Exercise 1. Let $\Omega = \{1, \ldots, 6\}$ et $A = \{\{1,3,5\}, \{1,2,3\}\}$.

(a) Describe $F = \sigma(A)$, the σ-field generated by A.

Hint: For a finite set Ω, the number of elements of a σ-field on Ω is always a power of 2.

(b) Give the list of non-empty elements G of F such that

if $F \in F$ and $F \subseteq G$, then $F = \emptyset$ or G.

These elements are called the atoms of the σ-field F (cf. course). They form a partition of the set Ω and they also generate the σ-field F in this case.

Exercise 2. Let now $\Omega = [0,1]$ and $F = B([0,1])$ be the Borel σ-field on $[0,1]$.

(a) What are the atoms of F?

(b) Is it true in this case that the σ-field F is generated by its atoms?

Exercise 3. Let $\Omega = \{(i,j) : i,j \in \{1, \ldots, 6\}\}$, $F = \mathcal{P}(\Omega)$ and define the random variables $X_1(i,j) = i$ and $X_2(i,j) = j$.

(a) What are $\sigma(X_1)$, $\sigma(X_2)$?

(b) Is $X_1 + X_2$ measurable with respect to one of these two σ-fields?

Exercise 4. Let F be a σ-field on a set Ω and X_1, X_2 be two F-measurable random variables taking a finite number of values in \mathbb{R}. Let also $Y = X_1 + X_2$. From the course, we know that it always holds that $\sigma(Y) \subseteq \sigma(X_1, X_2)$, i.e., that X_1, X_2 carry together at least as much information as Y, but that the reciprocal statement is not necessarily true.

(a) Provide a non-trivial example of random variables X_1, X_2 such that $\sigma(Y) = \sigma(X_1, X_2)$.

(b) Provide a non-trivial example of random variables X_1, X_2 such that $\sigma(Y) \neq \sigma(X_1, X_2)$.

(c) Assume that X_1 and X_2 share at least two different values $a \neq b \in \mathbb{R}$. Is it possible in this case that $\sigma(Y) = \sigma(X_1, X_2)$?

Exercise 5. Let $\Omega = [-1,1]$ and $(X_i, i = 1, \ldots, 4)$ be a family of random variables on Ω defined as

$$X_i(\omega) = \begin{cases}
1 & \text{if } \frac{i-1}{4} < \omega \leq \frac{i}{4}, \\
(-1)^i & \text{if } -\frac{i}{4} < \omega \leq -\frac{i-1}{4}, \\
0 & \text{otherwise}.
\end{cases}$$

Describe the σ-field $F = \sigma(X_i, i = 1, \ldots, 4)$ using its atoms.