Solutions to Graded Homework 11

Exercise 1. For all $n \geq 0$, we have

\[
E(M_{n+1}^2 - E(M_{n+1}^2) | F_n) = E((M_n + X_{n+1})^2 | F_n) - E((M_n + X_{n+1})^2)
\]

\[
= M_n^2 - 2M_n E(X_{n+1}) + E(X_{n+1}^2) - E(M_n^2) - 2E(M_n X_{n+1}) - E(X_{n+1}^2) = M_n^2 - E(M_n^2)
\]

as $E(M_n X_{n+1}) = E(M_n) E(X_{n+1}) = 0$.

Exercise 2. a) We know that $M_{n+1} - M_n \geq 0$ a.s., for all $n \geq 0$, and since M is a martingale, we also know that $E(M_{n+1} - M_n) = 0$ for all $n \geq 0$, so $M_{n+1} = M_n$ a.s. for all $n \geq 0$, i.e. $M_n = M_0$ a.s. for all $n \geq 0$.

b) Let us compute, for $n \geq 0$,

\[
E((M_{n+1} - M_n)^2) = E(M_{n+1}^2 - 2M_{n+1}M_n + M_n^2) = E(E(M_{n+1}^2 - 2M_{n+1}M_n + M_n^2 | F_n))
\]

\[
= E(E(M_{n+1}^2 | F_n) - 2E(M_{n+1} | F_n)M_n + M_n^2) = E(M_n^2 - 2M_n^2 + M_n^2) = 0
\]

where we have used the assumption that $E(M_{n+1}^2 | F_n) = M_n^2$. Therefore, $M_n = M_0$ a.s. for all $n \geq 0$.

Exercise 3. a) For all n, $M_n = \exp(S_n - \alpha n)$ is clearly integrable (as S_n is a bounded r.v.) and also F_n-measurable. There remains therefore to compute

\[
E(M_n | F_n) = E(\exp(S_n - \alpha(n+1)) | F_n) = \exp(S_n - \alpha n) E(\exp(X_n - \alpha)) = M_n \frac{e^{+1} + e^{-1}}{2} e^{-\alpha}
\]

In order for this expression to be equal to M_n, we need

\[
e^\alpha = \frac{e^{+1} + e^{-1}}{2} = \cosh(1), \quad \text{that is,} \quad \alpha = \log(\cosh(1))
\]

b) By definition of T, the stopped martingale $(M_{T \wedge n}, n \in \mathbb{N})$ is bounded, as

\[
|S_{T \wedge n}| = \exp(S_{T \wedge n} - \alpha(T \wedge n)) \leq \exp(S_{T \wedge n}) \leq \exp(a)
\]

so the optional stopping theorem applies: $E(M_T) = E(M_0) = 1$. Using the independence of T and S_T, we get

\[
E(\exp(-\alpha T)) = \frac{1}{E(\exp(S_T))} = \frac{2}{e^\alpha + e^{-\alpha}} = \frac{1}{\cosh(\alpha)}
\]

as we know from the course that S_T takes the values $\pm a$ with probability $1/2$.

c) The optional stopping theorem also holds for T', as the same reasoning as above shows that

\[
|S_{T' \wedge n}| \leq \exp(S_{T' \wedge n}) \leq \exp(a)
\]

So again, $E(M_{T'}) = E(M_0) = 1$, which implies

\[
E(\exp(-\alpha T')) = \frac{1}{E(\exp(S_{T'}))} = \exp(-a)
\]
as we know from the course that S_{T^r} takes the value a with probability 1.

Exercise 4. a) Recall from class that since M is \mathcal{G}-measurable and $X \perp \mathcal{G}$, we can write $\mathbb{E}(|M + X| |\mathcal{G})$ as a function of M only, i.e., $\mathbb{E}(|M + X| |\mathcal{G}) = \phi(M)$. In our case,

$$\phi(m) = \mathbb{E}(|m + X|) = \frac{1}{2}(|m + 1| + |m - 1|) = \begin{cases} m, & \text{if } m > 0 \\ 1, & \text{if } m = 0 \\ -m, & \text{if } m < 0 \end{cases}$$

b) We have that $\mathbb{E}(|M_n|) \leq n < +\infty$ and M_n is \mathcal{F}_n-measurable (by induction). Moreover,

$$\mathbb{E}(M_{n+1}|\mathcal{F}_n) = \mathbb{E}(|M_n + X_{n+1}| |\mathcal{F}_n) = \begin{cases} M_n, & \text{if } M_n > 0 \\ M_n + 1, & \text{if } M_n = 0 \end{cases}$$

In both cases, this is $\geq M_n$, so M is a submartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.

c) $$A_{n+1} - A_n = \mathbb{E}(M_{n+1}|\mathcal{F}_n) - M_n = \begin{cases} 1, & \text{if } M_n = 0 \\ 0, & \text{otherwise} \end{cases}$$

We therefore have $A_n = \sharp\{0 \leq j \leq n - 1 : M_j = 0\}$. We can immediately check that this process is predictable with respect to $(\mathcal{F}_n, n \in \mathbb{N})$ and increasing. Moreover,

$$M_{n+1} - A_{n+1} = |M_n + X_{n+1}| - A_n - 1\{M_n = 0\} = \begin{cases} M_n - A_n, & \text{if } M_n = 0 \\ M_n + X_{n+1} - A_n, & \text{if } M_n > 0 \end{cases}$$

so the process $M_n - A_n = \sum_{j=0}^{n-1} 1\{M_j > 0\} X_{j+1}$ is a martingale.

d) We have that $\mathbb{E}(|N_n|) = \mathbb{E}(|M_n^2 - n|) \leq n^2 < +\infty$ and $N_n = M_n^2 - n$ is \mathcal{F}_n-measurable. Moreover,

$$\mathbb{E}(N_{n+1}|\mathcal{F}_n) = \mathbb{E}(M_{n+1}^2 - (n + 1)|\mathcal{F}_n) = \mathbb{E}((M_n + X_{n+1})^2 - (n + 1)|\mathcal{F}_n)$$

$$= \mathbb{E}(M_n^2 + 2M_n X_{n+1} + X_{n+1}^2 - (n + 1)|\mathcal{F}_n)$$

$$= \mathbb{E}(M_n^2|\mathcal{F}_n) + 2M_n \mathbb{E}(X_{n+1}|\mathcal{F}_n) + \mathbb{E}(X_{n+1}^2|\mathcal{F}_n) - n - 1$$

$$= M_n^2 + 0 + 1 - n - 1 = M_n^2 - n = N_n$$

We conclude that the process N is a martingale.

Coding Exercise 5. a) All three processes are confined to the interval $[0, 1]$.

b+c) Let us compute: $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = (1 + \frac{X_n}{2}) (1 - X_n) + \frac{X_n}{2} X_n = \frac{1}{2}$, so X is not a martingale.

Next, we have $\mathbb{E}(Y_{n+1}|\mathcal{F}_n) = (1 + \frac{Y_n}{2}) Y_n + \frac{Y_n}{2} (1 - Y_n) = Y_n$, so Y is a martingale (the other two conditions are easy to check here).

Finally, $\mathbb{E}(Z_{n+1}|\mathcal{F}_n) = (1 + \frac{Z_n}{2}) \frac{1}{2} + \frac{Z_n}{2} \frac{1}{2} = 1 + 2Z_n$, so Z is not a martingale (but notice that all three processes share the property that $\mathbb{E}(X_n) = \mathbb{E}(Y_n) = \mathbb{E}(Z_n) = 1/2$ for all $n \in \mathbb{N}$).

d) Y being a bounded martingale, it satisfies the main assumption of the martingale convergence theorem (first version), so it does converge almost surely to some limiting random variable Y_{∞}.
Here is a typical trajectory of the process Y:

On the figure, we see that Y may oscillate at the beginning, but then “decides” to go either to $+1$ (as on the figure) or to 0. Because of the condition $\mathbb{E}(Y_\infty) = 1/2$, we obtain that $\mathbb{P}(\{Y_\infty = +1\}) = \mathbb{P}(\{Y_\infty = 0\}) = 1/2$.

e1) Below, here are typical trajectories of the process X (left) and Z (right):

These exhibit slightly different behaviors. In particular, one can observe the presence of interesting “accordions” in the process X.

e2) Below, here are histograms of the values taken by the process X (left) and Z (right):

Clearly completely different! The process Z is uniformly distributed over $[0, 1]$, while the distribution of the process X has a fractal structure, which is not unrelated to the accordions present in the above figure. Observe in particular the two peaks at $1/3$ and $2/3$: we see indeed that from $1/3$, the process X goes with high probability ($2/3$) to the value $2/3$, and reciprocally. This “ping-pong” phenomenon does not occur in the process Z.