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MIDTERM SOLUTIONS

Problem 1

(a) Since the prior probability q is known at the decoder, we know from the class that
probability of error is minimized by the maximum a posteriori (MAP) decision rule,
i.e., for a given observation y ∈ {0, 1}, we decide

P [X = 0|Y = y]
X̂=0

R
X̂=1

P [X = 1|Y = y].

If Y = 1, then we have

P [X = 0|Y = 1] = 0

P [X = 1|Y = 1] = 1,

and one should always decide X̂ = 1. If Y = 0, we use Bayes’ formula

P [X = x|Y = y] =
P [Y = y|X = x]P [X = x]

P [Y = y]

and obtain

P [X = 0|Y = 0] =
1 q

P [Y = 0]

P [X = 1|Y = 0] =
p(1 − q)

P [Y = 0]
.

If q > p(1− q) and Y = 0, then we always decide X̂ = 0. If q < p(1− q) and Y = 0, we
always decide X̂ = 1.

(b) Attention: in this scheme, the same input symbol is reapeated n times, i.e.,

X =

{
(0, 0, 0, . . . , 0) w.p. q ( if X = 0)
(1, 1, 1, . . . , 1) w.p. 1 − q ( if X = 1).

Again, we apply the MAP rule. Assume that a certain y = (y1, . . . , yn) is observed at
the decoder. Note that as soon as yi = 1 for at least one i ∈ {1, . . . , n}, we have

P [X = 0|Y = y] = 0

P [X = 1|Y = y] = 1,

because if X = 0, we can impossibly have yi = 1 for any i. Thus, the decision would
be X̂ = 1. The only ambiguous case is when y = 0 = (0, . . . , 0). In this case, we use
Bayes’rule to compute

P [X = 0|Y = 0] =
1n q

P [Y = 0]

P [X = 1|Y = 0] =
pn(1 − q)

P [Y = 0]
.



Therefore, if Y = 0 and pn > q

1−q
, we decide X̂ = 1. If Y = 0 and pn < q

1−q
, we rather

decide X̂ = 0.

(c) This time, we ask for the maximum likelihood (ML) decision rule, i.e., for a given
observation y ∈ {0, 1}n, we decide

P [Y = y|H = H0]
Ĥ=H0

R
Ĥ=H1

P [Y = y|H = H1],

where H is a random variable that takes values H0 or H1 with equal probability. We
write out the conditional distributions of Y = (Y1, . . . , Yn):

P [Y = y|H = H0] = P [Y = y|X = 1]

= pn−N1(y)(1 − p)N1(y),

where N1(y) is the number of ones in the vector y.

P [Y = y|H = H1] = P [Y = y|X = S]

=
n∏

i=1

P [Yi = yi|X = S]

=
n∏

i=1

P [Yi = yi|Xi = Si]

=
n∏

i=1

(
P [Yi = yi|Xi = 1]P [Si = 1] + P [Yi = yi|Xi = 0]P [Si = 0]

)

=
n∏

i=1

{
if yi = 0: p1

2
+ 1 1

2

if yi = 1: (1 − p)1
2

+ 0 1
2

}

=
(1

2
(1 + p)

)n−N1(y)(1

2
(1 − p)

)N1(y)

.

We take the log of both sides of the ML rule:

pn−N1(y)(1 − p)N1(y)
Ĥ=H0

R
Ĥ=H1

(1

2
(1 + p)

)n−N1(y)(1

2
(1 − p)

)N1(y)

N1(y) log(1 − p) + (n − N1(y)) log p
Ĥ=H0

R
Ĥ=H1

(n − N1(y)) log
(1

2
(1 + p)

)

+ N1(y) log
(1

2
(1 − p)

)

N1(y)(log(1 + p) − log p)
Ĥ=H0

R
Ĥ=H1

n
(
log

1

2
+ log(1 + p) − log p

)

N1(y)
Ĥ=H0

R
Ĥ=H1

n log 1
2

+ log(1 + p) − log(1 + p)

log(1 + p) − log p
.
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Problem 2

(a) We can write the usual binary MAP decoding rule as

P(Y |X = +1)P[X = +1]
x = −1

≶
x = +1

P(Y |X = −1)P[X = −1].

We also know the conditional density function of Y according to the channel model:

P(y|X = x) = P(Z = y − x|X = x) = P(Z = y − x) = pZ(y − x) =
1

2
e−|y−x|

So we have the decision criterion as

1

2
e−|y−1| · (1 − q)

x = −1

≶
x = +1

1

2
e−|y+1| · q

Assuming q 6= 0, 1 (for the extreme cases the criterion is obtained obviously), we have

e|y+1|−|y−1|
x = −1

≶
x = +1

q

1 − q

|y + 1| − |y − 1|
x = −1

≶
x = +1

ln(
q

1 − q
)

In the following we consider three cases for q which is constant for the given channel
and give the decision criterion for each of them.

I q < 1
1+e2 : ln( q

1−q
) < −2

• y > 1 ⇒ |y + 1| − |y − 1| = 2 > 0 > ln( q

1−q
) ⇒ x̂ = 1

• −1 ≤ y ≤ 1 ⇒ |y + 1| − |y − 1| = 2y > −2 > ln( q

1−q
) ⇒ x̂ = 1

• y < −1 ⇒ |y + 1| − |y − 1| = −2 > ln( q

1−q
) ⇒ x̂ = 1

I 1
1+e2 ≤ q ≤ e2

1+e2 : −2 ≤ ln( q

1−q
) ≤ 2

• y > 1 ⇒ |y + 1| − |y − 1| = 2 ≥ ln( q

1−q
) ⇒ x̂ = 1

• −1 ≤ y ≤ 1 ⇒ |y + 1| − |y − 1| = 2y ⇒
{

x̂ = 1 if y ≥ 1
2
ln( q

1−q
)

x̂ = −1 if y ≤ 1
2
ln( q

1−q
)

• y < −1 ⇒ |y + 1| − |y − 1| = −2 ≤ ln( q

1−q
) ⇒ x̂ = −1

I q > e2

1+e2 : ln( q

1−q
) > 2

• y > 1 ⇒ |y + 1| − |y − 1| = 2 < ln( q

1−q
) ⇒ x̂ = −1

• −1 ≤ y ≤ 1 ⇒ |y + 1| − |y − 1| = 2y < 2 < ln( q

1−q
) ⇒ x̂ = −1
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• y < −1 ⇒ |y + 1| − |y − 1| = −2 < 0 < ln( q

1−q
) ⇒ x̂ = −1

(b) Let H be the optimal decision rule for the channel when q is unknown.

Pe,H = qP[e|X = −1] + (1 − q)P[e|X = +1]

where P[e|X = −1] and P[e|X = −1] are indepenet of q and depend on the characteri-
zation of the channel of the statistics of the noise. So the average error probability is a
linear function of q and thus takes its maximum in one of its end points.

min
H

max
q

Pe,H = max{P[e|X = −1], P[e|X = +1]}

Therefore the best decoder is obtained when P[e|X = −1] = P[e|X = +1]. So we have

P[e|X = −1] =

∫ ∞

θ

p(y|x = −1)dy =

∫ θ

−∞
p(y|x = +1)dy = P[e|X = +1]

∫ ∞

θ

1

2
e−|y+1|dy =

∫ θ

−∞

1

2
e−|y−1|dy (1)

In order to solve the above equation, we can consider three cases:

• θ < −1:

∫ −1

θ

ey+1dy +

∫ ∞

−1

e−(y+1)dy =

∫ θ

−∞
ey−1dy

(1 − eθ+1) − (0 − 1) = (eθ−1 − 0)

eθ−1 − eθ+1 = 2

The last equality is impossible because both of the terms in the LHS are positive
and less than 1.

• θ > 1:

∫ ∞

θ

e−(y+1)dy =

∫ 1

−∞
ey−1dy +

∫ θ

1

e−(y−1)dy

−(0 − e−(θ+1)) = (1 − 0) − (e−(θ−1) − 1)

e−(θ+1) − e−(θ−1) = 2

Here also because of the same reason, we have a contradiction in the last equality.

• −1 ≤ θ ≤ 1: In this case we have

∫ ∞

θ

e−(y+1)dy =

∫ θ

−∞
ey−1dy

e−θ−1 = eθ−1

and so θ = 0 is the only root of (1). (You could also show this by make an argument
on the symmerty of the tails of the error function around zero.)
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(c) We can write the MAP decoder for this case as

P(Y1, Y2|X = +1)P[X = +1]
x = −1

≶
x = +1

P(Y1, Y2|X = −1)P[X = −1].

where P[X = −1] = P[X = 1] = 1
2
. We have

p(y1, y2|x) = p(Z1 = y1 − x, Z2 = y2 − x|x)
(a)
= p(Z1 = y1 − x)p(Z1 = y1 − x)

=
1

4
e−|y1−x|−|y2−x|

where (a) follows from the fact that Z1 and Z2 are independent from X and each other.
So the dicision rule will be

e−|y1−1|−|y2−1|
x = −1

≶
x = +1

e−|y1+1|−|y2+1|.

Now, consider the following cases and write the dicision rule for each.

• y1 > 1, y2 > 1:

=⇒ e−y1−y2+2
x = −1

≶
x = +1

e−y1−y2−2 =⇒ e2
x = −1

≶
x = +1

e−2 =⇒ x̂ = 1

• y1 > 1,−1 ≤ y2 ≤ 1:

=⇒ e−y1+y2

x = −1

≶
x = +1

e−y1−y2−2 =⇒ e−2y2

x = −1

≶
x = +1

e−2 =⇒ x̂ = 1

• y1 > 1, y2 < −11:

=⇒ e−y1+y2

x = −1

≶
x = +1

e−y1+y2 =⇒ 1
x = −1

≶
x = +1

1 =⇒ either choice

• −1 ≤ y1 ≤ 1, y2 > 1:

=⇒ ey1−y2

x = −1

≶
x = +1

e−y1−y2−2 =⇒ e−2y1

x = −1

≶
x = +1

e−2 =⇒ x̂ = 1

• −1 ≤ y1 ≤ 1,−1 ≤ y2 ≤ 1:

=⇒ ey1+y2−2
x = −1

≶
x = +1

e−y1−y2−2 =⇒ ey1+y2

x = −1

≶
x = +1

1 =⇒
{

x̂ = 1 if y1 + y2 ≥ 0
x̂ = −1 if y1 + y2 < 0
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• −1 ≤ y1 ≤ 1, y2 < −1:

=⇒ ey1+y2−2
x = −1

≶
x = +1

e−y1+y2 =⇒ e2y1

x = −1

≶
x = +1

e2 =⇒ x̂ = −1

• y1 < −1, y2 > 1:

=⇒ ey1−y2

x = −1

≶
x = +1

ey1−y2 =⇒ 1
x = −1

≶
x = +1

1 =⇒ either choice

• y1 < −1,−1 ≤ y2 ≤ 1:

=⇒ ey1+y2−2
x = −1

≶
x = +1

ey1−y2 =⇒ e2y2

x = −1

≶
x = +1

e2 =⇒ x̂ = −1

• y1 < −1, y2 < −1:

=⇒ ey1+y2−2
x = −1

≶
x = +1

ey1+y2+2 =⇒ e−2
x = −1

≶
x = +1

e2 =⇒ x̂ = −1

Finally, we will have the following decision regions on the (y1 − y2)-plane.

choose X̂ = +1

choose X̂ = −1

y1

y2

1

−1

−1 1

either choice

either choice

Figure 1: Decision regions.

Problem 3

(a) Note that xI(t) and xQ(t) are colored Gaussian processes. The baseband representation
is given by

xbb(t) = xI(t) + jxQ(t)
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and is very useful for the following reason. If we pass xbb(t) through a linear filter h(t),
then the resulting process will be

xbb(t) ∗ h(t) = xI(t) ∗ h(t) + jxQ(t) ∗ h(t),

i.e., the filter will apply independently to the in-phase and to the quadrature-phase
component and the resulting process will still be baseband. In addition, we know that
xI(t) and xQ(t) have the same auto-correlation function φXI

(τ) = φXQ
(τ) = e−2|τ |. We

wish to find a process ybb(t) that is baseband and whose in-phase and quadrature-phase
components are white zero-mean random processes. To find such a process, it suffices
to apply a whitening filter to xbb(t), i.e., to find a filter h(t) that is a whitening filter for
both xI(t) and xQ(t). Note that since we have continuous-time processes, the frequency
domain is the Fourier-domain. The condition

E[yI(t)yI(t − τ)] =
1

2
δ(τ)

(meaning that yI(t) should be white) corresponds to

SyI
(ω) =

1

2

in the frequency-domain. To whiten xI(t), we first compute its power-spectral density
SxI

(ω):

SxI
(ω) = FE[xI(t)xI(t − τ)]

= Fe−2|τ |

=
1

(1 + 1
2
jω)(1 − 1

2
jω)

,

where the last equality comes from the hint on the first page of the exam (note that
ω = 2πf). If we filter xI(t) by h(t) to obtain yI(t), then the output will be

yI(t) = xI(t) ∗ h(t)

and the power spectral densities behave like

SyI
(ω) = |H(ω)|2SxI

(ω),

where H(ω) is the Fourier transform of h(t). To achieve the desired power spectral
density of yI(t), we set

|H(ω)|2 =
SyI

(ω)

SxI
(ω)

=
1
2
1

(1+ 1

2
jω)(1− 1

2
jω)

=
(1 + 1

2
jω)(1 − 1

2
jω)

2
= H(ω)H(ω)∗.

Note that the complex conjugate of 1√
2
(1 + 1

2
jω) is 1√

2
(1− 1

2
jω). Therefore, we identify

the whitening filter

H(ω) =
1√
2
(1 +

1

2
jω).

The same whitening filter also works for the quadrature-phase part xQ(t).
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(b) The procedure is as follows. We follow part (a) to get from x(t) to its baseband equivalent
xbb(t) and then to the white baseband process ybb(t). Now, we color the in-phase and
quadrature-phase parts of ybb(t) to get a baseband process zbb(t). The coloring procedure
is the exact opposite of the whitening procedure, i.e., zbb(t) = ybb(t) ∗ g(t), where g(t) is
a coloring filter that should be such that

|G(ω)|2SyI
(ω) = SzI

(ω)

= FE[zI(t)zI(t − τ)]

= Fe−3|τ |

=
2
3

(1 + 1
3
jω)(1 − 1

3
jω)

,

where the last equality again comes from the hint on the first page. Hence,

|G(ω)|2 = G(ω)G(ω)∗

=
SzI

(ω)

SyI
(ω)

=
2

3(1 + 1
3
jω)(1 − 1

3
jω)1

2

,

and we find

G(ω) =
2√

3(1 + 1
3
jω)

.

By filtering ybb(t) with g(t), both the in-phase and the quadrature-phase component of
ybb(t) get colored. Now, from the colored baseband process zbb(t), we can construct a
passband process

z(t) = zI(t) cos(ω̃ct) − zQ(t) sin(ω̃ct).

Problem 4

(a) We have to find {an}∞n=1 such that E[|xk − x̂k|2] is minimized. Using the orthogonality
principle, the error of estimition should be orthogonal to our observation, i.e.,

E[(xk − x̂k)y
∗
k−m] = 0 m = 1, 2, 3, . . .

E

[(

xk −
∞∑

n=1

anyk−n

)

y∗
k−m

]

= 0

E[xky
∗
k−m] −

∞∑

n=1

anE[yk−ny∗
k−m] = 0

rxy(m) =
∞∑

n=1

anry(m − n) (2)
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According to the channel model, we can relate all the auto-correlations to Sx(D) and
Sz(D):

ry(`) = E[yky
∗
k−`]

= E[(xk + zk)(x
∗
k−` + z∗

k−`)]

= E[xkx
∗
k−`] + E[zkz

∗
k−`]

= rx(`) + δ(`) (note that zk and z∗
k−` are independent unless for ` = 0)(3)

rxy(`) = E[xky
∗
k−`]

= E[xk(x
∗
k−` + z∗

k−`)]

= E[xkx
∗
k−`] = rx(`) (4)

Replacing (3) and (4) in (2), we have

rx(m) =
∞∑

n=1

an [rx(m − n) + δ(m − n)] m = 1, 2, 3, . . .

=
∞∑

n=1

anrx(m − n) + am

gm =
∞∑

n=1

a′
nrx(m − n) + a′

m = 0 m = 1, 2, 3, . . .

where a′
0 = 1 and a′

n = −an for n > 0. Note that gm = 0 for m = 1, 2, 3, . . . , thus it is
an anti-causal sequence. In the other hand, we know that by definition a′

n is a causal
sequence. Going to the D domain we have

G(D) = A′(D)Sx(D) + A′(D)

= A′(D)(Sx(D) + 1)

= A′(D)ΓL(D)L∗(D−∗)

where ΓL(D)L∗(D−∗) is the spectral factorization of Sx(D) + 1. So we have

G(D)

ΓL∗(D−∗)
= A′(D)L(D)

where the LHS and RHS are respectively anti-causal and causal sequences and thus
both should be constant. Accoding to the monicity of A′(D) and L(D), we have

A′(D)L(D) = 1

⇒ A′(D) =
1

L(D)

⇒ {an}∞n=1 = {−a′
n}∞n=1 = −D−1

{
1

L(D)

}
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(b)

rx(`) = e−2|`|

⇒ Sx(D) = D{rx(`)}

=
∞∑

`=0

rx(`)D
` +

−1∑

`=−∞
rx(`)D

`

=
∞∑

`=0

e−2`D` +
−1∑

`=−∞
e2`D`

=
1

1 − D
e2

+
1

e2D

1 − 1
e2D

=
1 − 1

e4

(
1 − D

e2

) (
1 − 1

e2D

)

and

Sx(D) + 1 =
1 − 1

e4

(
1 − D

e2

) (
1 − 1

e2D

) + 1

=
−D

e2 + 2(1 + 1
e4 ) − 1

e2D(
1 − D

e2

) (
1 − 1

e2D

)

= Γ
(1 − βD)(1 − βD−1)
(
1 − 1

e2 D
) (

1 − 1
e2 D−1

)

where Γ = 1 + 1
e4 +

√

1 + 1
e4 + 1

e8 ' 2.0276 and β = e2 + 1
e2 −

√

e4 + 1 + 1
e4 ' 0.0667.

So, we have

L(D) =
1 − βD

1 − 1
e2 D

and

A′(D) =
1

L(D)
=

1 − 1
e2 D

1 − βD

= (1 − 1

e2
D)(1 + βD + β2D2 + β3D3 + · · · )

= 1 + (β − 1

e2
)D + β(β − 1

e2
)D2 + · · ·

in general for n ≥ 1 we have

a′
n = βn−1(β − e−2).

Finally, we have

an = βn−1(e−2 − β) n = 1, 2, 3, . . . .

Problem 5

(a) Bob receives

yB(t) =
∑

n

x[n]φ(t − nT ) + zB(t),
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and therefore, projecting yB(t) onto φ(t−kT ) is a sufficient statistics for detecting x[k].
This projection (matched filter) yields

yB[k] = yB(t) ∗ φ(−t)∗
∣
∣
t=kT

=

∫ T

0

yB(t)φ(t)∗dt

= x[k] +

∫ T

0

zB(t)φ(t)∗dt.

Thus, zB[k] is equal to the last integral. To find its power spectral density, we first
compute its auto-correlation function.

rzB
[m] = E [zB[k]zB[k − m]∗]

= E

[∫ T

t=0

zB(t)φ(t − kT )∗dt

∫ T

s=0

zB(s)∗φ
(
s − (k − m)T

)
ds

]

=

∫ T

t=0

∫ T

s=0

E [zB(t)zB(s)∗]
︸ ︷︷ ︸

N0δ(t−s)

φ(t − kT )∗φ
(
s − (k − m)T

)
dsdt

=

∫ T

t=0

N0φ(t − kT )∗φ
(
t − (k − m)T

)
dt

= N0δm,

where the last equality follows from the fact that {φ(t − nT )}n∈Z is an orthonormal
basis. The power spectral density is the D-transform of rzB

[k], which is

SzB
(D) = N0.

(b) Carol receives

yC(t) =
∑

n

x[n]φ(t − nT ) +
∑

n

yB[n]φ
(
t − (n + 1)T

)
+ zC(t)

=
∑

n

x[n]
(

φ(t − nT ) + φ
(
t − (n + 1)T

))

+
∑

n

zB[n]φ
(
t − (n + 1)T

)
+ zC(t).

Note that the expression φ(t − nT ) + φ
(
t − (n + 1)T

)
is exactly as in an inter-symbol

interference (ISI) channel, since

φ(t) + φ(t − T ) = φ(t) ∗ h(t)

, p(t),

where h(t) = δ(t) + δ(t − T ). We therefore proceed as for an ISI channel. Define

φ̃(t) =
p(t)

||p(t)||

=
1√
2

(
φ(t) + φ(t − T )

)
,

because ||p(t)|| = 〈p(t), p(t), 〉 1

2 =
√

2. We know that in an ISI channel, we should use
φ̃(t) as a basis function for the matched filter. If we just used φ(t), we would not end
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up with a sufficient statistics. Projecting yC(t) onto the kth basis function yields

yC [k] =

∫ T

0

yC(t)φ̃(t − kT )∗dt

=
1√
2

∑

n

x[n]

∫ T

0

(
φ(t − nT ) + φ

(
t − (n + 1)T

))(
φ(t − kT )∗ + φ

(
t − (k + 1)T

)∗)
dt

+
1√
2

∑

n

zB[n]

∫ T

0

φ
(
t − (n + 1)T

)(
φ(t − kT )∗ + φ

(
t − (k + 1)T

)∗)
dt

+
1√
2

∫ T

0

zC(t)
(
φ(t − kT )∗ + φ

(
t − (k + 1)T

)∗)
dt

=
2√
2
x[k] +

1√
2
x[k − 1] +

1√
2
x[k + 1]

+
1√
2

(
zB[k − 1] + zB[k]

)

+ zC [k]

=
√

2q[k] ∗ x[k] + z̃B[k] + zC [k],

where we defined zC [k] = 1√
2

∫ T

0
zC(t)

(
φ(t − kT )∗ + φ

(
t − (k + 1)T

)∗)
dt, and where

q[k] =

∫ T

0

φ̃(t)φ̃(t − kT ) = δk +
1

2
δk−1 +

1

2
δk+1.

One can easily verify that zC [k] has autocorrelation-function

rzC
[m] = E [zC [k]zC [k − m]∗]

=
1

2
N0(2δm + δm−1 + δm+1)

= N0q[m].

The first noise term is defined as z̃B[k] = 1√
2

(
zB[k − 1] + zB[k]

)
. Remember that

zB[k] has autocorrelation function rzB
[m] = N0δm. One can again easily verify that

rz̃B
[m] = N0q[m]. Hence

SzC
(D) = Sz̃B

(D) = N0Q(D),

i.e., the noise is no longer white.

(c) It suffices to find the D-transform W (D) of the optimal filter w[k]. We write the orthog-
onality principle in the D-notation:

E
[(

X(D) − W (D)YC(D)
)
Y ∗

C(D−∗)
]

= SxyC
(D) − W (D)SyC

(D) = 0.

Hence,

W (D) =
SxyC

(D)

SyC
(D)

=

√
2Q(D)Ex

2Q2(D)Ex + N0Q(D) + N0Q(D)
.
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Problem 6

(a) From

Q(D) +
1

SNRMFB

= γ0G(D)G∗(D−∗) (5)

we know that the constant terms (the coefficient of D0) are the same in both sides. We
also know q0 = 1, and so the constant term in LHS of (5) is 1 + 1/SNRMFB. G(D)
is causal and can be written as G(D) = g0 + g1D + g2D

2 + g3D
3 + · · · =

∑∞
n=0 gnD

n.
Thus, we also can write G∗(D−∗) as

G∗(D−∗) =

( ∞∑

n=0

gn(D−∗)n

)∗

=
∞∑

n=0

g∗
nD

−n =
0∑

−∞
g′

nD
n

where g′
n = g∗

−n. Therefore the constant term in γ0G(D)G∗(D−∗) , A(D) =
∑∞

n=−∞ anD
n

is

a0 = γ0

∞∑

n=0

gng
′
−n = γ0

∞∑

n=0

gng
∗
n = γ0

∞∑

n=0

|gn|2 = γ0 ‖ g ‖2 .

So,

1 +
1

SNRMFB

= γ0 ‖ g ‖2

(b) We know that G(D) is monic, and so g0 = 1. Thus,

‖ g ‖2=
∞∑

n=0

|gn|2 = |g0|2 +
∞∑

n=1

|gn|2 ≥ 1 (6)

where the inequality follows from the fact that all the terms in the summation are
non-negative. In order to obtain the equality condition,

(i) assume that ‖ g ‖2= 1. From (6), we see that all the terms in the summation should
be zero, i.e., gn = 0 for n > 0. and therefore G(D) = 1 and G∗(D−∗) = 1∗ = 1. So,
the RHS of (5) is a constant and the LHS is, i.e., Q(D) is a constant polynomial.
From the fact q0 = 1, there is no choice for Q(D) unless Q(D) = 1.

(ii) assume that Q(D) = 1, i.e., the LHS of (5) is a constant.and has no zero or pole
and its spectral factorization is just some constant. Assuming G(D) is monic, we
have G(D) = 1, and therefore ‖ g ‖2= 1.

Combining ‖ g ‖2≥ 1 with the fact 1 + 1
SNRMFB

= γ0 ‖ g ‖2, we have

γ0 ≤ 1 +
1

SNRMFB

.

(c) G(D) is monic and causal, so is L(D) = 1
G(D)

. L∗(D−∗) = 1
G∗(D−∗)

is also monic and

anti-causal, because G∗(D−∗) is monic and anti-causal. So, the constant term in the
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inverse D-transform of L(D)L∗(D−∗) is 1. Thus,

D−1

[

1

Q(D) + 1
SNRMFB

] ∣
∣
∣
∣
∣
0

= D−1
[
βL(D)L∗(D−∗)

]
∣
∣
∣
0

= βD−1
[
L(D)L∗(D−∗)

]
∣
∣
∣
0

=
1

γ0

∞∑

n=0

|`n|2

=
1

γ0

(

1 +
∞∑

n=1

|`n|2
)

≥ 1

γ0

(d) We know that the signal energy, Ex, is the same in MMSE-LE and MMSE-DFE. So we
just have to comprise the noise energies in the equlizers.

σ2
MMSE−DFE =

N0

‖ p ‖2

1

γ0

≤ N0

‖ p ‖2
D−1

[

1

Q(D) + 1
SNRMFB

] ∣
∣
∣
∣
∣
0

(7)

= σ2
MMSE−LE

So,

SNRMMSE−LE =
Ex

σ2
MMSE−LE

≤ Ex

σ2
MMSE−DFE

= SNRMMSE−DFE

and

SNRMMSE−LE,U = SNRMMSE−LE − 1 ≤ SNRMMSE−LE − 1 = SNRMMSE−LE.

Note that the inequality in (7) follows from the inequality of part (c) with the quality
condition `n = 0 for n > 0. This condition is equivalent to L(D) = 1, which is also
equivalent to G(D) = 1 and so Q(D) = 1.

(e) The first inequality is already proved in (d) and we just have to show

SNRMMSE−DFE,U ≤ SNRMFB :

SNRMMSE−DFE,U = SNRMMSE−DFE − 1 =
Ex

σ2
MMSE−DFE

− 1

(∗)
=

Ex

N0

‖p‖2

γ0 − 1

(∗∗)
≤ SNRMFB ·

(

1 +
1

SNRMFB

)

− 1

= SNRMFB

where (∗) and (∗∗) follow from (d) and (b), respectively.
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