediately obtains s(t) according to

s(t) =
√

2<{sE(t)ej2πf0t}.
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7.3 Up/Down Conversion

As the name indicates, sE(t) is a baseband signal. We know how to generate any such
signal via the sampling theorem or via Nyquist pulses as explained in Chapter 5.1

Hence, to generate a passband signal s(t) we may start with its baseband-equivalent
signal sE(t) and up-convert it as shown in Fig. 7.2.

RE(t) = sE(t) +NE(t)

h(t)e j 2πf0t

e−j 2πf0t

sE(t) s(t)

N(t)

Down converter

Up converter

R(t) = s(t) +N(t)

√
2<{·}

√
2h>(t)

Figure 7.2: Bandpass communication system. Double lines denote complex signals.

Let the channel output signal be R(t) = s(t) + N(t) . Its baseband equivalent signal is
RE(t) = sE(t) + NE(t) and it is obtained as shown in Figure 7.2. RE(t) is a sufficient
statistic (since we can go back to R(t) if we wish). We will see in Chapter 8 that over
the frequency range of interest NE(t) is a complex-valued white Gaussian noise process.
Hence the signal RE(t) is the output of a baseband AWGN channel.

To summarize, by means of the up/down-converter we have reduced the bandpass AWGN
channel to a baseband AWGN channel. Input and output signals to the baseband AWGN
channel are complex-valued but this is not a problem since all the tools we have used so
far (e.g. the L2 space) are valid for complex-valued signals.

Besides being conceptually nice that we can reduce the bandpass channel to a lowpass
channel as shown in Fig. 7.2, the approach described in Fig. 7.2 is not just academic. It is
indeed common practice to carry out as much as possible of the needed signal processing

1The sampling theorem holds unchanged for complex-valued signals.
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at low frequencies (in baseband) where one does not have to worry about a piece of wire
acting variously as an antenna, as a capacitor, or as an inductor.

On the other hand, a common practice of communication system engineers/designers is
to look at the up-converter and at the downconverter as part of the channel and pretend
that he/she has to design a system for baseband communication. We now develop this
view.

7.4 Baseband-Equivalent Channel Impulse Response

Assume that the bandpass channel has an arbitrary real-valued impulse response h(t) ,
i.e., hF(f) is arbitrary in the range ||f | − f0| ≤ B and vanishes outside this range. The
fact that hF(f) vanishes outside the passband range is only important to the extent that
it reminds us that we can’t use the channel outside this range. We also assume that the
noise power spectrum is arbitrary but in this section we neglect the noise and focus on
the channel impulse response.

Neglecting the noise for the moment, we now show that with the up-converter at the
channel input and the down-converter at the channel output we convert the original
bandpass channel into an equivalent baseband channel. We will deal with the noise in
Chapter 8. Notice that we are allowed to study the signal and the noise separately since
the system is linear.

Without noise the input/output relationship is

r(t) = (h ? s)(t).

Taking the Fourier transform on both sides we get the first of the equations below. The
other follow from straightforward manipulations of the first one.

rF(f) = hF(f)sF(f)

rF(f)h>,F(f)
√

2 = hF(f)h>,F(f)sF(f)h>,F(f)
√

2

r̂F(f) =
ĥF(f)√

2
ŝF(f)

rE,F(f) =
hE,F(f)√

2
sE,F(f). (7.1)

Hence, when we send a signal s(t) through a channel of impulse response h(t) it is as
sending the baseband equivalent signal sE(t) through a channel of baseband equivalent

impulse response hE(t)√
2

.

The baseband equivalent channel is shown in Fig. 7.3.

The properties of the noise NZ(t) will be derived in Chapter 9. We may use the baseband
equivalent channel for instance in a simulation in which alternatives for sE(t) are being
tested.
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RE(t) = sE(t) +NE(t)
hE(t)√

2

sE(t)

NE(t)

Figure 7.3: Baseband-equivalent communication system.

7.5 Problems

Problem 1. (Baseband Equivalent Relationship)

In this problem we neglect noise and consider the situation in which we transmit a signal
X(t) and receive

R(t) =
∑
i

αiX(t− τi).

Show that the baseband equivalent relationship is

RE(t) =
∑
i

βi XE(t− τi).

Express βi explicitly.

Problem 2. (Fun with Sine and Cosine)

A bandpass signal x(t) may be written as x(t) =
√

2<{xE(t)ej2πf0t} , where xE(t) is the
baseband equivalent of x(t) .

(a) Show that a signal x(t) can also be written as x(t) = a(t) cos[2πf0t + θ(t)] and
describe a(t) and θ(t) in terms of xE(t) . Interpret this result.

(b) Show that the signal x(t) can also be written as x(t) = xEI(t) cos 2πf0t−xEQ(t) sin(2πf0t) ,
and describe xEI(t) and xEQ(t) in terms of xE(t) . (This shows how you can obtain
x(t) without doing complex-valued operations.)

(c) Find the baseband equivalent of the signal x(t) = A(t) cos(2πf0t + ϕ) , where A(t)
is a real-valued lowpass signal. Hint: You may find it easier to guess an answer and
verify that it is correct.

Problem 3. (Equivalent Baseband Signal)

(a) You are given a “passband” signal ψ(t) whose spectrum is centered around f0 . Write
down in a generic form the different steps needed to find the baseband equivalent
signal.
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(b) Consider the waveform

ψ(t) = sinc

(
t

T

)
cos(2πf0t).

What is the equivalent baseband signal of this waveform.

(c) Assume that the signal ψ(t) is passed through the filter with impluse response
h(t) where h(t) is specified by its baseband equivalent impulse response hE(t) =

1
T
√

2
sinc2

(
t

2T

)
. What is the output signal, both in passband as well as in baseband?

Hint: The Fourier transform of cos (2πf0t) is 1
2
δ(f − f0) + 1

2
δ(f + f0) . The Fourier

transform of 1
T
sinc( t

T
) is equal to 1[− 1

2T
, 1
2T

](f) with 1[− 1
2T
, 1
2T

](f) = 1 if f ∈ [− 1
2T
, 1

2T
]

and 0 otherwise.

Problem 4. (Up-Down Conversion)

We want to send a “passband” signal ψ(t) whose spectrum is centered around f0 , through
a waveform channel defined by its impulse response h(t) . The Fourier transform H(f)
of the impulse response is given by

|H(f)|

1

f1 − 1
2T f1 + 1

2T

f

where f1 6= f0 .

(a) Write down in a generic form the different steps needed to send ψ(t) at the correct
frequency f1 .

(b) Consider the waveform

ψ(t) = sinc

(
t

T

)
cos(2πf0t).

What is the output signal, in passband (at center frequency f1 ) as well as in base-
band?

(c) Assume that f0 = f1 + ε , with ε � 1
2T

, and that the signal ψ(t) is directly trans-
mitted without any frequency shift. What will be the central frequency of the output
signal?

Hint: The Fourier transform of cos (2πf0t) is 1
2
δ(f − f0) + 1

2
δ(f + f0) . The Fourier

transform of 1
T
sinc( t

T
) is equal to 1[− 1

2T
, 1
2T

](f) with 1[− 1
2T
, 1
2T

](f) = 1 if f ∈ [− 1
2T
, 1

2T
]

and 0 otherwise.
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Problem 5. (Smoothness of Bandlimited Signals)

In communications one often finds the statement that if s(t) is a signal of bandwidth
W , then it can’t vary too much in a small interval τ << 1/W . Based on this, people
sometimes substitute s(t) for s(t+ τ) . In this problem we will derive an upper bound for
|s(t + τ)− s(t)| . It is assumed that s(t) is a finite energy signal with Fourier transform
satisfying S(f) = 0 , |f | > W .

(a) Let H(f) be the frequency response of the ideal lowpass-filter defined as 1 for |f | ≤
W and 0 otherwise. Show that

s(t+ τ)− s(t) =

∫
s(ξ)[h(t+ τ − ξ)− h(t− ξ)]dξ. (7.2)

(b) Use Schwarz inequality to prove that

|s(t+ τ)− s(t)|2 ≤ 2Es[Eh −Rh(τ)], (7.3)

where Es is the energy of s(t) ,

Rh(τ) =

∫
h(ξ + τ)h(ξ)dξ

is the (time) autocorrelation function of h(t) , and Eh = Rh(0) .

(c) Show that Rh(τ) = h ∗ h(τ) , i.e., for h the convolution with itself equals its auto-
correlation function. What makes h have this property?

(d) Show that Rh(τ) = h(τ) .

(e) Put things together to derive the upperbound

|s(t+ τ)− s(t)| ≤
√

2Es[Eh − h(τ)] =

√
4WEs

(
1− sin(2πWτ)

2πWτ

)
. (7.4)

[Can you determine the impulse response h(t) without looking it up an without
solving integrals? Remember the “mnemonics” given in class?] Verify that for τ = 0
the bound is tight.

(f) Let ED be the energy in the difference signal s(t + τ) − s(t) . Assume that the
duration of s(t) is T and determine an upperbound on ED .

(g) Consider a signal s(t) with parameters 2W = 5 Mhz and T = 5/2W . Find a
numerical value Tm for the time difference τ so that ED(τ) ≤ 10−2Es for |τ | ≤ Tm .
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Appendix 7.A Some Review from Fourier Analysis

Recall that if s(t) is a real-valued signal, then its Fourier transform sF(f) satisfies the
symmetry property

sF(f) = s∗F(−f) (Symmetry Property)

where s∗F denotes the complex conjugate of sF . If s(t) is a purely imaginary signal, then
its Fourier transform satisfies the anti-symmetry property

sF(f) = −s∗F(−f) (Anti-Symmetry Property).

The symmetry and the anti-symmetry properties can be easily verified directly from the
definition of the Fourier transform. (Would you be able to know how?).

We will also often use the frequency shift property of the Fourier transform, namely

s(t)ej2πf0t ←→ sF(f − f0) (Frequency Shift Property).

The frequency shift property is also an immediate consequence of the definition of the
Fourier transform.

The symmetry property implies that the Fourier transform sF(f) of a real-valued signal
s(t) has redundant information. If we know sF(f) for f ≥ 0 then we can infer sF(f) for
f ≤ 0 and thus we know sF(f) and s(t) for all frequencies and all times, respectively.
This also implies that a real-valued signal s(t) is in one-to-one correspondence with a
complex-valued signal ŝ(t) that occupies 1/2 the bandwidth of s(t) , namely the signal
obtained by removing the negative frequency component from s(t) . If we shift ŝF(f)
by some proper amount f0 we obtain a signal sEF(f) with support centered at f = 0.
Its inverse Fourier transform sE(t) is a baseband complex-valued signal. (It is complex-
valued in general since it does not necessarily fulfill the symmetry property.) This shows
that there is a one-to-one correspondence between the set of complex-valued (baseband)
signals of frequency-domain support [−B

2
, B

2
] and the set of real-valued (passband) signals

of frequency-domain support [−B
2
− f0,−f0 + B

2
] ∪ [−B

2
+ f0, f0 + B

2
] . We now develop

this relationship.

Define the filter with impulse response h>(t) via its Fourier transform h>,F(f) , namely

h>,F(f) =


1 for f > 0
1/2 for f = 0
0 for f < 0.

(7.5)

This is a filter that removes the negative portion of the spectrum.

If s(t) is an arbitrary real-valued signal, define ŝ(t) to be the signal with Fourier transform

ŝF(f) =
√

2sF(f)h>,F(f).
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In going from s(t) to ŝ(t) we have removed the negative part of the spectrum. The factor√
2 is introduced so that s(t) and ŝ(t) have the same L2 norm. A signal ŝ(t) such that

its Fourier transform vanishes at negative frequencies is said to be analytic and ŝ(t) is
called the analytic equivalent of s(t) .

Since s(t) is real-valued, the positive portion of the spectrum contains all the information
about the signal. Hence we should be able to go back from ŝ(t) to s(t) . Indeed

s(t) =
√

2<{ŝ(t)} . (7.6)

One way to see this is to use the relationship

h>,F(f) =
1

2
+

1

2
sign(f)

to obtain

ŝF(f) =
√

2sF(f)h>,F(f)

=
√

2sF(f)[
1

2
+

1

2
sign(f)]

=
sF(f)√

2
+
sF(f)√

2
sign(f).

The first term of last line satisfies the symmetry property (by assumption) and therefore
the second term satisfies the anti-symmetry property. Hence, taking the inverse Fourier
transform, ŝ(t) equals s(t)√

2
plus an imaginary term, implying (7.6).

Another way to prove the same thing is to write

√
2<{ŝ(t)} =

1√
2

(ŝ(t) + ŝ∗(t))

and take the Fourier transform on the right side. The result is

sF(f)h>,F(f) + s∗F(−f)h∗>,F(−f).

For positive frequencies the first term equals sF(f) and the second term vanishes. Hence√
2<{ŝ(t)} and s(t) agree for positive frequencies. But two real-valued signals whose

Fourier transforms agree for positive frequencies must agree everywhere.

We summarize. Let s(t) be real-valued. If we remove its negative frequencies and multiply
by
√

2 to compensate for the energy loss, we obtain its analytic signal ŝ(t) . The real

part of this signal is s(t)√
2

. From ŝ(t) to sE(t) is just a matter of using the frequency shift
property.
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Complex-Valued Random Variables and
Processes

8.1 Introduction

In this chapter we define and study complex-valued random variables and complex-valued
stochastic preocesses. We need them to model the noise of the baseband equivalent
channel. Besides being practical in many situations, working with complex-valued random
variables and processes turns out to be more elegant than working with the real-valued
counterparts. We will focus on complex-valued random variables and processes called
proper (to be defined) since they are what we need and since thy are easier to deal with
than with non-proper counterparts.

In Sections 8.2–8.6 we define proper random variables and processes, study some of their
properties, and derive the probability density function of proper Gaussian random vectors.
In subsequent chapters we will learn how to use eigenvectors to simplify our channel model.

To make the chapter self-contained, Appendix 8.A contains a review of relevant facts that
will be useful throughout. You should review them now.

8.2 Complex-Valued Random Variables

A complex-valued random variable U (hereafter simply called complex random variable)
is defined as a random variable of the form

U = UR + jUI , j =
√
−1,

where UR and UI are real-valued random variables.

The statistical properties of U = UR + jUI are determined by the joint distribution
PURUI

(uR, uI) of UR and UI .

175
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A real random variable X is specified by cumulative distribution function FX(x) =
Pr(X ≤ x) . For a complex random variable Z , since there is no natural ordering in
the complex plane, the event Z ≤ z does not make sense. Instead, we specify a com-
plex random variable by giving the joint distribution of its real and imaginary parts
F<{Z},={Z}(x, y) = Pr(<{Z} ≤ x, ={Z} ≤ y) . Since the pair of real numbers (x, y) can
be identified with a complex number z = x + iy , we will write the joint distribution
F<{Z},={Z}(x, y) as FZ(z) . Just as we do for real valued random variables, if the function
F<{Z},={Z}(x, y) is differentiable in x and y , we will call the function

p<{Z},={Z}(x, y) =
∂2

∂x∂y
F<{Z},={Z}(x, y)

the joint density of (<{Z},={Z}) , and again associating with (x, y) the complex number
z = x+ iy , we will call the function

pZ(z) = p<{Z},={Z}(<{z},={z})

the density of the random variable Z .

A complex random vector Z = (Z1, . . . , Zn) is specified by the joint distribution of
(<{Z1}, . . . ,<{Zn},={Z1}, . . . ,={Zn}) , and we define the distribution of Z as

FZ(z) = Pr(<{Z1} ≤ <{z1}, . . . ,<{Zn} ≤ <{zn},={Z1} ≤ ={z1}, . . . ,={Zn} ≤ ={zn}),

and if this function is differentiable in <{z1}, . . . ,<{zn},={z1}, . . . ,={zn} , then we define
the density of Z as

pZ(x1 + iy1, . . . , xn + iyn) =
∂2n

∂x1 · · · ∂xn∂y1 · · · ∂yn
FZ(x1 + iy1, . . . , xn + iyn).

The expectation of a real random vector x is naturally generalized to the complex case

E[U ] = E[UR] + jE[U I ].

Recall that the covariance matrix of two real-valued random vectors x and y is defined
as

Kxy = cov[x,y]
4
= E[(x− E[x])(y − E[y])T ]. (8.1)

To specify the “covariance” of the two complex random vectors U = UR + jU I and
V = V R + jV I the four covariance matrices

KURV R
= cov[UR,V R]

KUIV R
= cov[U I ,V R]

KURV I
= cov[UR,V I ]

KUIV I
= cov[U I ,V I ]

(8.2)

are needed. These four real-valued matrices are equivalent to the following two complex-
valued matrices, each of which is a natural generalization of (8.1)

KUV
4
= E[(U − E[U ])(V − E[V ])†]

JUV
4
= E[(U − E[U ])(V − E[V ])T ]

(8.3)
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You are encouraged to verify that the following (straightforward) relationships hold:

KUV = KURV R
+KUIV I

+ j(KUIV R
−KURV I

)

JUV = KURV R
−KUIV I

+ j(KUIV R
+KURV I

).
(8.4)

This system may be solved for KURV R
, KUIV I

, KUIV R
, and KURV I

to obtain

KURV R
= 1

2
<{KUV + JUV }

KUIV I
= 1

2
<{KUV − JUV }

KUIV R
= 1

2
={KUV + JUV }

KURV I
= 1

2
={−KUV + JUV }

(8.5)

proving that indeed the four real-valued covariance matrices in (8.2) are in one-to-one
relationship with the two complex-valued covariance matrices in (8.3).

In the literature KUV is widely used and it is called covariance matrix (of the complex
random vectors U and V ). Hereafter JUV will be called the pseudo-covariance matrix
(of U and V ). For notational convenience we will write KU instead of KUU and JU

instead of JUU .

Definition 49. U and V are said to be uncorrelated if all four covariances in (8.2)
vanish.

From (8.3), we now obtain the following.

Lemma 50. The complex random vectors U and V are uncorrelated iff KUV = JUV =
0 .

Proof. The “if” part follows from (8.5) and the “only if” part from (8.4).

8.3 Complex-Valued Random Processes

We focus on discrete-time random processes since corresponding results for continuous-
time random processes follow in a straightforward fashion.

A discrete-time complex random process is defined as a random process of the form

U [n] = UR[n] + jUI [n]

where UR[n] and UI [n] are a pair of real discrete-time random processes.

Definition 51. A complex random process is wide-sense stationary (w.s.s.) if its real
and imaginary parts are jointly w.s.s.
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Definition 52. We define

rU [m,n]
4
= E [U [n+m]U∗[n]]

sU [m,n]
4
= E [U [n+m]U [n]]

as the autocorrelation and pseudo-autocorrelation functions of U [n] .

Lemma 53. A complex random process U [n] is w.s.s. if and only if E[U [n]] , rU [m,n] ,
and sU [m,n] are independent of n .

Proof. The proof is left as an exercise.

8.4 Proper Complex Random Variables

Proper random variables are of interest to us since they arise in practical applications and
since they are mathematically easier to deal with than their non-proper counterparts.1

Definition 54. A complex random vector U is called proper if its pseudo-covariance
JU vanishes. The complex random vectors U 1 and U 2 are called jointly proper if the

composite random vector
[

U1
U2

]
is proper.

Lemma 55. Two jointly proper, complex random vectors U and V are uncorrelated, if
and only if their covariance matrix KUV vanishes.

Proof. The proof easily follows from the definition of joint properness and Lemma 50.

Note that any subvector of a proper random vector is also proper. By this we mean that
if
[
U1
U2

]
is proper, then U1 and U2 are proper. However, two individual proper random

vectors are not necessarily jointly proper.

Using the fact that (by definition) KURUI
= KT

UIUR
, the pseudo-covariance matrix JU

may be written as
JU = (KUR

−KUI
) + j(KUIUR

+KT
UIUR

).

Thus:

Lemma 56. A complex random vector U is proper iff

KUR
= KUI

and KUIUR
= −KT

UIUR
,

i.e. JU vanishes, iff UR and U I have identical auto-covariance matrices and their cross-
covariance matrix is skew-symmetric.2

1Proper Gaussian random vectors also maximize entropy among all random vectors of a given covari-
ance matrix. Among the many nice properties of Gaussian random vectors, this is arguably the most
important one in information theory.

2A matrix A is skew-symmetric if AT = −A .
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Notice that the skew-symmetry of KUIUR
implies that KUIUR

has a zero main diagonal,
which means that the real and imaginary part of each component Uk of U are uncorre-
lated. The vanishing of JU does not, however, imply that the real part of Uk and the
imaginary part of Ul are uncorrelated for k 6= l .

Notice that a real random vector is a proper complex random vector, if and only if it is
constant (with probability 1), since KUI

= 0 and Lemma 56 imply KUR
= 0.

Lemma 57 (Closure Under Affine Transformations). Let U be a proper n -di-
mensional random vector, i.e., JU = 0 . Then any vector obtained from U by an affine
transformation, i.e. any vector V of the form V = AU + b , where A ∈ Cm×n and
b ∈ Cm are constant, is also proper.

Proof. From
E[V ] = AE[U ] + b

it follows
V − E[V ] = A(U − E[U ])

Hence we have

JV = E[(V − E[V ])(V − E[V ])T ]

= E{A(U − E[U ])(U − E[U ])TAT}
= AJUA

T = 0

Corollary 58. Let U and V be as in the previous Lemma. Then U and V are
jointly proper.

Proof. The vector having U and V as subvectors is obtained by the affine transformation[
U
V

]
=

[
In
A

]
U +

[
0
b

]
.

The claim now follows from Lemma 57.

Lemma 59. Let U and V be two independent complex random vectors and let U be
proper. Then the linear combination W = a1U + a2V , a1, a2 ∈ C, a2 6= 0 , is proper iff
V is also proper.

Proof. The independence of U and V and the properness of U imply

JW = a2
1JU + a2

2JV = a2
2JV .

Thus JW vanishes iff JV vanishes.
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8.5 Relationship Between Real and Complex-Valued Op-
erations

Consider now an arbitrary vector u ∈ Cn (not necessarily a random vector), let A ∈
Cm×n , and suppose that we would like to implement the operation that maps u to
v = Au . Suppose also that we implement this operation on a DSP which is programmed
at a level at which we can’t rely on routines that handle complex-valued operations. A
natural question is: how do we implement v = Au using real-valued operations? More
generally, what is the relationship between complex-valued variables and operations with
respect to their real-valued counterparts? We need this knowledge in the next section to
derive the probability density function of proper Gaussian random vectors.

A natural approach is to define the operation that maps a general complex vector u into
a real vector û according to

û =

[
uR

uI

]
4
=

[
<[u]
=[u]

]
(8.6)

and hope for the existence of a real-valued matrix Â such that

v̂ = Âû.

From v̂ we can then immediately obtain v . Fortunately such a matrix exists and it is
straightforward to verify that

Â =

[
AR −AI
AI AR

]
4
=

[
<[A] −=[A]
=[A] <[A]

]
. (8.7)

A set of operations on complex-valued vectors and matrices and the corresponding real-
valued operations are described in the following Lemma.

Lemma 60. The following properties hold:

ÂB = ÂB̂ (8.8a)

Â+B = Â+ B̂ (8.8b)

Â† = Â† (8.8c)

Â−1 = Â−1 (8.8d)

det(Â) = | det(A)|2 = det(AA†) (8.8e)

û + v = û + v̂ (8.8f)

Âu = Âû (8.8g)

<(u†v) = û†v̂ (8.8h)
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Proof. The properties (8.8a), (8.8b) and (8.8c) are immediate. For instance, property
(8.8a) is verified as follows:

ÂB =

[
(AB)R −(AB)I
(AB)I (AB)R

]
=

[
ARBR − AIBI −ARBI − AIBR

ARBI + AIBR ARBR − AIBI

]
=

[
AR −AI
AI AR

] [
BR −BI

BI BR

]
= ÂB̂

Property (8.8d) follows from (8.8a) and the fact that În = I2n . To prove (8.8e) we
use the fact that the determinant of a product is the product of the determinant and
the determinant of a block triangular matrix is the product of the determinants of the
diagonal blocks. Hence:

det(Â) = det

([
I jI
0 I

]
Â

[
I −jI
0 I

])
= det

([
A 0
=(A) A∗

])
= det(A) det(A)∗.

Properties (8.8f), (8.8g) and (8.8h) are immediate.

Corollary 61. If U ∈ Cn×n is unitary then Û ∈ R2n×2n is orthonormal.

Proof. U †U = In ⇐⇒ (Û)†Û = În = I2n .

Corollary 62. If Q ∈ Cn×n is non-negative definite, then so is Q̂ ∈ R2n×2n . Moreover,
u†Qu = û†Q̂û .

Proof. Assume that Q is non-negative definite. Then u†Qu is a non-negative real-valued
number for all u ∈ Cn . Hence,

u†Qu = <{u†(Qu)} = û†(̂Qu)

= û†Q̂û

where in the last two equalities we used (8.8h) and (8.8g), respectively.

Exercise 63. A random vector U is proper iff 2KÛ = K̂U .

8.6 Complex-Valued Gaussian Random Variables

A complex-valued Gaussian random vector U is defined as a vector with jointly Gaussian
real and imaginary parts. Following Feller3, we consider Gaussian distributions to include

3Feller, An Introduction to Probability Theory and its Applications, vol. II. New York: Wiley, 1966,
p. 86.
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degenerate distributions concentrated on a lower-dimensional manifold, i.e., when the
2n× 2n -covariance matrix

cov

([
UR

U I

]
,

[
UR

U I

])
=

[
KUR

KUIUR

KUIUR
KUI

]
is singular and the pdf does not exist unless one admits generalized functions.

Hence, by definition, a complex-valued random vector U ∈ Cn with nonsingular covari-
ance matrix KÛ is Gaussian iff

fU (u) = fÛ (û) =
1

[det(2πKÛ )]
1
2

e−
1
2
(û− m̂ )TK−1

Û
(û− m̂ ). (8.9)

Theorem 64. Let U ∈ Cn be a proper Gaussian random vector with mean m and
nonsingular covariance matrix KU . Then the pdf of U is given by

fU (u) = fÛ (û) =
1

det(πKU )
e−(u−m )†K−1

U (u−m ). (8.10)

Conversely, let the pdf of a random U be given by (8.10) where KU is some Hermitian
and positive definite matrix. Then U is proper and Gaussian with covariance matrix KU

and mean m .

Proof. If U is proper then by Exercise 63√
det 2πKÛ =

√
det πK̂U = | det πKU | = det πKU ,

where the last equality holds since the determinant of an Hermitian matrix is always real.
Moreover, letting v̂ = û− m̂ , again by Exercise 63

v̂†(2KÛ )−1v̂ = v̂†(K̂U )−1v̂ = v†(KU )−1v

where for last equality we used Corollary 62 and the fact that if a matrix is positive
definite, so is its inverse. Using the last two relationships in (8.9) yields the direct part
of the theorem. The converse follows similarly.

Notice that two jointly proper Gaussian random vectors U and V are independent,
iff KUV = 0, which follows from Lemma 55 and the fact that uncorrelatedness and
independence are equivalent for Gaussian random variables.

8.6.1 Densities after Linear transformations of complex random vari-
ables

We know that X is a real random vector with density pX , and if A is a non-singular
matrix, then the density of Y = AX is given by

pY (y) = | det(A)|−1pX(A−1y).
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Now, if Z is a complex random vector with density pZ and if A is a complex non-singular
matrix, then W = AZ is again a complex random vector with[

<{W}
={W}

]
=

[
<{A} −={A}
={A} <{A}

] [
<{Z}
={Z}

]
and thus the density of W will be given by

pW (w) =

∣∣∣∣det

([
<{A} −={A}
={A} <{A}

])∣∣∣∣−1

pZ(A−1w).

From the earlier lecture notes we know that

det

([
<{A} −={A}
={A} <{A}

])
= | det(A)|2,

and thus the transformation formula becomes

pW (w) = | det(A)|−2pZ(A−1w). (8.11)

8.7 Circular Symmetry

We say that a complex valued random variable Z is circularly symmetric if for any
θ ∈ [0, 2π) , the distribution of Zejθ is the same as the distribution of Z .

Using the linear transformation formula (8.11), we see that the density of Z must satisfy

pZ(z) = pZ(z exp(jθ))

for all θ , and thus, pZ must not depend on the phase of its argument, i.e.,

pZ(z) = pZ(|z|).

We can also conclude that, if Z is circularly symmetric,

E[Z] = E[ejθZ] = ejθE[Z],

and taking θ = π , we conclude that E[Z] = 0 . Similarly, E[Z2] = 0 .

For (complex) random vectors, the definition of circular symmetry is that the distribution
of Z should be the same as the distribution of ejθZ . In particular, by taking θ = π , we
see that

E[Z] = 0,

and by taking θ = π/2 , we see that the pseudo covariance

JZ = E[ZZT ] = 0.



184 Chapter 8.

We have shown that if Z is circularly symmetric, then it is also zero mean and proper.

If Z is a zero-mean Gaussian random vector, then the converse is also true, i.e., properness
implies circular symmetry. To see this let Z be zero-mean proper and Gaussian. Then
e−jθZ is also zero-mean and Gaussian. Hence Z and e−jθZ have the same density iff
they have the same covariance and pseudo-covariance matrices. The pseudo-covariance
matrices vanish in both cases (Z is proper and e−jθZ is also proper since it is the linear
transformation of a proper random vector). Using the definition, one immediately sees
that Z and e−jθZ have the same covariance matrix. Hence they have the same density.
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Appendix 8.A A Few Facts of Linear Algebra

Definition 65. A matrix U ∈ Cn×n is said to be unitary if U †U = I . If, in addition,
U ∈ Rn×n, U is said to be orthogonal.

The following theorem lists a number of handy facts about unitary matrices. Most of
them are straightforward.

Theorem 66. If U ∈ Cn×n , the following are equivalent:

(a) U is unitary;

(b) U is nonsingular and U † = U−1 ;

(c) UU † = I ;

(d) U † is unitary;

(e) The columns of U form an orthonormal set;

(f) The rows of U form an orthonormal set; and

(g) For all x ∈ Cn the Euclidean length of y = Ux is the same as that of x ; that is,
y†y = x†x .

Lemma 67. (Schur) For any square matrix A ∈ Cn×n there exists a unitary V and upper
triangular R such that

A = V RV †.

Proof. See Homework.

Definition 68. A matrix A ∈ Cn×n is said to be Hermitian if A = A† . It is said to be
Skew-Hermitian if A = −A† .

Recall that an n× n matrix has exactly n eigenvalues in C .

Lemma 69. Let H ∈ Cn×n be Hermitian. Then

(i) All n eigenvalues of H are real.

(ii) H has a set of eigenvectors {ui : i = 1, . . . , n} that form an orthonormal basis of
Cn .
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Proof. Using the Schur lemma there exists a unitary V and upper triangular R such that
H = V RV † . Since H is Hermitian,

V RV † = (V RV †)† = V R†V †

from which we obtain R = R† . But since R is upper triangular, this implies that R is
real and diagonal. It is now easy to verify that the columns of V are the eigenvectors,
with the i th column of V being an eigenvector with eigenvalue Rii .

Notice that all covariance matrices are Hermitian.

Exercise 70. Show that if A ∈ Cn×n is Hermitian, then u†Au is real for all u ∈ Cn .

A class of Hermitian matrices with a special positivity property arises naturally in many
application, including in communication theory. They provide one generalization to ma-
trices of the notion of positive numbers.

Definition 71. An Hermitian matrix A ∈ Cn×n is said to be positive definite if

u†Au > 0 for all non zero u ∈ Cn .

If the above strict inequality is weakened to u†Au ≥ 0 , then A is said to be posi-
tive semidefinite. Implicit in these defining inequalities is the observation that if A is
Hermitian, the left hand side is always a real number.

Appendix 8.B Linear Transformations (*)

The Fourier transform is a useful tool in dealing with linear time-invariant (LTI) systems.
This is so since the input/output relationship if a LTI system is easily described in the
Fourier domain. In this section we learn that this is just a special case of a more general
principle that applies to linear transformations (not necessarily time-invariant). Key
ingredients are the eigenvectors.

8.B.1 Linear Transformations, Toepliz, and Circulant Matrices

A linear transformation from Cn to Cn can be described by an n× n matrix H . If the
matrix is Toepliz, meaning that Hij = hi−j , then the transformation which sends u ∈ Cn

to v = Hu can be described by the convolution sum

vi =
∑
k

hi−kuk.

A Toepliz matrix is a matrix which is constant along its diagonals.
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In this section we focus attention on Toepliz matrices of a special kind called circulant.
A matrix H is circulant if Hij = h[i−j] where here and hereafter the operator [.] applied
to an index denotes the index taken modulo n . When H is circulant, the operation that
maps u to v = Hu may be described by the circulant convolution

vi =
∑
k

h[i−k]uk.

Example 72.

H =

3 1 5
5 3 1
1 5 3

 is a circulant matrix.

A circulant matrix H is completely described by its first column h (or any column or
row for that matter).

8.B.2 The DFT

The discrete Fourier transform of a vector u ∈ Cn is the vector U ∈ Cn defined by

U = F †u

F = (f 1,f 2, . . . ,fn)

f i =
1√
n


βi0

βi1

...
βi(n−1)

 i = 1, 2, . . . , n,

(8.12)

where β = ej
2π
n is the primitive n -th root of unity in C . Notice that f 1,f 2, . . . ,fn is

an orthonormal basis for Cn .

Usually, the DFT is defined without the
√
n in (8.12) and with a factor 1

n
(instead of

1/
√
n) in the inverse transform. The resulting transformation is not orthonormal, and a

factor n must be inserted in Parseval’s identity when it is applied to the DFT. In this
class we call F †u the DFT of u .

8.B.3 Eigenvectors of Circulant Matrices

Lemma 73. Any circulant matrix H ∈ Cn×n has exactly n (normalized) eigenvectors
which may be taken as f 1, . . . ,fn . Moreover, the vector of eigenvalues (λ1, . . . , λn)

T

equals
√
n times the DFT of the first column of H , namely

√
nF †h .

Example 74. Consider the matrix

H =

[
h0 h1

h1 h0

]
∈ C2×2.
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This is a circulant matrix. Hence

f1 =
1√
2

[
1
−1

]
and f2 =

1√
2

[
1
1

]
are eigenvectors and the eigenvalues are[

λ1

λ2

]
=
√

2F †h =

[
1 −1
1 1

] [
h0

h1

]
=

[
h0 − h1

h0 + h1

]
indeed

Hf 1 =
1√
2

[
h0 − h1

h1 − h0

]
=
h0 − h1√

2

[
1
−1

]
= λ1f 1

and

Hf 2 =
1√
2

[
h0 + h1

h1 + h0

]
=
h0 + h1√

2

[
1
1

]
= λ2f 2

Proof.

(Hf i)k =
1√
n

n−1∑
e=0

hk−eβ
ie

=

(n−1∑
m=0

hmβ
−im
)

1√
n
βik

=
√
nf †

ih
1√
n
βik = λi

1√
n
βik,

where λi =
√
nf †

ih . Going to vector notation we obtain Hf i = λif i .

8.B.4 Eigenvectors to Describe Linear Transformations

When the eigenvectors of a transformation H ∈ Cn×n (not necessarily Toepliz) span Cn ,
both the vectors and the transformation can be represented with respect to a basis of
eigenvectors. In that new basis the transformation takes the form H ′ = diag(λ1, . . . , λn) ,
where diag( ) denotes a matrix with the arguments on the main diagonal and 0s elsewhere,
and λi is the eigenvalue of the i -th eigenvector. In the new basis the input/output
relationship is

v′ = H ′u′

or equivalently, v′i = λiu
′
i , i = 1, 2, . . . , n . To see this, let ϕ i, i = 1 . . . n , be n eigenvec-

tors of H spanning Cn . Letting u =
∑

i ϕ iu
′
i and v =

∑
i ϕ iv

′
i and plugging into Hu

we obtain

Hu = H
(∑

i

ϕ iu
′
i

)
=
∑
i

Hϕ iu
′
i =

∑
ϕ iλiu

′
i
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u
′
1 ϕ 1 + . . .+ u

′
nϕn

- H - u
′
1λ1 ϕ 1 + . . .+ u

′
nλnϕn

Figure 8.1: Input/output representation via eigenvectors.

showing that v′i = λiu
′
i .

Notice that the key aspects in the proof are the linearity of the transformation and the
fact that ϕ iu

′
i is sent to ϕ iλiu

′
i , as shown in Fig. 8.1.

It is often convenient to use matrix notation. To see how the proof goes with matrix
notation we define Φ = (ϕ 1, . . . , ϕn) as the matrix whose columns span Cn . Then
u = Φu′ and the above proof in matrix notation is

v = Hu = HΦu′ = ΦH ′u′,

showing that v′ = H ′u′ .

For the case where H is circulant, u = Fu′ and v = Fv′ . Hence u′ = F †u and
v′ = F †v are the DFT of u and v , respectively. Similarly, the diagonal elements of
H ′ are

√
n times the DFT of the first column of H . Hence the above representation

via the new basis says (the well-know result) that a circular convolution corresponds to a
multiplication in the DFT domain.

Appendix 8.C Karhunen-Loève Expansion (*)

In Appendix 8.B, we have seen that the eigenvectors of a linear transformation H can
be used as a basis and in the new basis the linear transformation of interest becomes a
componentwise multiplication.

A similar idea can be used to describe a random vector u as a linear combination of
deterministic vectors with orthogonal random coefficient. Now the eigenvectors are those
of the correlation matrix ru . The procedure, that we now describe, is the Karhunen-Loève
expansion.

Let ϕ 1, . . . , ϕn be a set of eigenvectors of ru that form an orthonormal basis of Cn .
Such a set exists since ru is Hermitian. Hence

λiϕ i = ru ϕ i, i = 1, 2, . . . , n

or, in matrix notation,
ΦΛ = ruΦ
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where Λ = diag(λ1, . . . , λn) and Φ = [ϕ 1, . . . , ϕn] is the matrix whose columns are
the eigenvectors. Since the eigenvectors are orthonormal, Φ is unitary (i.e. Φ†Φ = I) .
Solving for Λ we obtain

Λ = Φ†ruΦ.

Notice that if we solve for ru we obtain ru = ΦΛΦ† which is the well known result that
an Hermitian matrix can be diagonalized.

Since Φ forms a basis of Cn we can write

u = Φu′ (8.13)

for some vector of coefficient u′ with correlation matrix

ru′ = E[u′(u′)†] = Φ†E[uu†]Φ = Φ†ruΦ

= Λ

Hence (8.13) expresses u as a linear combination of deterministic vectors ϕ 1, . . . , ϕn

with orthogonal random coefficients u′1, . . . , u
′
n . This is the Karhunen-Loève expansion

of u .

If ru is circulant, then Φ = F and u′ = Φ†u is the DFT of u .

Remark 75. ||u||2 = ||u′||2 =
∑
|u′i|2 . Also E||u||2 =

∑
λi.

Appendix 8.D Circularly Wide-Sense Stationary Random
Vectors (*)

We consider random vectors in Cn . We will continue using the notation that u and U
denotes DFT pairs. Observe that if U is random then u is also random. This forces us
to abandon the convention that we use capital letters for random variables.

The following definitions are natural.

Definition 76. A random vector u ∈ Cn is circularly wide sense stationary (c.w.s.s.) if

mu
4
= E[u] is a constant vector

ru
4
= E[uu†] is a circulant matrix

su
4
= E[uuT ] is a circulant matrix

Definition 77. A random vector u is uncorrelated if Ku and Ju are diagonal.

We will call ru and su the circular correlation matrix and circular pseudo-correlation
matrix, respectively.
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Theorem 78. Let u ∈ Cn be a zero-mean proper random vector and U = F †u be its
DFT. Then u is c.w.s.s. iff U is uncorrelated. Moreover,

ru = circ(a) (8.14)

if and only if

rU =
√
n diag(A) (8.15)

for some a and its DFT A .

Proof. Let u be a zero-mean proper random vector. If u is c.w.s.s. then we can write
ru = circ(a) for some vector a . Then, using Lemma 73,

rU
4
= E[F †uu†F ] = F †ruF

= F †√nFdiag(F †a)

=
√
n diag(A),

proving (8.15). Moreover, mU = 0 since mu = 0 and therefore sU = JU . But JU = 0
since the properness of u and Lemma 57 imply the properness of U . Conversely, let
rU = diag(A) . Then

ru = E[uu†] = FrUF
†.

Due to the diagonality of rU , the element (k, l) of ru is

√
n
∑
m

Fk,mAm(F †)m,l =
∑
m

Fk,mF
∗
l,mAm

√
n

=
1√
n

∑
m

Ame
j 2π

n
m(k−l)

= ak−l
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Chapter 9

The Baseband Equivalent Channel
Model

We have already derived the impulse response of the baseband-equivalent channel (see
(7.1)). What remains to be derived are the properties of the baseband-equivalent additive
noise NE(t) . Then the picture of the baseband-equivalent channel model shown in Fig.
9.1 will be complete.

RE(t) = sE(t) +NE(t)
hE(t)√

2

sE(t)

NE(t)

Figure 9.1: Baseband-equivalent communication system.

First, NE(t) is clearly a zero-mean (complex-valued) Gaussian random process since it is
obtained from linear (complex-valued) operations on Gaussian noise. Furthermore:

(a) N̂(t) is a Gaussian process (since it is obtained by filtering a Gaussian noise process).
Its power spectral density is

SN̂(f) = SN(f)
∣∣∣√2h>,F(f)

∣∣∣2 =


2SN(f), f > 0
1
2
SN(f), f = 0

0, f < 0.

(9.1)

(b) Let NE(t) = N̂(t) e−j 2πf0t be the baseband-equivalent noise. The autocorrelation of
NE(t) is given by:

RNE
(τ) = E

[
N̂(t+ τ) e−j 2πf0(t+τ)N̂∗(t) e j 2πf0t

]
= RN̂(τ)e−j 2πf0τ (9.2)

193



194 Chapter 9.

where we have used the fact that N̂(t) is WSS (since it is obtained from filtering a
WSS process). We see that NE(t) is itself WSS. Its power spectral density is given
by:

SNE
(f) = SN̂(f + f0) =


2SN(f + f0), f > −f0

1
2
SN(f + f0), f = −f0

0, f < −f0.

(9.3)

(c) We now show that N̂(t) is proper.

E[N̂(t)N̂(s)] = E

[∫ +∞

−∞

√
2h>(α)N(t− α) dα

∫ +∞

−∞

√
2h>(β)N(s− β) dβ

]
= 2

∫ +∞

−∞

∫ +∞

−∞
h>(α)h>(β)RN(t− α− s+ β) dα dβ

= 2

∫
α

∫
β

h>(α)h>(β) dα dβ

∫ +∞

−∞
SN(f) e j 2πf(t−α−s+β) df

= 2

∫
f

SN(f) e j 2πf(t−s)h>,F(f)h>,F(−f) df

= 0 (9.4)

since h>,F(f)h>,F(f) = 0 for all frequencies except for f = 0. Hence the integral

vanishes. Thus N̂(t) is proper.

(d) NE(t) is also proper since

E[NE(t)NE(s)] = E
[
N̂(t) e−j 2πf0tN̂(s) e−j 2πf0s

]
= e−j 2πf0(t+s)E

[
N̂(t)N̂(s)

]
= 0 (9.5)

(We could have simply argued that NE(t) is proper since it is obtained from the
proper process N̂(t) via a linear transformation.)

(e) The real and imaginary components of NE(t) have the same autocorrelation function.
Indeed,

0 = E[NE(t)NE(s)] = E [(<{NE(t)}< {NE(s)} − ={NE(t)}= {NE(s)})
+ j (<{NE(t)}= {NE(s)}+ ={NE(t)}< {NE(s)})] .(9.6)

implies
E [(<{NE(t)}< {NE(s)}] = E [={NE(t)}= {NE(s)}]

As claimed.



195

(f) Furthermore, if Sz(f0− f) = Sz(f0 + f) ) then the real and imaginary parts of NE(t)
are uncorrelated, hence they are independent. To see this we expand as follows

E[NE(t)N∗
E(s)] = E [(<{NE(t)}< {NE(s)}+ ={NE(t)}= {NE(s)})

− j (<{NE(t)}= {NE(s)} − ={NE(t)}< {NE(s)})] .
(9.7)

and observe that if the power spectral density of ZE(t) is symmetric (that is SZ(f0−
f) = SZ(f0 + f) ), the autocorrelation of NE(t) is real-valued. Thus

E [<{NE(t)}= {NE(s)} − ={NE(t)}< {NE(s)}] = 0. (9.8)

On the other hand, from (9.6) we have

E [<{NE(t)}= {NE(s)}+ ={NE(t)}< {NE(s)}] = 0. (9.9)

The last two expressions imply

E [<{NE(t)}= {NE(s)}] = E [={NE(t)}< {NE(s)}] = 0, (9.10)

which is what we have claimed.

We summarize: We have shown that NE(t) is a proper zero-mean Gaussian random
process. Hence it is circularly symmetric. Furthermore, from (9.3) we see that the power
spectral density of of NE(t) equals that of N(t) translated towards baseband by f0 and
scaled by a factor 2. To remember where the factor 2 goes, it suffices to keep in mind that
the variance of the noise within the band of interest is the same for both processes. To
find the variance of N(t) in the band of interest we have to integrate its power spectral
density over 2B Hz. For that NE(t) we have to integrate over B Hz. Hence the power
spectral density of NE(t) must be twice that of N(t) .

The real and imaginary parts of NE(t) have the same autocorrelation functions hence
the same power spectral densities. If S(f) is symmetric with respect to f0 , then the
real and imaginary parts of NE(t) are uncorrelated, and since they are Gaussian they are
independent. In this case their power spectral density must be half that of NE(t) , i.e.,
eqaul that of N(t) around f0 .
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Chapter 10

A Case Study (to be written)

Consider a passband AWGN channel of bandwidth B . The corresponding baseband-
equivalent channel is a lowpass AWGN channel of bandwidth B/2 (where the additive
white Gaussian noise is complex-valued).

From the sampling theorem, a lowpass signal sE(t) may always be written as

sE(t) =
N−1∑
j=0

sj ψ(t− jTs), (10.1)

where ψ(t) is a sinc and sj = sE(jT )/
√
T . More generally, ψ(t) is a Nyquist pulse.

Motivated by this, let us agree that our baseband equivalent form for a general transmit
signal is as in the above expression with a real-valued ψ(t) that fulfills Nyquist criterion
and complex-valued symbols sj . Then

S(t) =
√

2<{sE(t) e j 2πf0t}
=
√

2 cos(2πf0t)<{sE(t)} −
√

2 sin(2πf0t)={sE(t)}

=
√

2 cos(2πf0t)
N−1∑
j=0

<{sj}ψ(t− jTs)

−
√

2 sin(2πf0t)
N−1∑
j=0

={sj}ψ(t− jTs). (10.2)

This is called QAM (quadratue amplitude modulation). Fig. 10.1 shows a conceptual
block diagram for the implementation of the transmitter and the maximum likelihood
receiver (front-end). For no particular reason other than to show various implementa-
tion possibilities, the figure shows the transmitter in a form that uses only real-valued
operations and signals, whereas the receiver uses complex-valued notation.
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t = jTs

ψ(t)

ψ(t)

ψ(−t)

<{sj}

={sj}

−
√

2 sin(2πf0t)

√
2 cos(2πf0t)

s(t)

assumed to be ideal

Goes into the

N(t)

real passband channel

R(t)

e−j 2πf0t

√
2h>(t)
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Figure 10.1: Bandpass system.

Fig 10.2 give a specific example of the signal constellation (per complex dimension),
namely when sj takes on the four possible values 1 + j , 1 − j , −1 − j ,−1 + j . The
result is 4-ary QAM.

When we compare the compactness of the baseband equivalent signal (10.1) to the form
of the actual transmit signal (10.2) we understand why we like to work with the former, or
even with the n -tuple s . In designing and analyzing a system, we should use the simples
possible model we have. For instance, if we are studying the power spectral density of
the transmit signal we should work with (10.1). If we are analyzing the error probability
(under ideal conditions as we have assumed so far, i.e. no timing uncertainty) we should
use the vector (n -tuple) model

Y = si + Z

where Z is a complex-valued zero-mean proper Gaussian random vector which indepen-
dent of the transmit signal. If N(t) is white, then Zj is i.i.d. and its real and imaginary
components are independent. We should use this model also to design the signal constel-
lation, the encoder (if there is one), and the structure of the ML receiver (beyond the
part which has to do with acquiring the sufficient statistic . . . Yj−1, Yj, Yj+1 . . . i.e., the
receiver front-end).

We use the description of the actual transmit signal when we are dealing with the im-
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-1
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Figure 10.2: 4 -ary QAM constellation.

plementation of the up/down converters. From (10.2) we see how to implement the
up/converter using only real-valued operations. This is shown in Fig. 10.1. The receiver
front end in Fig. 10.1 is still based on the corresponding complex-valued operations. It
can also be translated into corresponding real-valued operations.

Towards this, we observe that the analytic filter with impulse response h>(t) does nothing
to the signal of interest. In fact, the matched filter with impulse response ψ(−t) puts
to zero all frequency components that are outside the lowpass frequency range of interest
[−B

2
, B

2
] . But the analytic filter affects the signal only in the frequency range f < −f0 .

This has no effect at the output of the matched filter since −f0 << −B
2

. Fig. 10.3 shows
the receiver front-end without the analytic filter. It is still based on complex-valued
notation, but using the relationship e−j2πf0t = cos(2πf0t)− j sin(2πf0t) and the fact that
R(t) is real-valued, you should see immediately how to split the complex-valued part in
two real-valued, paths (like in the up-converter).
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Figure 10.3: Bandpass system.
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