Solutions to Midterm Exam

Exercise 1. (11 points) Let $f : \mathbb{N} \rightarrow \mathbb{R}$ be a function such that $f(0) = 1$ and $0 < f(i) < 1$ for $i \geq 1$. Consider the Markov chain with state space $S = \mathbb{N}$ and transition probabilities

$$p_{ij} = \begin{cases} f(i), & j = i + 1, \ i \geq 0 \\ 1 - f(i), & j = i - 1, \ i \geq 1. \end{cases}$$

a) Is the chain irreducible? Justify your answer using the Chapman-Kolmogorov equation.

Solution: Let i, j two natural integers satisfying $i < j$. According to Chapman-Kolmogorov equation we have

$$p_{ij}(j - i) \geq \prod_{k=i}^{j-1} p_{k,k+1} = \prod_{k=i}^{j-1} f(k) > 0 \quad (f(k) > 0 \ \forall k \in \mathbb{N}) ,$$

and

$$p_{ji}(j - i) \geq \prod_{k=i+1}^{j} p_{k,k-1} = \prod_{k=i+1}^{j} (1 - f(k)) > 0 \quad (1 - f(k) > 0 \ \forall k \in \mathbb{N} \ \setminus \{0\}) .$$

It follows that the chain is irreducible.

b) Consider two initial probability distributions $\pi_{j}^{(0)} = \mu_{j}$ and $\pi_{j}^{(0)} = \nu_{j}$ where $\mu_{2k} = 0$, $\nu_{2k} \neq 0$ and $\mu_{2k+1} \neq 0$, $\nu_{2k+1} = 0$, $k \in \mathbb{N}$. We set $\mu^{(n)} = \mu P^{n}$, $\nu^{(n)} = \nu P^{n}$. Prove that for any time $n \geq 1

$$\|\mu_{i}^{(n)} - \nu_{i}^{(n)}\|_{TV} = 1$$

Solution: Let π be any probability distribution on the natural integers. For any positive integer i we have

$$(\pi P)_{i} = f(i - 1)\pi_{i-1} + (1 - f(i + 1))\pi_{i+1}$$

and $(\pi P)_{0} = (1 - f(1))\pi_{1}$. If π_{i} is zero for all $i \in \mathbb{N}$ even then $(\pi P)_{i}$ is zero for all $i \in \mathbb{N}$ odd, while if π_{i} is zero for all $i \in \mathbb{N}$ odd then $(\pi P)_{i}$ is zero for all $i \in \mathbb{N}$ even.

We can now apply this observation recursively to $\mu^{(n)}$ and $\nu^{(n)}$. Starting from $\mu_{2k} = 0$ and $\nu_{2k+1} = 0$ for all $k \in \mathbb{N}$, it comes

- n even: $\mu_{2k}^{(n)} = 0$ and $\nu_{2k+1}^{(n)} = 0 \ \forall k \in \mathbb{N}$;
- n odd: $\mu_{2k+1}^{(n)} = 0$ and $\nu_{2k}^{(n)} = 0 \ \forall k \in \mathbb{N}$.
For \(n \) even, the total variation distance between \(\mu^{(n)} \) and \(\nu^{(n)} \) reads

\[
\|\mu^{(n)} - \nu^{(n)}\|_{TV} = \frac{1}{2} \sum_{k=0}^{\infty} |\mu_k^{(n)} - \nu_k^{(n)}|
\]

\[
= \frac{1}{2} \sum_{p=0}^{\infty} |\mu_{2p}^{(n)} - \nu_{2p}^{(n)}| + \frac{1}{2} \sum_{p=0}^{\infty} |\mu_{2p+1}^{(n)} - \nu_{2p+1}^{(n)}|
\]

\[
= \frac{1}{2} \sum_{p=0}^{\infty} \nu_{2p}^{(n)} + \frac{1}{2} \sum_{p=0}^{\infty} \mu_{2p}^{(n)} \quad (\mu_{2p}^{(n)} = \nu_{2p}^{(n)} = 0 \forall p \in \mathbb{N})
\]

\[
= \frac{1}{2} \sum_{k=0}^{\infty} \nu_k^{(n)} + \frac{1}{2} \sum_{k=0}^{\infty} \mu_k^{(n)} \quad (\mu_{2p}^{(n)} = \nu_{2p}^{(n)} = 0 & \mu_{2p+1}^{(n)}, \nu_{2p}^{(n)} \geq 0 \forall p \in \mathbb{N})
\]

\[
= 1
\]

A similar chain of thought leads to \(\|\mu^{(n)} - \nu^{(n)}\|_{TV} = 1 \) for \(n \) odd.

c) We recall the “ratio test” for the convergence of a series \(\sum_{j \in \mathbb{N}} a_j \) of positive terms \(a_j > 0 \). Let \(\lim_{j \to +\infty} \frac{a_{j+1}}{a_j} = L \). If \(L < 1 \) the series converges; if \(L > 1 \) the series diverges; and if \(L = 1 \) the test is inconclusive. Prove that the stationary distribution exists if

\[
\lim_{j \to +\infty} \frac{f(j)}{1 - f(j + 1)} < 1
\]

and does not exist if

\[
\lim_{j \to +\infty} \frac{f(j)}{1 - f(j + 1)} > 1
\]

Does the stationary distribution exist for the function \(f(0) = 1, f(i) = \frac{1}{2}, i \geq 1 \)?

Solution: Assume a stationary distribution \(\pi^* \) exists. Then, detailed balance must hold because the transition matrix is tridiagonal. We obtain for any \(k \in \mathbb{N} \)

\[
p_{k,k+1} \cdot \pi^* = p_{k+1,k} \cdot \pi^* \quad \text{i.e.} \quad \pi^* = \pi^* \frac{f(k)}{1 - f(k + 1)} \pi^*.
\]

Hence, for all \(k \in \mathbb{N}, \pi^*_k = \pi^*_0 \prod_{\ell=0}^{k-1} \frac{f(\ell)}{1 - f(\ell + 1)} \). \(\pi^*_0 > 0 \), otherwise the \(\pi^*_k \)'s do not sum to one. Finally, the same argument

\[
1 = \sum_{k=0}^{+\infty} \pi^*_k = \pi_0^* \sum_{k=0}^{+\infty} \prod_{\ell=0}^{k-1} \frac{f(\ell)}{1 - f(\ell + 1)}
\]

shows that the series \(\sum_{j \in \mathbb{N}} a_j \) of positive terms \(a_j = \prod_{\ell=0}^{j-1} \frac{f(\ell)}{1 - f(\ell + 1)} \) converges if and only if a stationary distribution exists.

Note that \(\frac{a_{j+1}}{a_j} = \frac{f(j)}{1 - f(j + 1)} \). Assuming the limit \(\lim_{j \to +\infty} \frac{f(j)}{1 - f(j + 1)} \) exists, the ratio test says

1. \(\lim_{j \to +\infty} \frac{f(j)}{1 - f(j + 1)} < 1 \) then the stationary distribution exists, is unique, and

\[
\pi^*_0 = \left(\sum_{k=0}^{+\infty} \prod_{\ell=0}^{k-1} \frac{f(\ell)}{1 - f(\ell + 1)} \right)^{-1}, \quad \pi^*_k = \pi^*_0 \prod_{\ell=0}^{k-1} \frac{f(\ell)}{1 - f(\ell + 1)} \forall k \geq 1.
\]
2. If \(\lim_{j \to +\infty} \frac{f(j)}{1-f(j+1)} > 1 \) then the chain does not admit a stationary distribution.

For the function \(f(0) = 1, f(i) = \frac{1}{2}, i \geq 1 \), we are not in one of the two cases above, as
\[
\lim_{j \to +\infty} \frac{f(j)}{1-f(j+1)} = 1.
\]
Still, the stationary distribution does not exist because the above-mentioned series \(\sum_{j \in \mathbb{N}} a_j \) diverges \((a_j = 1 \text{ for } j \geq 1) \).

Remark: The relation \(\pi^*_k = \frac{f(k)}{1-f(k+1)} \pi^*_k \) for any \(k \in \mathbb{N} \) can also be obtained from the equation \(\pi^* = \pi^* P \) by recurrence. First, \((\pi^* P)_0 = \pi^*_0 \) gives \(\pi^*_1 = \frac{1}{1-f(1)} \pi^*_0 = \frac{f(0)}{1-f(1)} \pi^*_0 \). Then, for \(k \geq 1 \), we have

\[
(\pi^* P)_k = \pi^*_k \iff f(k-1)\pi^*_{k-1} + (1-f(k+1))\pi^*_{k+1} = \pi^*_k \iff \pi^*_{k+1} = \frac{\pi^*_k - f(k-1)\pi^*_{k-1}}{1-f(k+1)}.
\]

If \(\pi^*_k = \frac{f(k-1)}{1-f(k)} \pi^*_{k-1} \) then \(\pi^*_{k+1} = \frac{\pi^*_k - f(k-1)\pi^*_{k-1}}{1-f(k+1)} = \frac{f(k)}{1-f(k+1)} \pi^*_k \) follows by recurrence.

d) In each case (1) and (2) in the above question: Is the chain positive recurrent? Is the chain ergodic?

Solution: In the case (1), the chain is irreducible and the stationary distribution exists and is unique. Therefore, it is positive-recurrent. The chain is periodic of period 2: it is not ergodic.

In the case (2), the chain is irreducible and the stationary distribution does not exist. Hence the chain is neither positive-recurrent nor ergodic.

e) Let now \(0 < p, q < 1 \) and consider the case where \(f(0) = 1, f(2k) = p \) and \(f(2k-1) = q \) for every \(k \geq 1 \). For what values of \(p \) and \(q \) does the chain admit a stationary distribution?

Solution: Note that the sequence \(\{\frac{f(j)}{1-f(j+1)}\}_{j \in \mathbb{N}} \) alternates between two values (one for \(j \) even, one for \(j \) odd), so that it does not converge and the result of question c) cannot be applied.

However, we have seen in question c) that a stationary distribution exists if, and only if, the series \(\sum_{j \in \mathbb{N}} a_j \) of positive terms \(a_j = \prod_{\ell=0}^{j-1} \frac{f(\ell)}{1-f(\ell+1)} \) converges. For \(j = 2k \) even we have

\[
a_j = \prod_{i=0}^{2k-1} \frac{f(i)}{1-f(i+1)} = \prod_{\ell=0}^{k-1} \frac{f(2\ell)}{1-f(2\ell+1)} \frac{f(2\ell+1)}{1-f(2\ell+2)} = \prod_{\ell=0}^{k-1} \frac{p}{1-q} \frac{q}{1-p} = \left(\frac{pq}{(1-q)(1-p)}\right)^k
\]

For \(j = 2k + 1 \) odd, it follows directly that \(a_j = \left(\frac{pq}{(1-q)(1-p)}\right)^k \frac{p}{1-q} \). The series \(\sum_{j \in \mathbb{N}} a_j \) converges if, and only if, the common ratio \(\frac{pq}{(1-q)(1-p)} \) is strictly less than one. For \(0 < p, q < 1 \), this condition
simplifies to

\[
\frac{pq}{(1-q)(1-p)} < 1 \iff \frac{p}{1-p} < \frac{1-q}{1-(1-q)}
\]
\[
\iff p < 1 - q
\]
\[
\iff p + q < 1 ,
\]
where in the second line we used that the mapping \(x \mapsto \frac{x}{1-x} \) is strictly increasing on \([0,1]\).

Exercise 2. (9 points) Let \(N \) be an odd number greater than or equal to 3 and let \(S = \{0, \ldots, N-1\} \). Let then \((X_n, n \geq 0)\) be a Markov chain with state space \(S \) and \(N \times N \) transition matrix

\[
P = \begin{pmatrix}
0 & a & 0 & \ldots & 0 & b \\
b & 0 & a & 0 & \ldots & 0 \\
0 & b & 0 & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & b & 0 & a \\
a & 0 & \ldots & 0 & b & 0
\end{pmatrix}
\]

with \(a, b > 0 \) and \(a + b = 1 \).

a) Explain why the chain is ergodic for all such values of \(a \) and \(b \).

Solution: \(\forall (i,j) \in S^2 \) such that \(i < j \) we have

\[
p_{ij}(j-i) \geq \prod_{k=i}^{j-1} p_{k,k+1} = a^{j-i} > 0 ,
\]

\[
p_{ji}(j-i) \geq \prod_{k=i+1}^{j} p_{k,k-1} = b^{j-i} > 0 .
\]

The chain is thus irreducible. As it is irreducible and finite, it is also positive-recurrent. Finally, the chain is aperiodic because \(p_{00}(2) \geq p_{01} \cdot p_{10} = ab > 0, p_{00}(N) \geq \prod_{k=0}^{N-2} p_{k,k+1} \cdot p_{N-1,0} = a^N > 0 \) and \(N \) is odd. The chain is ergodic.

b) Compute its unique stationary and limiting distribution \(\pi \).

Solution: The transition matrix is clearly doubly-stochastic. It follows that the (unique) stationary distribution of the chain is the uniform distribution: \(\pi_i = \frac{1}{N} \ \forall i \in S \). \(\pi \) is also a limiting distribution because the chain is ergodic.

c) For what values of \(a \) and \(b \) does detailed balance hold?

Solution: \(\pi \) is the uniform distribution. For the detailed balance to hold we need

\[
\forall (i,j) \in S^2 : p_{ij}\pi_i = p_{ji}\pi_j \iff \forall (i,j) \in S^2 : p_{ij} = p_{ji} \iff a = b .
\]

The only solution for \(a, b > 0 \) such that \(a + b = 1 \) is \(a = b = \frac{1}{2} \).
d) Among the following three matrices, which are transition matrices?

\[P^T, \quad P^T P, \quad PP^T \]

(where \(P^T \) stands for the transpose of \(P \)).

Solution: \(P \) is doubly-stochastic, hence \(P^T \) is a valid transition matrix (each row sums to one, the entries are positive) and doubly-stochastic (each column sums to one).

The matrix \(P^T P \) has clearly non-negative entries. The sum of its entries along the \(i^{th} \) row, \(1 \leq i \leq N \), is

\[
\sum_{j=1}^{N} (P^T P)_{i,j} = \sum_{j=1}^{N} \sum_{k=1}^{N} P_{i,k} P_{k,j} = \sum_{k=1}^{N} P_{k,i} \sum_{j=1}^{N} P_{k,j} = \sum_{k=1}^{N} P_{k,i} = 1.
\]

\(P^T P \) is thus a transition matrix. Finally, to prove \(P^T P \) is a transition matrix, we only relied on the fact that \(P \) is a doubly-stochastic transition matrix. As \(P^T \) is a doubly-stochastic transition matrix, a similar argument shows that \(P P^T \) is a transition matrix too. And more generally, it holds that if \(P, Q \) are both transition matrices, then the product \(PQ \) is also a transition matrix.

Let now \(Q = P^T P \). Even though the chain is not necessarily reversible for all values of \(a \) and \(b \), it can be shown here that for all \(i \in \mathcal{S} \) and \(n \geq 1 \),

\[
\|P_i^n - \pi\|_{TV} \leq \frac{1}{2\sqrt{\pi_i}} \left(\lambda_* (Q)\right)^{n/2}
\]

where \(\lambda_0 (Q) \geq \lambda_1 (Q) \geq \ldots \geq \lambda_{N-1} (Q) \) are the (real) eigenvalues of the \(N \times N \) matrix \(Q \), and

\[
\lambda_* (Q) = \max_{k \in \{1, \ldots, N-1\}} |\lambda_k (Q)|
\]

e) In the case \(\lambda_3 = 3 \), compute the eigenvalues of \(Q \) and deduce the value of \(\lambda_* (Q) \).

Solution: For \(N = 3 \)

\[
Q = P^T P = \begin{pmatrix} 0 & b & a \\ a & 0 & b \\ b & a & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & a & b \\ a & 0 & b \\ a & b & 0 \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ab & ab \\ ab & a^2 + b^2 & ab \\ ab & ab & a^2 + b^2 \end{pmatrix}.
\]

\(Q \) is a transition matrix: \(u_0 = (1 \quad 1 \quad 1)^T \) is an eigenvector associated to the eigenvalue \(\lambda_0 (Q) = 1 \).

One observes also that both \(u_1 = (1 \quad -1 \quad 0)^T \) and \(u_2 = (1 \quad 0 \quad -1)^T \) are eigenvectors associated to the eigenvalue

\[
a^2 + b^2 - ab = (a + b)^2 - 3ab = 1 - 3ab < 1.
\]

The triplet \((u_0, u_1, u_2)\) forms a basis of \(\mathbb{R}^3 \): \(\lambda_0 (Q) = 1 \) and \(\lambda_1 (Q) = \lambda_2 (Q) = 1 - 3ab. \) Finally, \(\lambda_* (Q) = |1 - 3ab| = 1 - 3ab \) (remember that \(1 - 3ab = a^2 + b^2 - ab = (a - b)^2 + ab > 0 \)).

\(\lambda_1 (Q) \) and \(\lambda_2 (Q) \) could also be deduced by finding the roots of the degree-two polynomial

\[
X^2 - (\lambda_1 (Q) + \lambda_2 (Q))X + \lambda_1 (Q)\lambda_2 (Q)
\]

with \(\lambda_1 (Q)\lambda_2 (Q) = \frac{\det (Q)}{\lambda_0 (Q)} = \det (Q) \) and \(\lambda_1 (Q) + \lambda_2 (Q) = \text{Tr} (Q) - \lambda_0 (Q) = \text{Tr} (Q) - 1. \)
f) Again in the case $N = 3$, deduce from (3) an upper bound on the mixing time

$$T_\varepsilon = \inf\{n \geq 1 : \max_{i \in S} \|P_i^n - \pi\|_{TV} \leq \varepsilon\}$$

where $\varepsilon > 0$.

Solution: For $n \geq 1$ and $i \in \{0, 1, 2\}$

$$\|P_i^n - \pi\|_{TV} \leq \frac{1}{2\sqrt{\pi_i}} (\lambda_*(Q))^{n/2} = \frac{\sqrt{3}}{2} (1 - 3ab)^{n/2} \leq \frac{\sqrt{3}}{2} \exp\left(-\frac{3ab}{2}n\right)$$

Hence $\max_{i \in S} \|P_i^n - \pi\|_{TV} \leq \varepsilon$ for $n \geq \frac{2}{3ab} \ln \left(\frac{\sqrt{3}}{2\varepsilon}\right)$, so $T_\varepsilon \leq \frac{2}{3ab} \ln \left(\frac{\sqrt{3}}{2\varepsilon}\right)$.