1 Martingales: basic definitions

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space.

Definition 1.1. A filtration is a sequence \((\mathcal{F}_n, n \in \mathbb{N})\) of sub-\(\sigma\)-fields of \(\mathcal{F}\) such that \(\mathcal{F}_n \subset \mathcal{F}_{n+1}, \forall n \in \mathbb{N}\).

Example. Let \(\Omega = [0, 1]\), \(\mathcal{F} = \mathcal{B}([0, 1])\), \(X_n(\omega) = n^{th}\) decimal of \(\omega\), for \(n \geq 1\). Let also \(\mathcal{F}_0 = \{\emptyset, \Omega\}\), \(\mathcal{F}_n = \sigma(X_1, \ldots, X_n)\). Then \(\mathcal{F}_n \subset \mathcal{F}_{n+1}, \forall n \in \mathbb{N}\).

Definitions 1.2. - A discrete-time process \((X_n, n \in \mathbb{N})\) is said to be adapted to the filtration \((\mathcal{F}_n, n \in \mathbb{N})\) if \(X_n\) is \(\mathcal{F}_n\)-measurable \(\forall n \in \mathbb{N}\).

- The natural filtration of a process \((X_n, n \in \mathbb{N})\) is defined as \(\mathcal{F}_n^X = \sigma(X_0, \ldots, X_n), n \in \mathbb{N}\). It represents the available amount of information about the process at time \(n\).

Remark. A process is adapted to its natural filtration, by definition.

Let now \((\mathcal{F}_n, n \in \mathbb{N})\) be a given filtration.

Definition 1.3. A discrete-time process \((M_n, n \in \mathbb{N})\) is a martingale with respect to \((\mathcal{F}_n, n \in \mathbb{N})\) if
(i) \(\mathbb{E}(|M_n|) < \infty, \forall n \in \mathbb{N}\).
(ii) \(M_n\) is \(\mathcal{F}_n\)-measurable, \(\forall n \in \mathbb{N}\) (i.e., \((M_n, n \in \mathbb{N})\) is adapted to \((\mathcal{F}_n, n \in \mathbb{N})\)).
(iii) \(\mathbb{E}(M_{n+1}|\mathcal{F}_n) = M_n\) a.s., \(\forall n \in \mathbb{N}\).

A martingale is therefore a fair game: the expectation of the process at time \(n + 1\) given the information at time \(n\) is equal to the value of the process at time \(n\).

Remark. Conditions (ii) and (iii) are actually redundant, as (iii) implies (ii).

Properties. If \((M_n, n \in \mathbb{N})\) is a martingale, then
- \(\mathbb{E}(M_{n+1}) = \mathbb{E}(M_n) (= \ldots = \mathbb{E}(M_0)), \forall n \in \mathbb{N}\) (by the first property of conditional expectation).
- \(\mathbb{E}(M_{n+1} - M_n|\mathcal{F}_n) = 0\) a.s. (nearly by definition).
- \(\mathbb{E}(M_{n+m}|\mathcal{F}_n) = M_n\) a.s., \(\forall n, m \in \mathbb{N}\).

This last property is important, as it says that the martingale property propagates over time. Here is a short proof, which uses the towering property of conditional expectation:

\[
\mathbb{E}(M_{n+m}|\mathcal{F}_n) = \mathbb{E}(\mathbb{E}(M_{n+m}|\mathcal{F}_{n+m-1})|\mathcal{F}_n) = \mathbb{E}(\mathbb{E}(M_{n+m-1}|\mathcal{F}_n)) = \ldots = \mathbb{E}(M_{n+1}|\mathcal{F}_n) = M_n.
\]

Example: the simple symmetric random walk.

Let \((S_n, n \in \mathbb{N})\) be the simple symmetric random walk: \(S_0 = 0, S_n = \xi_1 + \ldots + \xi_n\), where the \(\xi_n\) are i.i.d. and \(\mathbb{P}(\{\xi_1 = +1\}) = \mathbb{P}(\{\xi_1 = -1\}) = 1/2\).

Let us define the following filtration: \(\mathcal{F}_0 = \{\emptyset, \Omega\}, \mathcal{F}_n = \sigma(\xi_1, \ldots, \xi_n), n \geq 1\). Then \((S_n, n \in \mathbb{N})\) is a martingale with respect to \((\mathcal{F}_n, n \in \mathbb{N})\). Indeed:
(i) \(\mathbb{E}(|S_n|) \leq \mathbb{E}(|\xi_1|) + \ldots + \mathbb{E}(|\xi_n|) = 1 + \ldots + 1 = n < \infty, \forall n \in \mathbb{N}\).
(ii) \(S_n = \xi_1 + \ldots + \xi_n\) is a function of \((\xi_1, \ldots, \xi_n)\), i.e., is \(\sigma(\xi_1, \ldots, \xi_n) = \mathcal{F}_n\)-measurable.
(iii) We have
\[
\mathbb{E}(S_{n+1}|\mathcal{F}_n) = \mathbb{E}(S_n + \xi_{n+1}|\mathcal{F}_n) = \mathbb{E}(S_n|\mathcal{F}_n) + \mathbb{E}(\xi_{n+1}|\mathcal{F}_n) = S_n + \mathbb{E}(\xi_{n+1}) = S_n + 0 = S_n \text{ a.s.}
\]

The first equality on the second line follows from the fact that \(S_n\) is \(\mathcal{F}_n\)-measurable and that \(\xi_{n+1}\) is independent of \(\mathcal{F}_n = \sigma(\xi_1, \ldots, \xi_n)\).
Generalization. If the random variables ξ_n are i.i.d. and such that $\mathbb{E}(|\xi_1|) < \infty$ and $\mathbb{E}(\xi_1) = 0$, then $(S_n, n \in \mathbb{N})$ is also a martingale (in particular, $\xi_1 \sim \mathcal{N}(0, 1)$ works).

Definition 1.4. Let $(\mathcal{F}_n, n \in \mathbb{N})$ be a filtration. A process $(M_n, n \in \mathbb{N})$ is a submartingale (resp. a supermartingale) with respect to $(\mathcal{F}_n, n \in \mathbb{N})$ if

(i) $\mathbb{E}(|M_n|) < \infty$, $\forall n \in \mathbb{N}$.

(ii) M_n is \mathcal{F}_n-measurable, $\forall n \in \mathbb{N}$.

(iii) $\mathbb{E}(M_{n+1}|\mathcal{F}_n) \geq M_n$ a.s., $\forall n \in \mathbb{N}$ (resp. $\mathbb{E}(M_{n+1}|\mathcal{F}_n) \leq M_n$ a.s., $\forall n \in \mathbb{N}$).

Remarks. - Not every process is either a sub- or a supermartingale!

- The appellations sub- and supermartingale are counter-intuitive. They are due to historical reasons.

- Condition (ii) is now necessary in itself, as (iii) does not imply it.

- If $(M_n, n \in \mathbb{N})$ is both a submartingale and a supermartingale, then it is a martingale.

Example: The simple asymmetric random walk.

- If $\mathbb{P}(\{\xi_1 = +1\}) = p = 1 - \mathbb{P}(\{\xi_1 = -1\})$ with $p \geq 1/2$, then $S_n = \xi_1 + \ldots + \xi_n$ is a submartingale.

- More generally, $S_n = \xi_1 + \ldots + \xi_n$ is a submartingale if $\mathbb{E}(\xi_1) \geq 0$.

Proposition 1.5. If $(M_n, n \in \mathbb{N})$ is a martingale with respect to a filtration $(\mathcal{F}_n, n \in \mathbb{N})$ and $\varphi : \mathbb{R} \to \mathbb{R}$ is a Borel-measurable and convex function such that $\mathbb{E}(|\varphi(M_n)|) < \infty$, $\forall n \in \mathbb{N}$, then $(\varphi(M_n), n \in \mathbb{N})$ is a submartingale.

Proof. (i) $\mathbb{E}(|\varphi(M_n)|) < \infty$ by assumption.

(ii) $\varphi(M_n)$ is \mathcal{F}_n-measurable as M_n is (and φ is Borel-measurable).

(iii) $\mathbb{E}(\varphi(M_{n+1})|\mathcal{F}_n) \geq \varphi(\mathbb{E}(M_{n+1}|\mathcal{F}_n)) = \varphi(M_n)$ a.s.

In (iii), the first inequality follows from Jensen’s inequality and the second follows from the fact that M is a martingale.

Example. If $(M_n, n \in \mathbb{N})$ is a square-integrable martingale (i.e., $\mathbb{E}(M_n^2) < \infty$, $\forall n \in \mathbb{N}$), then the process $(M_n^2, n \in \mathbb{N})$ is a submartingale (as $x \mapsto x^2$ is convex).

2. **Stopping times**

Definitions 2.1. - A random time is a random variable T with values in $\mathbb{N} \cup \{+\infty\}$. It is said to be finite if $T(\omega) < +\infty$ for every $\omega \in \Omega$ and bounded if there exists moreover an integer N such that $T(\omega) \leq N$ for every $\omega \in \Omega$ (Notice that a finite random time is not necessarily bounded).

- Let $(X_n, n \in \mathbb{N})$ be a stochastic process and assume T is finite. One then defines $X_T(\omega) = X_T(\omega) = \sum_{n \in \mathbb{N}} X_n(\omega) 1_{\{T=n\}}(\omega)$.

- A stopping time with respect to a filtration $(\mathcal{F}_n, n \in \mathbb{N})$ is a random time T such that $\{T = n\} \in \mathcal{F}_n$, $\forall n \in \mathbb{N}$.

Example. Let $(X_n, n \in \mathbb{N})$ be a process adapted to $(\mathcal{F}_n, n \in \mathbb{N})$ and $a > 0$. Then $T_a = \inf\{n \in \mathbb{N} : |X_n| \geq a\}$ is a stopping time with respect to $(\mathcal{F}_n, n \in \mathbb{N})$. Indeed:

\[
\{T_n = n\} = \{|X_k| < a, \forall 0 \leq k \leq n-1 \text{ and } |X_n| \geq a\} = \bigcap_{k=0}^{n-1} \{X_k < a\} \cap \{|X_n| \geq a\} \in \mathcal{F}_n, \forall n \in \mathbb{N}.
\]
Definition 2.2. Let T be a stopping time with respect to a filtration $(\mathcal{F}_n, n \in \mathbb{N})$. One defines the information one possesses at time T as the following σ-field:

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T = n \} \in \mathcal{F}_n, \forall n \in \mathbb{N} \}.$$

Facts.
- If $T(\omega) = N \forall \omega \in \Omega$, then $\mathcal{F}_T = \mathcal{F}_N$. This is obvious from the definition.
- If T_1, T_2 are stopping times such that $T_1(\omega) \leq T_2(\omega) \forall \omega \in \Omega$, then $\mathcal{F}_{T_1} \subset \mathcal{F}_{T_2}$. Indeed, if $T_1(\omega) \leq T_2(\omega) \forall \omega \in \Omega$ and $A \in \mathcal{F}_{T_1}$, then for all $n \in \mathbb{N}$, we have:

$$A \cap \{ T = n \} = A \cap (\bigcup_{k=n}^{\infty} \{ T_1 = k \}) \cap \{ T_2 = n \} = \left(\bigcup_{k=n}^{\infty} A \cap \{ T_1 = k \} \right) \cap \{ T_2 = n \} \in \mathcal{F}_n,$$

so $A \in \mathcal{F}_{T_2}$. By the way, here is an example of stopping times T_1, T_2 such that $T_1(\omega) \leq T_2(\omega) \forall \omega \in \Omega$: let $0 < a < b$ and consider $T_1 = \inf \{ n \in \mathbb{N} : |X_n| \geq a \}$ and $T_2 = \inf \{ n \in \mathbb{N} : |X_n| \geq b \}$.
- A random variable Y is \mathcal{F}_T-measurable if and only if $Y 1_{\{T=n\}}$ is \mathcal{F}_n-measurable, $\forall n \in \mathbb{N}$. As a consequence: if $(X_n, n \in \mathbb{N})$ is adapted to $(\mathcal{F}_n, n \in \mathbb{N})$, then X_T is \mathcal{F}_T-measurable.

3 Doob's optional stopping theorem

Let $(M_n, n \in \mathbb{N})$ be a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$ and T_1, T_2 be two stopping times such that $0 \leq T_1(\omega) \leq T_2(\omega) \leq N < \infty, \forall \omega \in \Omega$. Then

$$\mathbb{E}(M_{T_2} | \mathcal{F}_{T_1}) = M_{T_1} \text{ a.s.}$$

In particular, $\mathbb{E}(M_{T_2}) = \mathbb{E}(M_{T_1})$.

In particular, if T is a stopping time such that $0 \leq T(\omega) \leq N < \infty, \forall \omega \in \Omega$, then

$$\mathbb{E}(M_T) = \mathbb{E}(M_0).$$

Remarks. - The above theorem says that the martingale property holds even if one is given the option to stop at any (bounded) stopping time.
- The theorem also holds for sub- and supermartingales (i.e., if M is a submartingale, then $\mathbb{E}(M_{T_2} | \mathcal{F}_{T_1}) \geq M_{T_1} \text{ a.s.}$).

Proof. - We first show that if T is a stopping time such that $0 \leq T(\omega) \leq N$, then $\mathbb{E}(M_N | \mathcal{F}_T) = M_T \text{ (*)}$: Indeed, let $Z = M_T = \sum_{n=0}^{N} M_n 1_{\{T=n\}}$. We check below that Z is the conditional expectation of M_N given \mathcal{F}_T:

(i) Z is \mathcal{F}_T-measurable: $Z 1_{\{T=n\}} = M_n 1_{\{T=n\}}$, so Z is \mathcal{F}_T-measurable.

(ii) $\mathbb{E}(ZU) = \mathbb{E}(M_N U), \forall U \in \mathcal{F}_T$-measurable and bounded:

$$\mathbb{E}(ZU) = \sum_{n=0}^{N} \mathbb{E}(M_n 1_{\{T=n\}} U) = \sum_{n=0}^{N} \mathbb{E}(\mathbb{E}(M_N | \mathcal{F}_n) 1_{\{T=n\}} U)_{\mathcal{F}_n \text{-measurable}} = \sum_{n=0}^{N} \mathbb{E}(M_N 1_{\{T=n\}} U) = \mathbb{E}(M_N U).$$

- Second, let us check that $\mathbb{E}(M_{T_2} | \mathcal{F}_{T_1}) = M_{T_1}$:

$$M_{T_1} \text{ (*) with } T=T_1 \quad \mathbb{E}(M_N | \mathcal{F}_{T_1}) \quad \mathbb{E}(\mathbb{E}(M_N | \mathcal{F}_{T_2}) | \mathcal{F}_{T_1}) \text{ (*) with } T=T_2 \quad \mathbb{E}(M_{T_2} | \mathcal{F}_{T_1}).$$

This concludes the proof of the theorem. \qed

3