MIDTERM

Wednesday December 14, 2005, 9:00-13:00
This exam has 6 problems and 80 points in total (+10 Bonus points).

Instructions

- You are allowed to use 1 sheet of paper for reference. No mobile phones or calculators are allowed in the exam.
- You can attempt the problems in any order as long as it is clear which problem is being attempted and which solution to the problem you want us to grade.
- If you are stuck in any part of a problem do not dwell on it, try to move on and attempt it later.
- We will use the following notation: if $W(D)$ is the D-transform of w_{k}, we will denote w_{k} by

$$
w_{k}=\left.\mathcal{D}^{-1}[W(D)]\right|_{k}
$$

- The Fourier transform of $a(t)=e^{-\alpha|t|}$ is

$$
A(f)=\frac{\frac{2}{\alpha}}{\left(1+\frac{1}{\alpha} j 2 \pi f\right)\left(1-\frac{1}{\alpha} j 2 \pi f\right)}
$$

Good Luck!

Problem 1

[The Z-Channel (12pts)]
Consider the following binary channel shown in Figure 1.

Figure 1: The Z-channel.
[3pts] (a) Let us consider a single transmission with $\mathbb{P}[X=0]=q, \mathbb{P}[X=1]=1-q$. Assume that the prior q is known at the decoder. Given observation Y, give the decision rule that minimizes the probability of error, i.e., $\mathbb{P}[\hat{X} \neq X]$.
You can assume that $q \in\left[0, \frac{1}{2}\right]$ and $p \in\left[0, \frac{1}{2}\right]$.
Hint: Consider cases when $\frac{q}{1-q} \lessgtr p$.
[3pts] (b) Now, consider successive transmissions where the same input symbol X is transmitted n times over independent realizations of this channel. As before, consider the priors to be $\mathbb{P}[X=0]=q, \mathbb{P}[X=1]=1-q$, again known at the decoder. Given the observations Y_{1}, \ldots, Y_{n}, give the decision rule that minimizes the error probability.
[6pts] (c) Now, let \mathbf{X} be a vector that has the following two hypotheses:

$$
\mathbf{X}=\left\{\begin{array}{cccc}
\mathbf{1} & \text { w.p. } & \frac{1}{2} \Longrightarrow & \text { hypothesis } H_{0} \\
\mathbf{S} & \text { w.p. } & \frac{1}{2} \Longrightarrow & \text { hypothesis } H_{1}
\end{array},\right.
$$

where $\mathbf{1}=(1, \ldots, 1)$, and $\mathbf{S}=\left(S_{1}, \ldots, S_{n}\right)$ is an i.i.d. process with

$$
\mathbb{P}\left[S_{1}=s_{1}\right]=\left\{\begin{array}{lll}
\frac{1}{2} & \text { for } & s_{1}=0 \\
\frac{1}{2} & \text { for } & s_{1}=1
\end{array} .\right.
$$

Given n observations Y_{1}, \ldots, Y_{n}, we want to decide between the two hypotheses. Find the maximum likelihood (ML) rule to decide between these two hypotheses, i.e., hypothesis H_{0} or H_{1}.
Hint: Write out the distributions of $\left(Y_{1}, \ldots, Y_{n}\right)$ under the two hypotheses.

Problem 2

[Exponential Detection (10pts +7 pts Bonus)]
Consider the following channel:

$$
Y=X+Z
$$

where Z is independent of X and the probability density function of Z is

$$
p_{Z}(z)=\frac{1}{2} e^{-|z|} .
$$

[5pts] (a) If $\mathbb{P}[X=-1]=q, \mathbb{P}[X=1]=1-q$, find the decision regions of the MAP decoder for this channel.
[5pts] (b) If the prior q is unknown, find the minmax detection rule $\min _{H} \max _{q} P_{e, H}(q)$ for this channel. Please do not just state the decision rule, but prove the result.
Hint: You can use a relation between $\mathbb{P}[\operatorname{error} \mid X=1]$ and $\mathbb{P}[\operatorname{error} \mid X=-1]$.
[Bonus: (c) Now assume that we make two observations 7pts]

$$
\begin{aligned}
& Y_{1}=X+Z_{1} \\
& Y_{2}=X+Z_{2}
\end{aligned}
$$

where Z_{1} and Z_{2} are independent and identically distributed with densities

$$
p_{Z_{1}}(z)=p_{Z_{2}}(z)=\frac{1}{2} e^{-|z|} .
$$

Let $\mathbb{P}[X=-1]=\mathbb{P}[X=1]=\frac{1}{2}$. Prove that the optimal decision rule for this channel is given by the decision regions in Figure 2.

Figure 2: Decision regions.

Problem 3

[Colored Passband Process (14pts)]
Suppose we have access to a real passband process

$$
x(t)=x_{I}(t) \cos \left(\omega_{c} t\right)-x_{Q}(t) \sin \left(\omega_{c} t\right)
$$

where $x_{I}(t)$ and $x_{Q}(t)$ are zero-mean jointly Gaussian random processes, with

$$
\mathbb{E}\left[x_{I}(t) x_{I}(t-\tau)\right]=e^{-2|\tau|}=\mathbb{E}\left[x_{Q}(t) x_{Q}(t-\tau)\right] .
$$

Further, let $x_{I}(t)$ and $x_{Q}(t)$ be independent.
[8pts] (a) Suppose we want to produce a baseband process $y_{b b}(t)$ such that

$$
y_{b b}(t)=y_{I}(t)+j y_{Q}(t)
$$

with

$$
\mathbb{E}\left[y_{I}(t) y_{I}(t-\tau)\right]=\frac{1}{2} \delta(\tau)=\mathbb{E}\left[y_{Q}(t) y_{Q}(t-\tau)\right]
$$

and $y_{I}(t)$ and $y_{Q}(t)$ are zero-mean random processes. Show how to produce such a baseband process using $x(t)$.
[6pts] (b) Now if we want to produce a passband process $z(t)$ such that

$$
z(t)=z_{I}(t) \cos \left(\tilde{\omega}_{c} t\right)-z_{Q}(t) \sin \left(\tilde{\omega}_{c} t\right)
$$

with a given $\tilde{\omega}_{c}>\omega_{c}$. Furthermore $z_{I}(t)$ and $z_{Q}(t)$ to be zero-mean independent Gaussian processes with auto-correlation functions

$$
\mathbb{E}\left[z_{I}(t) z_{I}(t-\tau)\right]=e^{-3|\tau|}=\mathbb{E}\left[z_{Q}(t) z_{Q}(t-\tau)\right]
$$

Starting from $x(t)$, show how we can produce the desired $z(t)$.
Hint: For both parts (a) and (b), you can give a procedure in the frequency domain.

Problem 4

[LINEAR PREDICTION (13pts)]
Given observation

$$
y_{k}=x_{k}+z_{k}
$$

where $\left\{z_{k}\right\}$ is an iid Gaussian random process with zero-mean and unit variance which is independent of x_{k}. Let $\left\{x_{k}\right\}$ be zero-mean with $\mathbb{E}\left[x_{k} x_{k-\ell}\right]=r_{x}(\ell)$.
[9pts] (a) We want to produce \hat{x}_{k}, given observation $\left\{y_{\ell}\right\}_{\ell=-\infty}^{k-1}$ using a linear predictor

$$
\hat{x}_{k}=\sum_{n=1}^{\infty} a_{n} y_{k-n} .
$$

Find an expression for the best MMSE linear predictor for \hat{x}_{k}, i.e., assuming the PaleyWiener condition holds for all the spectra involved. That is, find $\left\{a_{n}\right\}_{n=1}^{\infty}$ in terms (of a function) of $S_{x}(D)$.
[$4 p t s$] (b) If $r_{x}(\ell)=e^{-2|\ell|}$, where l is an integer, find an explicit expression for the linear predictor.

Figure 3: Relay estimation

Problem 5

[RELAY ESTIMATION (15pts)]

Suppose Alex had a wireless transmitter in the INR building and wants to communicate with Carol in the BC building. However, Alex has a friend Bob who is in the PSE building and is willing to help Alex with his mission. Both Carol and Bob have additive Gaussian noise channels.

$$
\begin{aligned}
y_{B}(t) & =x_{A}(t)+z_{B}(t) \\
y_{C}(t) & =x_{A}(t)+x_{B}(t)+z_{C}(t)
\end{aligned}
$$

where $z_{B}(t)$ and $z_{C}(t)$ are independent zero-mean white Gaussian processes with power spectral density N_{0}. Now, Alex sends out the sequence $\{x[n]\}$ using a basis function $\phi(t)$

$$
x_{A}(t)=\sum_{n} x[n] \phi(t-n T),
$$

where $x[n]$ is an i.i.d. sequence with variance \mathcal{E}_{x}. Bob after listening to Alex's message uses a matched filter to collect sufficient statistics and obtains

$$
\begin{equation*}
y_{B}[k]=x_{A}[k]+z_{B}[k] . \tag{1}
\end{equation*}
$$

He then forwards the symbol $y[k]$ at the next transmission and therefore sends

$$
x_{B}(t)=\sum_{k} y_{B}[k] \phi(t-(k+1) T)
$$

as the transmitted waveform (see Figure 3).
You can assume the shifted versions of the basis are orthonormal

$$
<\phi_{0}, \phi_{k}>=\int \phi^{*}(t) \phi(t-k T) d t=\delta_{k}=\int \phi^{*}(t-(n-k) T) \phi(t-n T) d t
$$

[$4 p t s$] (a) Find the spectrum $S_{z_{B}}(D)$ of $z_{B}[k]$ in (1) after the matched filter operation by Bob.
[$7 p t s]$ (b) Now Carol receives the superposition of the signal from Alex and Bob, and uses a matched filter receiver to the received signal to obtain a set of sufficient statistics of the input sequence $x[k]$. Express the output of the matched filter receiver, $y_{C}[k]$, in terms of the crosscorrelation of the shifted basis function.
[4pts] (c) Now, Carol wants to use a linear filter $w[k]$ to estimate $x[k]$, which minimizes the estimation error

$$
\mathbb{E}\left|x[k]-w[k] * y_{C}[k]\right|^{2}
$$

between the estimate and the signal sent by Alex. Find the optimal filter $w(k)$.

Problem 6

[Performance of Equalizers ($\mathbf{1 6 p t s}+3$ pts Bonus)]
Recall the discrete-time channel after matched filtering and sampling:

$$
Y(D)=\|p\| Q(D) X(D)+Z(D)
$$

Recall also the definition

$$
S N R_{M F B}=\frac{\mathcal{E}_{x}\|p\|^{2}}{N_{0}}
$$

[5pts] (a) We proved in class that the MMSE-DFE uses the spectral factorization

$$
\begin{equation*}
Q(D)+\frac{1}{S N R_{M F B}}=\gamma_{0} G(D) G^{*}\left(D^{-*}\right) \tag{2}
\end{equation*}
$$

where $G(D)$ is causal, strictly stable and monic.
Remember that since $q_{k}=\left\langle\tilde{\varphi}_{0}, \tilde{\varphi}_{k}\right\rangle$, we can conclude that $q_{0}=1$.
Using this, prove that

$$
1+\frac{1}{S N R_{M F B}}=\gamma_{0}\|g\|^{2},
$$

where

$$
\|g\|^{2}=\sum_{n=0}^{\infty}\left|g_{n}\right|^{2} .
$$

[3pts] (b) Now, show that for any $G(D)$ satisfying equation (2), $\|g\|^{2} \geq 1$, with equality if and only if $Q(D)=1$.
Therefore using this we have

$$
\gamma_{0} \leq 1+\frac{1}{S N R_{M F B}}
$$

[5pts] (c) Now, the MMSE-LE is given by (as shown in class)

$$
W_{M M S E-L E}(D)=\frac{1}{\|p\|\left(Q(D)+\frac{1}{S N R_{M F B}}\right)}
$$

We also showed in class that for the MMSE-LE, the error spectrum is

$$
S_{E E}^{M M S E-L E}(D)=\frac{N_{0}}{\|p\|^{2}} \frac{1}{Q(D)+\frac{1}{S N R_{M F B}}}=\frac{N_{0}}{\|p\|} W_{M M S E-L E}(D) .
$$

Hence

$$
\sigma_{M M S E-L E}^{2}=\frac{N_{0}}{\|p\|} w_{M M S E-L E}[0]=\left.\frac{N_{0}}{\|p\|^{2}} \mathcal{D}^{-1}\left[\frac{1}{Q(D)+\frac{1}{S N R_{M F B}}}\right]\right|_{0}
$$

(see the instructions page for the notation). Now,

$$
Q(D)+\frac{1}{S N R_{M F B}}=\gamma_{0} G(D) G^{*}\left(D^{-*}\right)
$$

and

$$
\frac{1}{Q(D)+\frac{1}{S N R_{M F B}}}=\beta L(D) L^{*}\left(D^{-*}\right)
$$

where $\beta=\frac{1}{\gamma_{0}}$ and $L(D)=\frac{1}{G(D)}$.
Using this, prove that

$$
\begin{equation*}
\left.\mathcal{D}^{-1}\left[\frac{1}{Q(D)+\frac{1}{S N R_{M F B}}}\right]\right|_{0} \geq \frac{1}{\gamma_{0}} \tag{3}
\end{equation*}
$$

[3pts] (d) We have shown in class that for the MMSE-DFE,

$$
S_{E E}^{M M S E-D F E}(D)=\frac{N_{0}}{\gamma_{0}\|p\|^{2}} .
$$

Hence

$$
\sigma_{M M S E-D F E}^{2}=\frac{N_{0}}{\gamma_{0}\|p\|^{2}}
$$

Using this and inequality (3) show that

$$
S N R_{M M S E-L E, U} \leq S N R_{M M S E-D F E, U},
$$

with equality iff $Q(D)=1$.
[Bonus: (e) Use results from (b) and (c) to show that 3pts]

$$
S N R_{M M S E-L E, U} \leq S N R_{M M S E-D F E, U} \leq S N R_{M F B} .
$$

