Solutions to Graded Homework 2

Exercise 1. a) use $B = A \cup (B \setminus A)$, where A and $B \setminus A$ are disjoint, as well as $\Omega = A \cup A^c$ and $P(\Omega) = 1$.

b) use $A \cup B = A \cup (B \setminus (A \cap B))$ where A and $B \setminus (A \cap B)$ are disjoint, as well as a).

c) use $\cup_{n=1}^{\infty} A_n = \cup_{n=1}^{\infty} B_n$, where $B_n = A_n \setminus (A_1 \cup \ldots \cup A_{n-1})$; the B_n are disjoint, so by axiom (iii’)

$$P(\cup_{n=1}^{\infty} A_n) = P(\cup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} P(B_n) \leq \sum_{n=1}^{\infty} P(A_n).$$

d) $P(\cup_{n \geq 1} A_n) = P(\cup_{n \geq 1} (A_n \cap (\cup_{i=1}^{n-1} A_i)^c)) = P(\cup_{n \geq 1} (A_n \cap A_i^c)) = \sum_{n=1}^{\infty} P(A_n \cap A_i^c)

$$lim_{n \to \infty} \sum_{i=1}^{n} P(A_i \cap A_i^c) = lim_{n \to \infty} P(\cup_{i=1}^{n} (A_i \cap A_i^c)) = lim_{n \to \infty} P(\cup_{i=1}^{n} A_i) = lim_{n \to \infty} P(A_n).$$
e) $P(\cap_{n \geq 1} A_n) = 1 - P((\cap_{n \geq 1} A_n)^c) = 1 - P(\cup_{n \geq 1} A_n^c) = 1 - lim_{n \to \infty} P(A_n^c) = lim_{n \to \infty} P(A_n).

Exercise 2. a) If $a > 0$, then $F_{Y_1}(t) = P\{aX \leq t\} = P\{X \leq t/a\} = F_X(t/a)$, which leads to

$$p_{Y_1}(t) = F'_{Y_1}(t) = \frac{1}{a} p_X(t/a)$$

when X is a continuous random variable. If $a < 0$, then $F_{Y_1}(t) = P\{X \geq a\} = 1 - P\{X < a\}$. Notice that it is not necessarily the case that

$$P\{X < t/a\} = F_X(t/a), \quad \text{but it always holds that} \quad P\{X < t/a\} = \lim_{\varepsilon \downarrow 0} F_X((t - \varepsilon)/a)$$

When X is a continuous random variable, then the left-hand side equality holds and consequently, $p_{Y_1}(t) = F'_{Y_1}(t) = \frac{1}{|a|} p_X(t/a)$. From this, we deduce that for all $a \neq 0$, $p_{Y_1}(t) = \frac{1}{|a|} p_X(t/a)$.

b) $F_{Y_2}(t) = P\{X + c \leq t\} = P\{X \leq t - c\} = F_X(t - c)$. When X is a continuous random variable, we therefore obtain that $p_{Y_2}(t) = p_X(t - c)$.

c) $F_{Y_3}(t) = P\{X^2 \leq t\} = 0$ if $t < 0$ and $F_{Y_3}(t) = P\{|X| \leq \sqrt{t}\} = F_X(\sqrt{t}) - \lim_{\varepsilon \downarrow 0} F_X(-\sqrt{t} - \varepsilon)$ if $t \geq 0$. If X is a continuous random variable, then

$$p_{Y_3}(t) = \begin{cases} 0 & \text{if } t < 0 \\
\frac{1}{2\sqrt{t}} (p_X(\sqrt{t}) + p_X(-\sqrt{t})) & \text{if } t > 0
\end{cases}$$

d) $F_{Y_4}(t) = P\{e^X \leq t\} = 0$ if $t \leq 0$ and $F_{Y_4}(t) = P\{X \leq \log t\} = F_X(\log t)$ of $t > 0$. If X is a continuous random variable, then

$$p_{Y_4}(t) = \begin{cases} 0 & \text{if } t \leq 0 \\
\frac{1}{2} p_X(\log t) & \text{if } t > 0
\end{cases}$$

Exercise 3. The following are guaranteed to be cdfs: F_1, F_3, F_5, F_6, F_7 and F_8 (F_2 and F_4 are clearly not cdfs in general, F_0 is not right-continuous in $t = 0$ and $F_{10}(t) = \frac{1}{2}$ for all $t \in \mathbb{R}$).
Exercise 4. a) We have, by independence of the X_j's:

$$F_Y(t) = \mathbb{P}(\{Y \leq t\}) = \mathbb{P}(\{\max(X_1, \ldots, X_n) \leq t\}) = \mathbb{P}(\{X_1 \leq t, \ldots, X_n \leq t\}) = \prod_{j=1}^{n} \mathbb{P}(\{X_j \leq t\}) = (F_X(t))^n$$

b) In a similar way, we obtain:

$$F_Z(t) = \mathbb{P}(\{Z \leq t\}) = 1 - \mathbb{P}(\{Z > t\}) = 1 - \mathbb{P}(\{\min(X_1, \ldots, X_n) > t\})$$

$$= 1 - \mathbb{P}(\{X_1 > t, \ldots, X_n > t\}) = 1 - \prod_{j=1}^{n} \mathbb{P}(\{X_j > t\}) = 1 - (1 - F_X(t))^n$$

c) $V = \max(U_1, U_2)$

d) $W = \begin{cases} U_1 & \text{with probability } \alpha \\ U_2 & \text{with probability } 1 - \alpha \end{cases}$

Coding Exercise 5. a) cf. code. In order to sample (approximately) from F, we pick uniformly at random M numbers $a_1, \ldots, a_M \in \{0, 2\}$ and compute a sample X as follows:

$$X = \sum_{k=1}^{M} \frac{a_k}{3^k}$$

For the experiments below, we have chosen $M = 20$. The code is written in Python 3, and uses the libraries numpy and matplotlib.

b-c) Here are the graphs we get with $n = 100$:

d) The test is as follows: let F_n be the empirical cdf of the n samples. The null hypothesis H_0 is that the samples are distributed according to G, the uniform distribution on $[0, 1]$. To test whether these are distributed according to F (=alternative hypothesis H_1), the uniform distribution on the Cantor set C, compute the quantity

$$D_n = F_n(2/3) - F_n(1/3)$$
and observe that \(D_n = 0 \) if and only if no sample falls in the interval \(]1/3, 2/3] \), which provides an indication, at least for large \(n \), that the samples are distributed according to \(F \).

Notice that the test proposed above is rudimentary. One could imagine more elaborate tests, checking more intervals (if not all? . . . up to the limit of the computer precision), that would allow to reduce the probability of a false positive below.

e) If it turns out that \(D_n > 0 \), then we can for sure reject the alternative hypothesis \(H_1 \), so the probability of a false negative is

\[
P(\text{the samples are distributed according to } F \mid D_n > 0) = 0
\]

But how confident should we be about the hypothesis \(H_1 \) if it turns out that \(D_n = 0 \)? Using Bayes’ formula and the prior assumption that the samples are distributed according to \(F \) with probability \(\alpha \), we obtain (abbreviating “the samples are distributed according to \(F \)” by “\(F \), simply):

\[
P(\text{the samples are distributed according to } F \mid D_n = 0) = \frac{P(F \cap \{D_n = 0\})}{P(\{D_n = 0\})} = \frac{1 \cdot \alpha}{1 \cdot \alpha + (2/3)^n \cdot (1 - \alpha)}
\]

since \(P(\{D_n = 0\} \mid G) = P(\{X_k \notin [1/3, 2/3], \forall 1 \leq k \leq n\}) = (2/3)^n \). So the probability of a false positive is given by:

\[
P(\text{the samples are distributed according to } G \mid D_n = 0) = 1 - \frac{\alpha}{\alpha + (2/3)^n \cdot (1 - \alpha)} = \frac{(2/3)^n}{\alpha + (2/3)^n}
\]

Notice that this probability can still be significant if \(\alpha \) is small (in particular, it can be close to 1/2 if \(\alpha \approx (2/3)^n \)).