1 Expectation

From the point of view of measure theory, random variables are maps from \(\Omega \) to \(\mathbb{R} \). Correspondingly, the expectation (or mean) of a random variable \(X \) is the Lebesgue integral of the map \(X \), that is, the “area under the curve \(\omega \mapsto X(\omega) \)”, where the horizontal axis is measured with the probability measure \(\mathbb{P} \).

1.1 Definition

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space and \(X \) be a random variable defined on this probability space. The expectation of \(X \), denoted as \(\mathbb{E}(X) \), will be defined in three steps.

Step 1. Assume first that \(X \) is a non-negative discrete random variable, i.e. that \(X \) may be written as

\[
X(\omega) = \sum_{i=1}^{\infty} x_i 1_{A_i}(\omega),
\]

where \(x_i \geq 0 \) are distinct and \(A_i \in \mathcal{F} \) are disjoint (notice that \(A_i = \{ X = x_i \} \)). The expectation of \(X \) is then defined as

\[
\mathbb{E}(X) = \sum_{i=1}^{\infty} x_i \mathbb{P}(A_i),
\]

which corresponds to the traditional definition of expectation in elementary probability courses. Notice here that since the sum is infinite, \(\mathbb{E}(X) \) may take the value \(+\infty \); but because of the assumption that \(x_i \geq 0 \), \(\mathbb{E}(X) \) is always non-negative.

Notice also that in the particular case where \(X = 1_A \) with \(A \in \mathcal{F} \) (which is nothing but a Bernoulli random variable), one has \(\mathbb{E}(X) = \mathbb{P}(A) \).

Step 2. Assume now that \(X \) is a generic non-negative random variable (i.e. \(X(\omega) \geq 0, \forall \omega \in \Omega \)). Let us define the following sequence of discrete random variables:

\[
X_n(\omega) = \sum_{i=1}^{\infty} \frac{i-1}{2^n} 1_{\left\{ \frac{i-1}{2^n} < X \leq \frac{i}{2^n} \right\}}(\omega).
\]

Notice that \(x_i = \frac{i-1}{2^n} \geq 0 \) and that \(\left\{ \frac{i-1}{2^n} < X \leq \frac{i}{2^n} \right\} \in \mathcal{F} \), since \(X \) is \(\mathcal{F} \)-measurable. So according to Step 1, one has for each \(n \)

\[
\mathbb{E}(X_n) = \sum_{i=1}^{\infty} \frac{i-1}{2^n} \mathbb{P}\left(\left\{ \frac{i-1}{2^n} < X \leq \frac{i}{2^n} \right\} \right) \in [0, +\infty].
\]

It should be observed that \((X_n, n \in \mathbb{N})\) is actually an increasing sequence of non-negative “staircases”, that is,

\[
0 \leq X_n(\omega) \leq X_{n+1}(\omega), \quad \forall n.
\]

As the size of the steps is divided by two from \(n \) to \(n+1 \), the staircase gets refined. Likewise, one easily sees that \(\mathbb{E}(X_n) \leq \mathbb{E}(X_{n+1}) \) for all \(n \), so \((\mathbb{E}(X_n), n \in \mathbb{N})\) is an increasing sequence, that therefore converges (possibly to \(+\infty \)). One defines

\[
\mathbb{E}(X) = \lim_{n \to \infty} \mathbb{E}(X_n) = \lim_{n \to \infty} \sum_{i=1}^{\infty} \frac{i-1}{2^n} \mathbb{P}\left(\left\{ \frac{i-1}{2^n} < X \leq \frac{i}{2^n} \right\} \right) \in [0, \infty].
\]
Step 3. Finally, consider a generic random variable X. One defines its positive and negative parts:

$$X^+(\omega) = \max(0, X(\omega)), \quad X^-(\omega) = \max(0, -X(\omega))$$

Notice that both $X^+(\omega) \geq 0$ and $X^-(\omega) \geq 0$, and that

$$X^+(\omega) - X^-(\omega) = X(\omega), \quad X^+ + X^- = |X(\omega)|.$$

In measure theory, one does not want to deal with ill-defined quantities such as $\infty - \infty$. One therefore defines $E(X)$ only when $E(|X|) = E(X^+) + E(X^-) < \infty$:

$$E(X) = E(X^+) - E(X^-).$$

Two important particular cases. Let X be a random variable and $g : \mathbb{R} \to \mathbb{R}$ be a Borel-measurable function such that $E(|g(X)|) < \infty$ (this last condition is verified if for example g is a bounded function).

- If X is a discrete random variable with values in a countable set C, then

$$E(g(X)) = \sum_{x \in C} g(x) \mathbb{P}(\{X = x\}).$$

- If X is a continuous random variable with pdf p_X, then

$$E(g(X)) = \int_{\mathbb{R}} g(x) p_X(x) \, dx.$$

Terminology. - If $E(|X|) < \infty$, then X is said to be an integrable random variable.
- If $E(X^2) < \infty$, then X is said to be a square-integrable random variable.
- If there exists $c > 0$ such that $|X(\omega)| \leq c$, $\forall \omega \in \Omega$, then X is said to be a bounded random variable.
- If $E(X) = 0$, then X is said to be a centered random variable.

One has the following series of implications:

$$X \text{ is bounded } \Rightarrow X \text{ is square-integrable } \Rightarrow X \text{ is integrable},$$

$$X, Y \text{ are both square-integrable } \Rightarrow XY \text{ is integrable}.$$

Negligible and almost sure sets. An event $A \in \mathcal{F}$ is said to be negligible if $P(A) = 0$. On the contrary, an event $B \in \mathcal{F}$ is said to be almost sure (a.s.) if $P(B) = 1$. For example, if $P(\{X \geq c\}) = 1$, one says that “$X \geq c$ almost surely”.

1.2 Basic properties of the expectation

Linearity. If $c \in \mathbb{R}$ is a constant and X, Y are integrable, then both

$$E(cx) = cE(X) \quad \text{and} \quad E(X + Y) = E(X) + E(Y).$$

Remark. As simple as the above statement looks, it is actually not so easy to prove...

Positivity. If X is integrable and $X \geq 0$ a.s., then $E(X) \geq 0$.

Strict positivity. If X is integrable, $X \geq 0$ a.s. and $E(X) = 0$, then $X = 0$ a.s.

Monotonicity. If X, Y are integrable and $X \geq Y$ a.s., then $E(X) \geq E(Y)$.

1.3 Inequalities

Cauchy-Schwarz’s inequality. If \(X, Y \) are square-integrable random variables, then the product \(XY \) is integrable and

\[E(|XY|) \leq \sqrt{E(X^2)} \sqrt{E(Y^2)}. \]

In particular, considering \(Y = 1 \) shows that if \(X \) is square-integrable, then it is also integrable.

Proof. Observe first that the bilinear form \(X,Y \mapsto \mathbb{E}(XY) \) is a (semi-)inner product on the space of square-integrable random variables (which further implies that \(X \mapsto \sqrt{E(X^2)} \) is a (semi-)norm on the same space). Indeed:

1) The fact that it is bilinear in \(X,Y \) comes from the linearity of the expectation.
2) It is symmetric in \(X,Y \) by definition (and by commutativity of the multiplication).
3) It is also positive, as \(E(X^2) \geq 0 \) for every \(X \).

The classical Cauchy-Schwarz inequality, valid for any (semi-)inner product, then implies that \(|\mathbb{E}(XY)| \leq \sqrt{E(X^2)} \sqrt{E(Y^2)} \). In order to obtain the inequality with absolute values inside the expectation, just apply the above inequality to \(|X| \) and \(|Y| \) instead of \(X \) and \(Y \).

Jensen’s inequality. If \(X \) is a random variable and \(\psi : \mathbb{R} \to \mathbb{R} \) is Borel-measurable, convex and such that \(E(|\psi(X)|) < \infty \), then \(X \) is integrable and

\[\psi(E(X)) \leq E(\psi(X)). \]

In particular, \(|E(X)| \leq E(|X|) \).

Also, if \(X \) is such that \(\mathbb{P}(\{X = a\}) = \mathbb{P}(\{X = b\}) = 1/2 \), then the above inequality says that

\[\psi \left(\frac{a + b}{2} \right) \leq \frac{\psi(a) + \psi(b)}{2}, \]

which is pretty much the definition of the convexity of \(\psi \! \).

Proof. The proof relies on the fact that any convex function \(\psi : \mathbb{R} \to \mathbb{R} \) may be written as

\[\psi(x) = \sup_{a,b \in \mathbb{R}} ax + b = \sup_{a,b \in \mathbb{Q}} ax + b. \]

The second equality allows to write \(\psi \) as a supremum over a countable number of functions, which will be of help below. The second building block of the proof is the fact that \(E(\max(X,Y)) \geq \max(E(X),E(Y)) \), which can be further generalized to the supremum over a countable set (notice that if all \(X_n \) are \(\mathcal{F} \)-measurable, then \(\sup_{n \geq 1} X_n \) is also \(\mathcal{F} \)-measurable):

\[E\left(\sup_{n \geq 1} X_n \right) \geq \sup_{n \geq 1} E(X_n). \]

Combining these two ideas with the linearity of expectation, we finally obtain:

\[E(\psi(X)) = E\left(\sup_{a,b \in \mathbb{Q}} aX + b \right) \geq \sup_{a,b \in \mathbb{Q}} E(aX + b) \]

\[\geq \sup_{a,b \in \mathbb{Q}} \left(aE(X) + b = \psi(E(X)) \right). \]
Chebyshev’s inequality. If X is a random variable and $\varphi : \mathbb{R} \to \mathbb{R}_+$ is Borel-measurable, increasing on \mathbb{R}_+ and such that $\mathbb{E}(\varphi(X)) < \infty$, then for any $a > 0$, one has

$$P(\{X \geq a\}) \leq \frac{\mathbb{E}(\varphi(X))}{\varphi(a)}.$$

In particular, if X is square-integrable, then taking $\varphi(x) = x^2$ gives $P(\{X \geq a\}) \leq \frac{\mathbb{E}(X^2)}{a^2}$.

Proof. Using the assumptions made, we obtain

$$P(\{X \geq a\}) = \mathbb{E}(1_{\{X \geq a\}}) \leq \mathbb{E}\left(\frac{\varphi(X)}{\varphi(a)} \cdot 1_{\{X \geq a\}} \right) \leq \frac{\mathbb{E}(\varphi(X))}{\varphi(a)}.$$

\[\square\]

1.4 Variance, covariance and independence

Definition 1.1. Let X, Y be two square-integrable random variables. The **variance** of X is defined as

$$\text{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 \geq 0$$

and the **covariance** of X and Y is defined as

$$\text{Cov}(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Terminology. If $\text{Cov}(X, Y) = 0$, then X and Y are said to be **uncorrelated**.

Facts. Let $c \in \mathbb{R}$ be a constant and X, Y be square-integrable random variables.

a) $\text{Var}(cX) = c^2 \text{Var}(X)$.

b) $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y)$.

In addition, if X, Y are independent, then
c) $\text{Cov}(X, Y) = 0$, i.e. $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ (but the reciprocal statement is wrong).

d) $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$.