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Abstract. We consider an electron in two dimensions submitted to a magnetic field and to the
potential of impurities. We show that when the electron is confined to a half-space by a planar
wall described by a smooth increasing potential, the total Hamiltonian necessarily has a continuous
spectrum in some intervals in between the Landau levels provided that both the amplitude and
spatial variation of the impurity potential are sufficiently weak. The spatial decay of the impurity
potential is not needed. In particular, this proves the occurrence of edge states in semi-infinite
quantum Hall systems.

1. Introduction

In the quantum Hall effect the physics at the boundary of the sample plays an important
role. This was first recognized in the context of the integer effect by Halperin [1], and more
recently has been the subject of the powerful and beautiful theories of the fractional effect [2—4].
Moreover, the edge properties of quantum Hall fluids are now accessible experimentally [5] and
provide much information on these systems. Halperin argued that in a two-dimensional system
with boundaries (say an annulus or a cylinder) submitted to a perpendicular magnetic field there
are ‘quasi-one-dimensional edge states’ extended along each boundary of the sample, which
contribute to the quantized Hall conductivity (if the chemical potentials on opposite edges
are different). In the ideal situation of a clean sample with non-interacting electrons it is
easy to construct such quasi-one-dimensional edge states (see equation (1.6) below). In a real
situation, however, the sample is disordered (we disregard Coulomb interactions here) and
the existence of extended states may seem less evident since usual one-dimensional systems
exhibit localization for any amount of disorder. In fact, the absence of localization in this
situation is usually explained by the chirality of the modes propagating along the boundary.
The simplest models for investigating the boundary of quantum Hall fluids are constructed
from one-dimensional electron systems with chiral branches of excitations (see, for example,
[2, 4]) corresponding to only left-movers (or only right-movers). In such systems the absence
of interference between left- and right-movers leads to the absence of Anderson localization
and hence to extended states.

In the present work we consider a two-dimensional semi-infinite geometry, the electrons
being confined by a planar smooth wall. Starting right away from an unbounded system allows
a clear-cut distinction between a point and a continuous spectrum in thédsuler operator.

We show here that for a large class of additional impurity potentials (random or deterministic)
the Hamiltonian of this system does indeed have continuous parts in its spectrum as a result of
the presence of the wall. We recall that for the case of infinite space (system without boundary)
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and point random impurities, the spectrum has been shownéatirely dense pure poirfior
a large enough magnetic field [6], a fact which is believed to hold for more general random
potentialst. For these, existing results deal only with limited regions of the spectrum [7-9].
Here we are mainly concerned with the opposite problem, namely the exclusion of a point
spectrum in certain parts of the spectrum¥. During the completion of this work, we have
been informed that Froehlich, Graf and Walcher [10] have proven the existence of intervals
of absolute continuity for the same system with the help of Mourre estimates, and have also
treated the case of Dirichlet boundary conditions.

The position of the electron in the planeris= (x, y), wherey is the direction parallel to
the wall. We assume that the ‘wall potential(x) vanishes forx < O (the bulk region) and
increases as a power law fer> 0 (the wall region)

Ux)=0 x<0 Ux)=ux¥ x>0 (1.2)
whereu > 0 andy > 1. All our estimates hold for wall potentials that grow much faster
as long as they are continuous on the whole real line and strictly increasing (for example,
exponential or Gaussian growth), but we limit ourselves to (1.1) for the sake of concreteness.

In addition, the electron is also submitted to a bounded and differentiable external potential
w(r) such that

suplw(r)| = wg < 00 sup|d,w(r)| = wy < oo. 1.2)
The total Hamiltonian is

H = Hp+w(r) (1.3)
whereHj is the pure wall Hamiltonian

Ho = H(B) +U(x) (1.4)
and

H(B) = 3p? +3(py — Bx)? (1.5)

is the usual Landau Hamiltonian written in the Landau gauge, wBei® the strength of
the magnetic field. All these Hamiltonians are essentially self-adjoin€gmR?) ([11],
theorem X34, p 190).

It is well known that the spectrum dff (B) consists of Landau levels, = (n + %)B,
n=20,1 2,.... These are infinitely degenerate so that one may construct localized as well as
extended eigenfunctions &f (B) by appropriate linear combinations. Because of translation
invariance in they-direction the generalized eigenfunctionskyf are of the form

eikyhnk(x) (1.6)
whereh,,; (x) is the solution of the one-dimensional probléntk) i, = &, (k) hux,
Hk) = 3p? +3(k — Bx)2+ U (x). (1.7)

For a giverk this is the Hamiltonian of a particle in a confining potential well for botk +oo.
Therefore, the spectrum consists of non-degenerate eigené&lesnd it follows from the
Kato—Rellich theorem [12] that the branch&sk) are analytic functions of.

Note also that from the Feynman—Hellman theorem

W&nlk) = / N dx (k — Bx) [ (x)|? (1.89)
- %/ Dodx U’ () [ (). (1.80)

T This is compatible with a localization length which may diverge at isolated energies.
T We do not exclude the possibility of a singular continuous spectrum.
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SinceU’(x) > 0 for x > 0 the branches are increasing strictly monotonically fokallhe
equality (1.&) follows from the fact that the Hamiltonian (1.7) is unitarily equivalent to

k
%P§+%Bzx2+U<x+E>. (1.9)

Moreover, lim,_, o E(k) = (n + %)B sinceU (x + k/B) vanishes in this limit, whereas
My 400 £ (k) = +o0 sincelU (x + k/B) is unbounded a& — +oo. One concludes from
these observations that the spectrum of the wall HamiltoHiais absolutely continuous and
consists of the set(Hp) = [B/2, +ool.

The right-hand side of (1§ is the average of the diamagnetic currgnt= p, — Bx
carried by the state (1.6) along the wall ahd, (k) can be interpreted as the corresponding
group velocity.

The main question that we address in this paper is the stability of this continuous spectrum
(or parts of it) when an impurity potential is added toH,. Consider first the case when
is localized in a finite region of space. Then, as shown in appendix’X, e e~/ is a trace
class operator, implying th&t still has an absolutely continuous spectrumBni2, +oo[ ([13],
chapter X). Ifw does not decay at infinity, as is the case, for example, for periodic or random
potentials, this argument cannot be applied and the nature of the spectrum may be different. In
the random case a convenient model of disorder is obtained by assuming that the impurities are
located on a regular lattice, each of them being the source of the same local bounded potential,
with bounded derivatives. Then far(r) we take a typical realization of the random potential

Vo) = Y @pmv(x—n,y—m) v(r) =0 for |r|> 3 (1.10)

(n,m)eZ?

wherew, ,, are independent identically distributed random variables with continuous density
supported inf1, 1]. If v(r) satisfies (1.2) the same is true for &lJ(r). Typical realizations
of the random potential do not decay at large distance, so that trace class perturbation theorems
cannot be applied.

We prove in section 4, theorem 1, that feg and w; small enough, depending ah
and the steepness of the wall, cannot have a point spectrum in intervalg (B, §) =
Jn+1DB — 68, (n+ 1B + 5[ of size Z > B — wp in between the Landau levels. This
information is supplemented in section 5, theorem 2, by a proof that the intexyéls §) are
included in the spectrum d@f. Hence theorems 1 and 2 imply that the spectrurif @€mains
continuous in these intervals. In the random case, general arguments (appendix B) show that
the spectrum ofi,, contains B/2, oo[ with probability one, and thus theorem 1 alone implies
the existence of a continuous spectrum for almosballheorem 2 guarantees the existence
of a continuous spectrum for all realizations of (1.10) and allows us to treat deterministic
potentials (e.g. periodic).

2. Main results

In the following sections, the effect of the wall will enter mainly through the following
functional of the wall potential:

U(X)4> /O" Ux)*Ux/2)1* ( x 1/2)
AE; U) = 8 d — U(x/2
( ) sup < + : x exp >/ (x/2)

o<x<xo) \ U (x) o) rx)Y2U'(x)

(2.1)
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whereE > 0 andxo(U) solvesU (xo/2) = 2E. We remark thatA (E; U) is finite for a much
larger class of wall potentials than those in (1.1) (e.g. exponential). The factor

exp(—ziﬁU(x/Z) 1/2>

is similar to the WKB tail of the wavefunction ekp fx dyU(y) — E) ~ exp(—cx+/U (x))
in the wall region. We have

Theorem 1. If B/2 — wg > § for somes > 0 and
B/2 — 6§ —wo)*
w) < (B/ wo) (2.2)
SUPgen, .6 AE +wo; U)

then H has no eigenvalue in the intervals, (B, §) =](n+ )B — 8, (n + 1) B + 4.

Theorem 2. If B/2 — wg > § for somes > 0 and
(B/2—8 —wo)*
SURy<wo<B/2 SUPEea, (8.5) A(E + wo; U)
then the whole intervah, (B, §) is included in the spectrum of H.

!

Wy <

(2.3)

Note that condition (2.3) implies (2.2), hence under condition (2.3) the spectriirirof
A, (B, §) is purely continuous.

In order to understand the meaning of this condition more explicitly, let us consider for
concreteness the case of a ‘linear wadll'(x) = ux,x > 0andU (x) = 0,x < Owithu > 0.
Then we have

(4E)4 8 5/3 oo 15/4 ,— 132
Ajinear(E) = + / / dx x1¥4e= a7, 2.4
inear(E) 0 /5 214 1% A2 ( )

Consider first the dependence on the steeppeasxfshe wall for fixedB andn. We find

wy < Cst w— 0. (2.5)
On the other hand for a steep wall,—~ oo, we find the condition
53 u — +oo. (2.6)

The case (2.5) shows that our theorems can only prove the occurrence of a continuous spectrum
if the wall is steep enough. For a localized impurity(¢) with compact support) we know
that the spectrum off has a continuous part for any > 0 (see the introduction). When
the impurities are extended over the whole space it is not known whether the same is true, or
whether a critical steepness is needed for the occurrence of a continuous spectrum. On the
other hand, because of (2.6) we cannot conclude about the existence of a continuous spectrum
for a very steep wall. We nevertheless believe that the system still has extended edge states in
the limit of hard walls. The use of nonlinear walls in (2.1) (e.g. polynomial, exponential, etc)
leads to the same conclusion that an upper boungghas to vanish in the limit of infinite
steepness. We feel that this inability to prove the existence of edge states for very steep walls
is linked to the techniques used in this paper.

We consider nowB large andu, » fixed. Then one can allowy to be large buivy has
to remain bounded because it follows from (2.3) and (2.4) #ja C, C > 0 asB — oc.
However, for a nonlinear wall/ (x) = ux?, x > 0 with y > 1 the latter bound can be
improved towy < CB*~/7, allowing for more rapidly varying impurity potentials.

Finally, the high-energy (i.e. large} behaviour of the bound (2.3) is as*. Thus
theorems 1 and 2 guarantee the existence of a continuous spectrum only in a finite number of

wy < Cst u~
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intervals. We expect, however, to find a continuous spectrum in between all Landau levels,
especially at high energies. This is probably again an artefact of our methods.

To conclude this section, we say a few words about the ideas involved in the proof of
theorems 1 and 2. The absolute continuityr6Hp) is intimately linked to the positive group
velocity 9,.&, (k) and positive ‘local drift' U’(x)/B in (1.80). A closely related fact is the
existence of a positive commutator 8§ with the observable

Y = Px — By
which represents the centre of the cyclotronic orbit for the Landau problem
[iY,Ho] =U'(x) > 0. (2.7)

Suppose there exists an eigenfunctienof Hy. Then
0= (Wo. [, Hwo) = [ e [y u'colvotr. (28)
0 —00

which is clearly impossible becaudg has a tail penetrating the regian> 0, whereU’(x)
is strictly positive. This observation can be generalized to the full Hamiltonian (2.3). The
commutator withY = p, — By becomes

[iY, H] = U'(x) + d,w(r). (2.9)

Now we lose the positivity because &fw, but we may exploit the fact that w is bounded
andU’(x) — +oo for x — +oo. If H has an eigenstatg, then(\, [iY, H]¥) = 0 so that

(W, U'W) = —(W, d,w¥) < w),. (2.10)

Suppose now that the eigenenergyofies in between two Landau levels, thénshould be
supported in regions whelé(x) is large. Indeed, ift were essentially localized in the bulk
region, the wall would not contribute to the energy which would then lie in the vicinity of a
Landau level for smallvg. Therefore (W, U'V) should be large, which contradicts (2.10) if
wy is sufficiently small.

The basic idea behind the proof of theorem 2 is as follows. Supposé& than, (B, §)
belongs to the resolvent set &f. Then there is a small gap aroudin the spectrum oH.
It is possible to add a local perturbation &b such that: (a) theorem 1 is still applicable to
the perturbed Hamiltonian; (b) the local perturbation creates eigenvalues inside the gap. From
(a) and (b) we obtain a contradiction so tlaE A, (B, §) cannot belong to the resolvent set
of H.

3. Pointwise estimate of wavefunctions

In this section we provide a control on the decay of the eigenfunctiofi& foff x > 0 using
Brownian motion techniques. Léts) = (b, (s), by(s)) be a two-dimensional Brownian path
with 0 < s < ¢ andb(0) = 0. We denote byDb = Db, Db, the Wiener measure with
covarianceb; (s) b;(s)) = min(s, t) &;;, i, j = x, y. For an eigenfunctiod with eigenvalue
E we have, using the Feynman—Kac-Ito representation [14],

e Ey(r) :/Db exp[—iB/ (x+bx(s))dby]
0

X exp[— / ds (Ux +by(s)) +w(r+ b(s))):| W(r+b(1)). (3.1)
0



1990 N Macris et al

Using the Schwarz inequality on the measDie hypothesis (1.2), and then integrating over
the y-direction, we obtain

e*Z’E/ ooo|y |W(r)? < ez""O/Dbx exp[—Z/ ds U(x +bx(s))] bex F(x + by (1))
_ 0

(3.2)
where
F(x +b:(1)) = / dy W (x + b, (1), y)I°. (3.3)
We have
+00 ) e/ ) 1 +00 ) )
/DbXF(x-FbX(t)):\/_oo dx WF(X"‘X) < W\/_m dx F(.X')
1 1
= —(27”)1/2 /dr W (r))? = —(27”)1/2. (3.4)

From (3.2) and (3.4) we have the estimate
+00 g2 (E+wo) t
/ dy | (r)|? < /Dbx exp|:—2/ dsU(x+bx(s))]. (3.5)
— 0

0o rt)2
Now setx > 0. We decompose the Brownian integral in (4.5) over the two sets
corresponding to long and short paths;(x) = {b;| SURyc,<, 1b: ()| > x/2} and A (x) =
{belSURg <, 102 ()| < x/2}. If by € As(x) we havex + b (s) > x/2 for all s so that
U(x +by(s)) > U(x/2) and

t
/ Db, exp|:—2 / ds U (x +bx(s))} L e 2VE/2) (3.6)
Ag(x) 0

On the other hand, #, € A;(x) we useU (x + b,(s)) > 0 and therefore

t
/ Db, eXp[—Z/ ds U(x +bx(s))] < / Db,
Aj(x) 0 Ap(x)
<2 / Db, < 2V/2e /4, (3.7)
by (1) 2>x

In equation (3.7) the second estimate is Levy’s inequality (see [14], p 65). From
equations (3.5)—(3.7) we obtain for> 0

oo 2 H(Exwo) 2/4 2tU(x/2)
— ! — 2t
fm dy W(I* < G (2v/2 e /4 + g2V (3.8)

In equation (3.8) we are still free to choase 0 as we wish. With = (x/2v/2)U (x/2) /2
the two exponential terms in the bracket of (4.8) become equal

00 2 U(x/2)l4 X _12 x 12
Let xo(U) be the solution of
U(x0/2) = 2(E + wo). (3.10)
Forx > xo(U) the estimate (4.9) becomes
" 2 _ UG/ (_L 1/2)
/_oo dy |¥(r)|© < 8—(27_[)6)1/2 exp 2\/§U()C/2) . (3.11)

This bound does not depend on the magnetic field. It merely estimates the probability density
of finding the quantum particle in the classically forbidden region by the wall.
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4. Absence of eigenvalues in between Landau levels

The proof of theorem 1 is based on the following two lemmas.

Lemma 1. Let ¥ be a normalized eigenfunction &f, then
(W, (U +d,w(x, y)¥) =0. (4.1)

The relation (4.1) follows formally from (2.9), but requires a proof silicis an unbounded
function of they coordinate. The proof is given in appendix C.

Lemma 2. LetB/2 —wo > § > 0andW¥ be a normalized eigenfunction &f with eigenvalue
E € A,(B,$). Then

U] > B/2— 8§ — wo. (4.2)

Proof. By hypothesis distE, o (H(B)) > B/2 — 8, therefore(H(B) — E)?> > (B/2 — §)?,
which implies

I(H(B) — E)¥|| > (B/2—=98)|V| = B/2—34. (4.3)
Moreover, sincéH(B) — E)¥ = —(U + w)W¥ we have

B/2—45 < [(U+w)¥| < [UV] + [[w¥] < |UW] +wo (4.4)
which gives the result (4.2). O

Proof of theorem 1. Suppose that/ has an eigenvalug€ € A, (B, §) with corresponding
normalized eigenstatg. From the Schwarz inequality

UGy ,
w2 —/ / Y YOI V)

4 1/2 1/2
< {/ dx/ dy ) |\If(1°)|2} {/dr U'(x)|\IJ(7')|2} . (4.5)
0 —00 U'(x)

We decompose theintegral in the right-hand side of (5.7) into a part or < xo(U) and
x > xo(U). Then using

xo(U) +00 4 4
/ dx/ U( ) —— W@ < sup (&) (4.6)

0 —o0 U/( ) 0<x <o) \ U’ (X)

and (3.11) forxr > xo(U) we find

IUW)* < ACE +wo; U)(W, U'W) (4.7)

whereA(E + wg; U) is defined in (2.1). From lemma 2 we obtain

s 4
(W, U/\Il) > M_ (4.8)
A(E +wo; U)

On the other hand, from lemma(®, U'¥) < wy, thus

!

(B/2 -6 — wp)*
wO/ -

A(E +wo; U) -
Therefore,H cannot have eigenvalues ix, (B, §) as long as (2.2) holds. O

(4.9)



1992 N Macris et al
5. Existence of spectrum

The proof of theorem 2 is based on the auxiliary Hamiltonian (5.1). Consider a large disc of
radiusR, centred at the origin and take a smooth, radially symmetric fungti¢n) satisfying

gr(r) =1for|r| < R, gr(r) =0for|r| > R, [9;gr(r)| < 1/R,i =x,y. Setwgp = —wgg

and

HR =H +wgp = Ho+w(1— gR) (51)

Note that by the results of appendix A'&€r — e~ is compact, hencélr and H have the

same essential spectrum ([13], chapter IV). We show that in the neighbourhood of each energy
E in A,(B, §) Hg, for R large enough (depending @), has a continuous spectrum. Hence
because of the stability of the essential spectrum and the absence of eigenalitislso

have a continuous spectrum aroufid

Lemma 3. Under the assumptions of theorem 2, for &y §’ < § there existRq(8, §") such
that for all R > Ry(8, 8"), Hg has no eigenvalue inr,(B, §').

Proof. Definewo(R) = sup. [w(r)(1 — gr(r))] andwj(R) = sup. |3, (w(r)(1 — gr(r)))|.
We havewg(R) < wg and sinceB/2 — wg > §,

B/2 — wo(R) > §'. (5.2)
Let us now check that (2.3) is satisfied for the Hamiltontgnands replaced by’. We have
/ / w
wo(R) < supldyw(r)||1— gr(r)] +suplw(r)dc (1 — gr(r))| < wo + 70 (5.3)
From equation (2.3)
/ (B/2 =8 — wo)* wo
wo(R) < —
SUR)nggB/Z SU%EA,,(B,(S) A(E + wo, U) R
_ (B/2— 68— wp)* L o
Surbgwogba/z SU%EA,,(B,S) A(E + wo, U) R
B/2—§ —wo)* — (B/2— 8 — wp)*
, B/ wo)* — (B/ wo) (5.4)

SUR<wo< B/2 SUPEen, (8,5) A(E + wo; U)

We see that the third term on the right-hand side of the inequality is strictly negativ/e<tos
and independent a®. So we can findRq(8, §') large enough such that for &l > Ry (6, §')

(B/2 -8 — wp)*
SUR<wo< B2 SUPEen, (8,5) AE + wo; U)

which implies the second inequality in (2.3) withy replaced bywo(R) ands replaced by'.
As a consequence of theoremHy has no eigenvalues i, (B, §') for R > Ry(5,8"). O

wp(R) < (5.5)

Lemma4. For any E € A,(B,8) and anye > 0 we can findRy(e, E) such that for
R > Ry(¢, E)

dist(E, o (Hg)) < €. (5.6)

Proof. Sinceo (Hp) = [B/2, oo we haveE € o (Hp). Thus there existdy,
|(Ho — E)Woll < €/2. (5.7)
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By the triangle inequality

[(Ho+w(1—gr) — E)Wol < €/2+||w(l— gr)Woll < €/2+woll(1—gr)Woll. (5.8)
Since||¥p|| = 1 we can findR; (¢, E) large enough such that f& > Ry (¢, E)
€
11— gr)Woll < pe (5.9)
Wo
From equations (5.8) and (5.91Hr — E)¥¢| < €, and (5.6) follows from the fact that for
all ¢, |¥| = 1, we have diStE, o (Hg)) < |(Hr — E)V¥|. O

Proof of theorem 2. TakeE € A, (B, §"). We suppose thak belongs to the resolvent set

of H and show that it leads to a contradiction. Since the resolvent is an open set we can find
o > 0 such that digtE, o (H)) > «. From the fact thaHz and H have the same essential
spectrum we know thaify could have only isolated eigenvalues in} «, E + «[, but this is
impossible by lemma 3 foR > Ry(8, §'). Hence

dist(E, o (Hg)) > « for R > Ro(8,9). (5.10)
However, if we take = «/2 in lemma 4 we have

dist(E, o (Hg)) < /2 for R > Ri(a/2, E). (5.11)
Therefore, we obtain a contradiction f&r > max(Ro(a, 8, Ri(a/2, E)). ThuskE € o (H)
forall E € A, (B, §). O

6. Concluding remarks

We have shown that for a large class of wall potentials (those for which the integrals (2.1)
and (C.7) are finite) there are intervals of the orfler 2wg (wo small), centred in between
Landau levels, where the spectrum is continuous. This does not prevent the possibility of
having a point spectrum in the vicinity of the Landau levels. In fact, it is possible to construct
an attractive, impurity potential with compact support which creates a bound state with energy
B/2 —wg < E < B/2 (recall that in this situatioB/2 is the infimum of the continuous
spectrum ofHp). In the random case one expects that a dense pure point spectrum will form
in the same energy interval, and that moreover for large disorder the pure point spectrum also
extends abové /2. In this connection see, for example, [15] for general results on band edge
localization. It would be interesting to know whether this picture is valid or not near higher
Landau levels.

A simpler situation is that of a homogeneous system without boundary and with crossed
constant electric and magnetic fields, namely takihgr) = wx everywhere in space,
with o the amplitude of the electric field. Now the energy brancheglgfare £, (k) =
(n+ %)B + (u/B)k — u?/2B? so thatHy has a continuous spectrum on the whole real line.
Our previous analysis shows that the spectrunifoE Hy + w remains continuous provided
that;. > wg. The absence of a point spectrum Mfis now obvious foru > wg because
of (2.10). The auxiliary Hamiltonian has no eigenvalug.if> w;j(R) (that is, in view of
(5.3), for R > wo(n — wy)~1), and has a spectrum in the neighbourhood of any energy for
R large enough. Then the result follows by the arguments used in theorem 2. An interesting
question is the possible occurrence of a point spectrum for a weak electricfield ).
In the classical case, it is known that there exists a set of trajectories with non-zero Lebesgue
measure that remain localized by the magnetic field around a hard obstacle, for non-zero but
sufficiently weak electric field [16]. To our knowledge it has not been established whether this
corresponds to a localized eigenstate in the quantum mechanical problem.
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Another case of a system without boundaries, but now inhomogeneous, is a given by a
potentialU (x) that remains bounded as— oo, for instance, the step potential

Ux)=Uy(1—e*) x>0 a>0 and Ux)=0 x<0.

One can check that fdv, large enough, theorems 1 and 2 apply, for energies in between the
lowest Landau levels, so that a continuous spectrum will also occur in this system. If, for
example, the energy is in the intervad - §, B + §[ between the first and the second levels,
sufficient conditions for the occurrence of a continuous spectruri@ee 4B (so that (3.10)

has a solution) ang/Up > 2+/2« (ensuring thad (E; U) in (2.1) is finite).

The notion of edge states could be made more precise by identifying them with the
subspaces of continuity corresponding to the inter#gl6B, §) determined in this work. This
definition should be substantiated by an analysis of the spatial behaviour of the generalized
eigenfunctions of{ in these subspaces.

Appendix A. Integrable impurity potentials

Here we show that if is an integrable impurity potential, then’d —e~"#o and e’#r —e~'H
are trace class.

The Feynman—Kac-Ito representation, together with the factilel is positive andw
bounded leads to the bounds on the kernels

‘<T1|€7SH°|1‘2>| < (7‘1|e%SA|T2) (Al)

|<’l°1|e_SH‘7'2>‘ < eyw0<’l°1|e%‘YA”r'2) (A2)
for 0 < s < ¢, in terms of the free one

1
<’"1|9%SA|T2> = e/, (A.3)
27s
If ||---|lus denotes the Hilbert—Schmidt norm arfdr) is a square-integrable function, a
direct computation using (A.1)—(A.3) gives
s If1l2 _sH I/ l2
Ife™llus < ——== I feHlys < €™ ——==. A4
S HS N f HS T (A.4)

The trace norm of €/ — e~ is majorized by

t
—tH —1 H{ —(1—s) H, —sH
e — ety < [ ds et Meower
0

t
< fo ds lle /Tl s /Tl € L s (A5)

and thus is finite by (A.4) whew is integrable. The proof is the same foré — e~'#.

Appendix B. Spectrum of H,,

We show that B/2, oo C o(H,) C [B/2 — wop, oo[. The second inclusion simply follows
frominfspecH, > B/2 — wy, for all w.
For the first inclusion it is sufficient to prove that, givéhe [B/2, oo[, for anye > 0
there exis2 with Prol(2) > 0 andV, |¥| = 1, such that/(H, — E)¥| < eforallw € Q.
Sinceo (Hp) = [B/2, oo[, givenanyE > B/2 and any > 0, there exists &, | V| = 1,
such that

[(Ho — E)¥|l < €/3. (B.1)
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TakeQ2 = {w||wum| < €/(3sup. [v(r)]), for(n, m) € B.}, whereB, is a square of sizel2+ 1
centred at the origin. Note that Pr@b) > 0 and for allw €

[Vo(r)WIl < €/3+ suplo(r)|llxs; VI (B.2)
wherey . is the characteristic function of the complementBef TakingL large enough so
that the last term on the right-hand side of this inequality is less¢panve obtain

[(Ho — E)W|| + [ Vo(r) W] < €. (B.3)
Thus by the triangle inequality(H, — E)V| < e.

Appendix C. Proof of lemma 1

SetD = U’ +d,w. The estimate (3.11) with (1.1) impliegsDW¥| < oo. defining
Ry = —A({Y — )71, A > 0, we will show below that also

DR < oo (C.1)
and

I|HR | < oo (C.2)

uniformly with respect to. > 0.
Note that from (C.2)HY R, ¥ = iAH (R) — I)W has a finite norm. Then the following
identities hold:

DV = (R, —I)D(R, — NV + (R, — ) DV + D(R, — DV — R, DR, ¥ (C.3)
R, DR,V = i(R,YHR,V — R, HYR, V) = —A(HR, ¥V — R, HV). (C.4)
From (C.4) we find(¥, R, DR, V) = 0 sinceV is an eigenvector of{. Using (C.3) we
conclude thatw, DW) = 0 by lettingh — oo and noting that, — I tends strongly to zero.

To show (C.1) and (C.2), we use the fact thii®e= e '6¥*gr:“ is the operator of
translations in the-direction (up to a phase). This leads to the formula

(RW)(x,y) = ,\/ da e e By (x +a, y). (C.5)
0
Splitting e** = e *¢/2g=*4/2 we obtain by an application of the Schwartz inequality
/ dy | (R, W) (x, )| < kf da e**“/ dy [W(x +a, y)|?
—00 0 —00
X
< Cexpl ——=U(x 21/2] C.6
{4 5U0/2 6)

The second inequality holds for all> xo > 0. It follows from (3.11) and the monotonicity
of U(x) with C independent of. Hence, noting thafR, | = 1, this provides the uniform
upper bound with respect to

URW|?>< sup U’ +C/OOU/ 2ex [—LU 21/2}. C.7
U R nggrio (x) g (x)“exp, NG (x/2) (C.7)

The same is also true fgiD R, ¥ ||% sinced, w is bounded, so (C.1) holds. SinEecommutes
with H(B) one has

HRW = ER,V +[U, R,]¥ + [w, R,]W. (C.8)

Using estimate (1.1) and (C.6) we fifi V|| < oo and||U R, ¥ || < oo, so that all vectors in
the right-hand side of (C.8) have finite norm, hence (C.2) holds.
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