FINAL

Wednesday February 16, 2005, 14:15-17:15 This exam has 4 problems and 100 points in total.

Instructions

- You are allowed to use 2 sheets of paper for reference. No mobile phones or calculators are allowed in the exam.
- You can attempt the problems in any order as long as it is clear which problem is being attempted and which solution to the problem you want us to grade.
- If you are stuck in any part of a problem do not dwell on it, try to move on and attempt it later.
- The Q-function

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-u^{2}/2} du,$$

and $Q(-x) = 1 - Q(x).$

- $Q(x) \le e^{-\frac{x^2}{2}}.$
- For a 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right]$$

- $\bullet \ \sum_{n=0}^{N-1} r^n = \frac{1-r^N}{1-r}.$
- You may find this property useful. If $h \sim C\mathcal{N}(0,1)$,

$$\lim_{\delta \to 0} \left[\frac{1}{\delta} \operatorname{Prob}(|h|^2 < \delta) \right] = 1.$$

This means that for small δ , $Prob(|h|^2 < \delta) \approx \delta$.

• You may find this lemma useful: If $U \sim \mathbf{C}\mathcal{N}(0, \mathbf{K}_U)$, and $\mathbf{A} = \mathbf{A}^*$, for some $b \in \mathbf{C}$ then

$$\mathbf{E}_{U}\left[e^{-b\mathbf{U}^{*}\mathbf{A}\mathbf{U}}\right] = \frac{1}{|\mathbf{I} + b\mathbf{K}_{\mathbf{U}}\mathbf{A}|}.$$

• There are also 5 bonus points to be had making the maximum number of points 105/100.

GOOD LUCK!

Problem 1

Noise cancellation (15pts)

Consider two individual scalar observations Y_1, Y_2 as,

$$Y_1 = X + Z_1$$

$$Y_2 = Z_2,$$

$$(1)$$

Assume that zero mean Z_1, Z_2 are independent of X and are correlated with covariance,

$$\mathbb{E}[\mathbf{Z}\mathbf{Z}^*] = \begin{bmatrix} \sigma^2 & \rho\sigma^2 \\ \rho^*\sigma^2 & \sigma^2 \end{bmatrix},\tag{2}$$

where $\mathbf{Z} = [Z_1, Z_2]^T$. Let $\mathbb{E}[|X|^2] = \mathcal{E}_x$.

- [5pts] (a) Find the best linear MMSE estimate of \hat{X} of the random variable X from the observations Y_1, Y_2 .
- [5pts] (b) What is the minimum mean-squared error $\mathbb{E}[|X-\hat{X}|^2]$ of the best linear estimator? Is there a value of ρ for which we get $\mathbb{E}[|X-\hat{X}|^2] = 0$? Interpret the result if $\mathbb{E}[|X-\hat{X}|^2] = 0$ is possible.
- [5pts] (c) Find the best estimate \hat{Z}_1 of the random variable Z_1 from Y_2 . Consider the operation

$$\tilde{Y}_1 = Y_1 - \hat{Z}_1$$

Find the best linear estimate of X from \tilde{Y}_1 . Is it the same as the answer you found in (a)? Do you have an interpretation?

Problem 2

[Inter-carrier Interference in OFDM (25pts)]

Consider the scalar discrete-time inter symbol interference channel considered in the class,

$$y_k = \sum_{n=0}^{\nu} p_n x_{k-n} + z_k, \quad k = 0, \dots, N-1,$$
 (3)

where $z_k \sim \mathbf{C}\mathcal{N}(0, \sigma_z^2)$ and is i.i.d., independent of $\{x_k\}$. Let us employ a cyclic prefix as done in OFDM, *i.e.*,

$$x_{-l} = x_{N-1-l}, \quad l = 0, \dots, \nu.$$

As done in class given the cyclic prefix,

$$\mathbf{y} = \begin{bmatrix} y_{N-1} \\ \vdots \\ y_0 \end{bmatrix} = \underbrace{\begin{bmatrix} p_0 & \dots & p_{\nu} & 0 & \dots & 0 & 0 \\ 0 & p_0 & \dots & p_{\nu-1} & p_{\nu} & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \dots & 0 & p_0 & \dots & p_{\nu} \\ p_{\nu} & 0 & \dots & 0 & 0 & p_0 & \dots & p_{\nu-1} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ p_1 & \dots & p_{\nu} & 0 & \dots & 0 & 0 & p_0 \end{bmatrix}}_{\mathbf{P}} \underbrace{\begin{bmatrix} x_{N-1} \\ \vdots \\ x_0 \end{bmatrix}}_{\mathbf{x}} + \underbrace{\begin{bmatrix} z_{N-1} \\ \vdots \\ z_0 \end{bmatrix}}_{\mathbf{z}}. \tag{4}$$

In the derivation of OFDM we used the property that

$$\mathbf{P} = \mathbf{F}^* \mathbf{D} \mathbf{F},\tag{5}$$

where

$$\mathbf{F}_{p,q} = \frac{1}{\sqrt{N}} \exp\left(-j\frac{2\pi}{N}(p-1)(q-1)\right)$$

and **D** is the diagonal matrix with

$$\mathbf{D}_{l,l} = d_l = \sum_{n=0}^{\nu} p_n e^{-j\frac{2\pi}{N}nl}.$$

Using this we obtained

$$Y = Fy = DX + Z,$$

where X = Fx, Z = Fz. This yields the parallel channel result

$$\mathbf{Y}_l = d_l \mathbf{X}_l + \mathbf{Z}_l. \tag{6}$$

If the carrier synchronization is not accurate, then (3) gets modified as

$$y(k) = \sum_{n=0}^{\nu} e^{j2\pi f_0 k} p_n x_{k-n} + z_k, \quad k = 0, \dots, N-1$$
 (7)

where f_0 is the carrier frequency offset. If we still use the cyclic prefix for transmission, then (4) gets modified as

$$\underbrace{\begin{bmatrix} y(N-1) \\ \vdots \\ y(0) \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} p_0 e^{j2\pi f_0(N-1)} & \dots & p_{\nu} e^{j2\pi f_0(N-1)} & 0 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ e^{j2\pi f_00} p_1 & \dots & e^{j2\pi f_00} p_{\nu} & 0 & \dots & 0 & e^{j2\pi f_00} p_0 \end{bmatrix}}_{\mathbf{H}} \underbrace{\begin{bmatrix} x_{N-1} \\ \vdots \\ x_0 \end{bmatrix}}_{\mathbf{x}} + \underbrace{\begin{bmatrix} z_{N-1} \\ \vdots \\ z_0 \end{bmatrix}}_{\mathbf{z}}.$$
(8)

i.e.,

$$\mathbf{v} = \mathbf{H}\mathbf{x} + \mathbf{z}$$

Note that

$$\mathbf{H} = \mathbf{SP}$$

where **S** is a diagonal matrix with $\mathbf{S}_{l,l} = e^{j2\pi f_0(N-l)}$ and **P** is defined as in (4).

6pts] (a) Show that for Y = Fy, X = Fx,

$$Y = GX + Z \tag{9}$$

and prove that

$$G = FSF^*D.$$

[6pts] (b) If $f_0 \neq 0$, we see from part (a) that **G** is no longer a diagonal matrix and therefore we do not obtain the parallel channel result of (6). We get inter-carrier interference (ICI), i.e., we have

$$\mathbf{Y}_{l} = \mathbf{G}_{l,l}\mathbf{X}_{l} + \underbrace{\sum_{q \neq l} \mathbf{G}(l, q)\mathbf{X}_{q} + \mathbf{Z}_{l}}_{\mathbf{ICI} + \mathbf{noise}}, \quad l = 0, \dots, N - 1,$$

Page 3 of 8

which shows that the other carriers interfere with \mathbf{X}_l . Compute the SINR (signal-to-interference plus noise ratio). Assume $\{\mathbf{X}_l\}$ are i.i.d, with $\mathbb{E}|\mathbf{X}_l|^2 = \mathcal{E}_x$. You can compute the SINR for the particular l and leave the expression in terms of $\{G(l,q)\}$.

[6pts] (c) Find the filter \mathbf{W}_l , such that the MMSE criterion is fulfilled,

$$\min_{\mathbf{W}_l} \mathbb{E} |\mathbf{W}_l^* \mathbf{Y} - \mathbf{X}_l|^2.$$

You can again assume that $\{\mathbf{X}_l\}$ are i.i.d with $\mathbb{E}|\mathbf{X}_l|^2 = \mathcal{E}_x$ and that the receiver knows \mathbf{G} . You can now state the answer in terms of \mathbf{G} .

[7pts] (d) Find an expression for $G_{l,q}$ in terms of $f_0, N, \{d_l\}$. Given this and (b), what can you conclude about the value of f_0 . For what values of f_0 do you think that the inter-carrier interference problem is important?

Hint: Use the summation of the geometric series hint given in first page.

Problem 3

[MULTIPLE ACCESS CHANNEL AND TRANSMIT CODE (30pts)]

Consider a two user multiple access channel where each user has two transmit antennas and the receiver has two antennas (see Figure).

Figure 1: Multiple access channel for problem 4.

Let $\mathbf{u}(k) = \begin{bmatrix} u_1(k) \\ u_2(k) \end{bmatrix}$, $\mathbf{v}(k) = \begin{bmatrix} v_1(k) \\ v_2(k) \end{bmatrix}$ be the transmit signal from each user. The receiver gets a linear combination of the transmit signals,

$$y_1(k) = e_1 u_1(k) + e_2 u_2(k) + f_1 v_1(k) + f_2 v_2(k) + z_1(k),$$

$$y_2(k) = h_1 u_1(k) + h_2 u_2(k) + g_1 v_1(k) + g_2 v_2(k) + z_2(k),$$

where $z_i(k) \sim \mathbb{C}\eta(0, \sigma_z^2)$ and $\{z_i(k)\}$ is i.i.d circularly symmetric Gaussian random variables. Now, suppose the users use an Alamouti code, *i.e.*, for user 1 the transmit signal is

$$u_1(k) = a_1, \quad u_2(k) = a_2,$$

$$u_1(k+1) = -a_2^*, \quad u_2(k+1) = a_1^*,$$

and for user 2, it is

$$v_1(k) = b_1, \quad v_2(k) = b_2,$$

$$v_1(k+1) = -b_2^*, \quad v_2(k+1) = b_1^*.$$

Therefore we get

$$\begin{bmatrix} y_1(k) & y_1(k+1) \end{bmatrix} = \begin{bmatrix} e_1 & e_2 \end{bmatrix} \begin{bmatrix} a_1 & -a_2^* \\ a_2 & a_1^* \end{bmatrix} + \begin{bmatrix} f_1 & f_2 \end{bmatrix} \begin{bmatrix} b_1 & -b_2^* \\ b_2 & b_1^* \end{bmatrix} + \begin{bmatrix} z_1(k) & z_1(k+1) \end{bmatrix} (10)$$

$$\begin{bmatrix} y_2(k) & y_2(k+1) \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \end{bmatrix} \begin{bmatrix} a_1 & -a_2^* \\ a_2 & a_1^* \end{bmatrix} + \begin{bmatrix} g_1 & g_2 \end{bmatrix} \begin{bmatrix} b_1 & -b_2^* \\ b_2 & b_1^* \end{bmatrix} + \begin{bmatrix} z_2(k) & z_2(k+1) \end{bmatrix} (11)$$

[8pts] (a) Prove that (10) can be equivalently rewritten as

$$\tilde{\mathbf{Y}}_{1} = \begin{bmatrix} \tilde{y_{1}}(k) & \tilde{y_{1}}(k+1) \end{bmatrix} = \begin{bmatrix} a_{1} & a_{2} \end{bmatrix} \begin{bmatrix} e_{1} & -e_{2}^{*} \\ e_{2} & e_{1}^{*} \end{bmatrix} + \begin{bmatrix} b_{1} & b_{2} \end{bmatrix} \begin{bmatrix} f_{1} & -f_{2}^{*} \\ f_{2} & f_{1}^{*} \end{bmatrix} + \begin{bmatrix} \tilde{z}_{1}(k) & \tilde{z}_{1}(k+1) \end{bmatrix}$$

and (11) can be rewritten as

$$\tilde{\mathbf{Y}}_{2} = \begin{bmatrix} \tilde{y_{2}}(k) & \tilde{y_{2}}(k+1) \end{bmatrix} = \begin{bmatrix} a_{1} & a_{2} \end{bmatrix} \begin{bmatrix} h_{1} & -h_{2}^{*} \\ h_{2} & h_{1}^{*} \end{bmatrix} + \begin{bmatrix} b_{1} & b_{2} \end{bmatrix} \begin{bmatrix} g_{1} & -g_{2}^{*} \\ g_{2} & g_{1}^{*} \end{bmatrix} + \begin{bmatrix} \tilde{z}_{2}(k) & \tilde{z}_{2}(k+1) \end{bmatrix},$$

where $\tilde{z}_1(k)$, $\tilde{z}_1(k+1)$, $\tilde{z}_2(k)$, $\tilde{z}_2(k+1)$ are i.i.d circularly symmetric complex Gaussian random variables with distribution $\mathbb{C}\eta(0,\sigma_z^2)$. Explicitly write out how $\begin{bmatrix} \tilde{y}_1(k) & \tilde{y}_1(k+1) \end{bmatrix}$, $\begin{bmatrix} \tilde{y}_2(k) & \tilde{y}_2(k+1) \end{bmatrix}$ are related to $\begin{bmatrix} y_1(k) & y_1(k+1) \end{bmatrix}$, $\begin{bmatrix} y_2(k) & y_2(k+1) \end{bmatrix}$ respectively.

[8pts] **(b)** Let

$$\mathbf{E} = \begin{bmatrix} e_1 & -e_2^* \\ e_2 & e_1^* \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} f_1 & -f_2^* \\ f_2 & f_1^* \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} g_1 & -g_2^* \\ g_2 & g_1^* \end{bmatrix}, \quad \mathbf{H} = \begin{bmatrix} h_1 & -h_2^* \\ h_2 & h_1^* \end{bmatrix},$$

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 & b_2 \end{bmatrix}, \quad \tilde{\mathbf{Z}}_{\mathbf{1}} = \begin{bmatrix} \tilde{z}_1(k) & \tilde{z}_1(k+1) \end{bmatrix}, \quad \tilde{\mathbf{Z}}_{\mathbf{2}} = \begin{bmatrix} \tilde{z}_2(k) & \tilde{z}_2(k+1) \end{bmatrix}.$$

Then the equations (10,11) can be written as

$$egin{bmatrix} ig[ilde{\mathbf{Y}}_1 & ilde{\mathbf{Y}}_2 ig] = egin{bmatrix} \mathbf{a} & \mathbf{b} \end{bmatrix} egin{bmatrix} \mathbf{E} & \mathbf{H} \ \mathbf{F} & \mathbf{G} \end{bmatrix} + egin{bmatrix} ilde{\mathbf{Z}}_1 & ilde{\mathbf{Z}}_2 \end{bmatrix}.$$

Prove that

$$W = \begin{bmatrix} I_2 & -E^{-1}H \\ -G^{-1}F & I_2 \end{bmatrix}$$

decouples the signals from user 1 and 2, i.e.,

$$\begin{bmatrix} \breve{\mathbf{Y}}_{1} & \breve{\mathbf{Y}}_{2} \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{Y}}_{1} & \tilde{\mathbf{Y}}_{2} \end{bmatrix} \mathbf{W} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{H}} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{G}} \end{bmatrix} + \begin{bmatrix} \breve{\mathbf{Z}}_{1} & \breve{\mathbf{Z}}_{2} \end{bmatrix}, \tag{12}$$

where $\mathbf{\breve{Z}_1}, \mathbf{\breve{Z}_2}$ are still Gaussian.

[9pts] (c) Prove that $\tilde{\mathbf{H}}$ and $\tilde{\mathbf{G}}$ are of the form

$$\tilde{\mathbf{H}} = \begin{bmatrix} \tilde{h}_1 & -\tilde{h}_2^* \\ \tilde{h}_2 & \tilde{h}_1^* \end{bmatrix}, \tilde{\mathbf{G}} = \begin{bmatrix} \tilde{g}_1 & -\tilde{g}_2^* \\ \tilde{g}_2 & \tilde{g}_1^* \end{bmatrix}.$$

Hint: You do not need to explicitly write out the expressions for $\tilde{h}_1, \tilde{h}_2, \tilde{g}_1, \tilde{g}_2$.

[5pts] (d) In (12) it is seen that

$$egin{aligned} reve{\mathbf{Y}}_1 &= \mathbf{a} \mathbf{\tilde{H}} + reve{\mathbf{Z}}_1, \\ reve{\mathbf{Y}}_2 &= \mathbf{b} \mathbf{\tilde{G}} + reve{\mathbf{Z}}_2. \end{aligned}$$

Show that

$$\mathbf{\breve{Y}_1}\tilde{\mathbf{H}}^* = ||\tilde{\mathbf{h}}||^2 \begin{bmatrix} a_1 & a_2 \end{bmatrix} + \mathbf{\breve{Z}_1}\tilde{\mathbf{H}}^*,
\mathbf{\breve{Y}_2}\tilde{\mathbf{G}}^* = ||\tilde{\mathbf{g}}||^2 \begin{bmatrix} b_1 & b_2 \end{bmatrix} + \mathbf{\breve{Z}_2}\tilde{\mathbf{G}}^*,$$

where $\tilde{\mathbf{h}} = \begin{bmatrix} \tilde{h}_1 & \tilde{h}_2 \end{bmatrix}$, $\tilde{\mathbf{g}} = \begin{bmatrix} \tilde{g}_1 & \tilde{g}_2 \end{bmatrix}$. This completes the decoupling of the individual streams of the multiple access channel.

[Bonus (e) If $h_1, h_2, g_1, g_2, e_1, e_2, f_1, f_2$ are i.i.d and have distribution $\mathbb{C}\eta(0, 1)$, can you guess the 5pts] diversity order for detecting a_1, a_2, b_1, b_2 ?

Problem 4

[Relay Diversity (30pts)]

Figure 2: Communication using relay.

In a wireless network let us assume that there are three nodes, where the source (S) wants to transmit information to the destination (T) and can obtain help from a relay (R). Assume that the channels are block time-invariant over a transmission block of size T. We use the following transmission protocol over a block of time of length T. Let $\{s(k)\} \in \{a, -a\}$ be a

Phase1	Phase2
S transmits	R transmits
$T/2 \longrightarrow T/2 \longrightarrow$	

Figure 3: Transmission protocol.

binary information sequence that source S wants to convey to the destination T. Then, for the first phase the relay receives $y_{\mathcal{R}}(k)$ and the destination receives $y_{\mathcal{T}}^{(1)}(k)$, with

$$y_{\mathcal{R}}(k) = fs(k) + z_{\mathcal{R}}(k), \tag{13}$$

$$y_{\mathcal{T}}^{(1)}(k) = hs(k) + z_{\mathcal{T}}(k),$$
 (14)

where $z_{\mathcal{R}}(k), z_{\mathcal{T}}(k) \sim \mathbf{C}\eta(0, \sigma^2)$ are i.i.d, circularly symmetric complex Gaussian noise. We also assume a fading channel, $f, g, h \sim \mathbf{C}\eta(0, 1)$ and are independent of each other. Assume that g, h are known at \mathcal{T} , f is known at \mathcal{R} , but they are unknown at \mathcal{S} (except for part (c)) In the second phase for parts (a), (b),

$$y_{\mathcal{T}}^{(2)}(k) = gu(k) + z_{\mathcal{T}}(k)$$

where u(k) is the signal transmitted by the relay and $g \sim \mathbf{C}\eta(0,1)$.

[6pts] (a) Suppose the relay was absent, i.e., u(k) = 0, then give an expression (or bound) on the average error probability of $\{s(k)\}$ averaged over the channel realizations h. What is the diversity order, i.e.,

$$\lim_{SNR \to \infty} \frac{-\log(\bar{P}_e(SNR))}{\log(SNR)}$$

for the detection of $\{s(k)\}.$

[12pts] (b) Suppose that the relay \mathcal{R} attempts to decode $\{s(k)\}$ in phase 1 and transmits $u(k) = \hat{s}_{\mathcal{R}}(k)$ in phase 2. That is, it sends the decoded sequence to \mathcal{T} . Assume now that there is an oracle which tells the destination \mathcal{T} if relay \mathcal{R} has decoded correctly or not. Note that the oracle just lets \mathcal{T} know if $\hat{s}_{\mathcal{R}}(k) = s(k)$ but not its value. Now, \mathcal{T} can use the received sequence from both phase 1 and phase 2 in order to decode $\{s(k)\}$. Find expressions (or bounds) for the error probability for this decoder averaged over the channel realizations which achieve the best diversity order at \mathcal{T} . What is the best diversity order that can be achieved at \mathcal{T} for detecting $\{s(k)\}$?

Hint: Develop a receiver strategy that uses the information given by the oracle. You do not need very detailed calculations for obtaining error probability bounds.

[12pts] (c) Suppose now that we have a new protocol. Phase 1 is as before, where \mathcal{S} transmits and both \mathcal{R} and \mathcal{T} receive the signal as in (13) and (14) respectively. At the end of phase 1, there is a feedback channel from \mathcal{R} to \mathcal{S} which informs \mathcal{S} about the realization of channel f. Now the protocol \mathcal{S} and \mathcal{R} follow is given by: if $|f|^2 \leq c(\text{SNR})$ (where c(SNR) is a function of SNR), then in phase 2, \mathcal{S} repeats the same information it transmitted in phase 1 and the relay \mathcal{R} remains silent, i.e., $\{s(k)\}$ from phase 1 is repeated and u(k) = 0 in phase 2. If $|f|^2 > c(\text{SNR})$, then the protocol is as in part (b), i.e., \mathcal{S} remains silent and \mathcal{R} sends the decoded information $u(k) = \hat{s}_{\mathcal{R}}(k)$. Let $c(\text{SNR}) = \frac{1}{\text{SNR}^{1-\epsilon}}$ for an arbitrarily small $\epsilon > 0$,

Assume that an oracle informs the receiver \mathcal{T} whether in phase 2, \mathcal{S} or \mathcal{R} is transmitting. If in phase 2, \mathcal{S} is transmitting, the receiver \mathcal{T} forms the decision variable,

$$ilde{y}_{\mathcal{T}} = \left[egin{array}{cc} h^* & h^* \end{array}
ight] \left[egin{array}{c} y_{\mathcal{T}}^{(1)} \ y_{\mathcal{T}}^{(2)} \end{array}
ight]$$

where $y_{\mathcal{T}}^{(1)}, y_{\mathcal{T}}^{(2)}$ are the received signals in phase 1 and phase 2 respectively. On the other hand if in phase 2, the relay \mathcal{R} is transmitting, receiver \mathcal{T} forms the decision variable

$$\tilde{y}_{\mathcal{T}} = \left[\begin{array}{cc} h^* & g^* \end{array} \right] \begin{bmatrix} y_{\mathcal{T}}^{(1)} \\ y_{\mathcal{T}}^{(2)} \end{bmatrix}$$

where again $y_{\mathcal{T}}^{(1)}, y_{\mathcal{T}}^{(2)}$ are the received signals in phase 1 and phase 2 respectively. The decision rule in both situations is that \mathcal{T} chooses $\hat{s}_{\mathcal{T}} = +a$ if $\Re(\tilde{y}_{\mathcal{T}}) \geq 0$ and $\hat{s}_{\mathcal{T}} = -a$

otherwise. Analyze the performance of this receive strategy *i.e.*, find the diversity order that can be achieved by \mathcal{T} for $\{s(k)\}$. Note that we are looking for diversity order and so we do not necessarily need a detailed analysis to find the diversity order.

Hint: Condition on appropriate error events at the relay and use error probability bounds. You can also use properties given in the hints in the first page.