Advanced Probability and Applications (Part II)

Olivier Léveque, IC–LTHI, EPFL

May 1, 2018

Contents

1. **Conditional expectation**
 - 1.1 Conditioning with respect to an event $B \in \mathcal{F}$
 - 1.2 Conditioning with respect to a discrete random variable Y
 - 1.3 Conditioning with respect to a continuous random variable Y?
 - 1.4 Conditioning with respect to a sub-σ-field \mathcal{G}
 - 1.5 Conditioning with respect to a random variable Y

2. **Martingales**
 - 2.1 Basic definitions
 - 2.2 Stopping times
 - 2.3 Doob’s optional stopping theorem

Week 9

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Conditioning with respect to an event $B \in \mathcal{F}$</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Conditioning with respect to a discrete random variable Y</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Conditioning with respect to a continuous random variable Y?</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Conditioning with respect to a sub-σ-field \mathcal{G}</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Conditioning with respect to a random variable Y</td>
<td>4</td>
</tr>
</tbody>
</table>

Week 10

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Basic definitions</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Stopping times</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Doob’s optional stopping theorem</td>
<td>8</td>
</tr>
</tbody>
</table>
1 Conditional expectation

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space.

1.1 Conditioning with respect to an event \(B \in \mathcal{F}\)

The conditional probability of an event \(A \in \mathcal{F}\) given another event \(B \in \mathcal{F}\) is defined as

\[
\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \quad \text{provided that } \mathbb{P}(B) > 0
\]

Notice that if \(A\) and \(B\) are independent, then \(\mathbb{P}(A|B) = \mathbb{P}(A)\); the conditioning does not affect the probability. This fact remains true in more generality (see below).

In a similar manner, the conditional expectation of an integrable random variable \(X\) given \(B \in \mathcal{F}\) is defined as

\[
\mathbb{E}(X|B) = \frac{\mathbb{E}(X 1_B)}{\mathbb{P}(B)}, \quad \text{provided that } \mathbb{P}(B) > 0
\]

1.2 Conditioning with respect to a discrete random variable \(Y\)

Let us assume that the random variable \(Y\) (is \(\mathcal{F}\)-measurable and) takes values in a countable set \(C\).

\[
\mathbb{P}(A|Y) = \varphi(Y), \quad \text{where } \varphi(y) = \mathbb{P}(A|\{Y = y\}), \quad y \in C \\
\mathbb{E}(X|Y) = \psi(Y), \quad \text{where } \psi(y) = \mathbb{E}(X|\{Y = y\}), \quad y \in C
\]

If \(X\) is also a discrete random variable with values in \(C\), then

\[
\mathbb{E}(X|Y) = \psi(Y), \quad \text{where } \psi(y) = \frac{\mathbb{E}(X 1_{\{Y = y\}})}{\mathbb{P}(\{Y = y\})} = \sum_{x \in C} x \frac{\mathbb{E}(1_{\{X = x\}} \cap \{Y = y\})}{\mathbb{P}(\{Y = y\})} = \sum_{x \in C} x \mathbb{P}(\{X = x\}|\{Y = y\})
\]

Important remark. \(\varphi(y)\) and \(\psi(y)\) are functions, while \(\varphi(Y) = \mathbb{P}(A|Y)\) and \(\psi(Y) = \mathbb{E}(X|Y)\) are random variables. They both are functions of the outcome of the random variable \(Y\), that is, they are \(\sigma(Y)\)-measurable random variables.

Example. Let \(X_1, X_2\) be two independent dice rolls and let us compute \(\mathbb{E}(X_1 + X_2|X_2) = \psi(X_2)\), where

\[
\psi(y) = \mathbb{E}(X_1 + X_2|\{X_2 = y\}) = \frac{\mathbb{E}((X_1 + X_2) 1_{\{X_2 = y\}})}{\mathbb{P}(\{X_2 = y\})} = \frac{\mathbb{E}(X_1 1_{\{X_2 = y\}}) + \mathbb{E}(X_2 1_{\{X_2 = y\}})}{\mathbb{P}(\{X_2 = y\})} = \frac{\mathbb{E}(X_1) \mathbb{E}(1_{\{X_2 = y\}}) + \mathbb{E}(y 1_{\{X_2 = y\}})}{\mathbb{P}(\{X_2 = y\})} = \mathbb{E}(X_1) + y
\]

where the independence assumption between \(X_1\) and \(X_2\) has been used in equality (a). So finally (as one would expect), \(\mathbb{E}(X_1 + X_2|X_2) = \mathbb{E}(X_1) + X_2\), which can be explained intuitively as follows: the expectation of \(X_1\) conditioned on \(X_2\) is nothing but the expectation of \(X_1\), as the outcome of \(X_2\) provides no information on the outcome of \(X_1\) (\(X_1\) and \(X_2\) being independent); on the other hand, the expectation of \(X_2\) conditioned on \(X_2\) is exactly \(X_2\), as the outcome of \(X_2\) is known.
1.3 Conditioning with respect to a continuous random variable \(Y \)?

In this case, one faces the following problem: if \(Y \) is a continuous random variable, \(\mathbb{P}(\{Y = y\}) = 0 \) for all \(y \in \mathbb{R} \). So a direct generalization of the above formulas to the continuous case is impossible at first sight. A possible solution to this problem is to replace the event \(\{Y = y\} \) by \(\{y \leq Y < y + \varepsilon\} \) and to take the limit \(\varepsilon \to 0 \) for the definition of conditional expectation. This actually works, but also leads to a paradox in the multidimensional setting (known as Borel’s paradox). In addition, some random variables are neither discrete, nor continuous. It turns out that the cleanest way to define conditional expectation in the general case is through \(\sigma \)-fields.

1.4 Conditioning with respect to a sub-\(\sigma \)-field \(\mathcal{G} \)

In order to define the conditional expectation in the general case, one needs the following proposition.

Proposition 1.1. Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space, \(\mathcal{G} \) be a sub-\(\sigma \)-field of \(\mathcal{F} \) and \(X \) be an integrable random variable on \((\Omega, \mathcal{F}, \mathbb{P})\). There exists then an integrable random variable \(Z \) such that

(i) \(Z \) is \(\mathcal{G} \)-measurable,

(ii) \(\mathbb{E}(ZU) = \mathbb{E}(XU) \) for any random variable \(U \) \(\mathcal{G} \)-measurable and bounded.

Moreover, if \(Z_1, Z_2 \) are two integrable random variables satisfying (i) and (ii), then \(Z_1 = Z_2 \) a.s.

Definition 1.2. The above random variable \(Z \) is called the conditional expectation of \(X \) given \(\mathcal{G} \) and is denoted as \(\mathbb{E}(X|\mathcal{G}) \). Because of the last part of the above proposition, it is defined up to a negligible set.

Definition 1.3. One further defines \(\mathbb{P}(A|\mathcal{G}) = \mathbb{E}(1_A|\mathcal{G}) \) for \(A \in \mathcal{F} \).

Remark. Notice that as before, both \(\mathbb{P}(A|\mathcal{G}) \) and \(\mathbb{E}(X|\mathcal{G}) \) are \((\mathcal{G} \)-measurable) random variables.

Properties. The above definition does not give a computation rule for the conditional expectation; it is only an existence theorem. The properties listed below will therefore be of help for computing conditional expectations. The proofs of the first two are omitted, while the next five are left as (important!) exercises.

- **Linearity.** \(\mathbb{E}(cX + Y|\mathcal{G}) = c\mathbb{E}(X|\mathcal{G}) + \mathbb{E}(Y|\mathcal{G}) \) a.s.

- **Monotonicity.** If \(X \geq Y \) a.s., then \(\mathbb{E}(X|\mathcal{G}) \geq \mathbb{E}(Y|\mathcal{G}) \) a.s. (so if \(X \geq 0 \) a.s., then \(\mathbb{E}(X|\mathcal{G}) \geq 0 \) a.s.)

- \(\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X) \).

- If \(X \) is independent of \(\mathcal{G} \), then \(\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(X) \) a.s.

- If \(X \) is \(\mathcal{G} \)-measurable, then \(\mathbb{E}(X|\mathcal{G}) = X \) a.s.

- If \(Y \) is \(\mathcal{G} \)-measurable and bounded (or if \(Y \) is \(\mathcal{G} \)-measurable and both \(X \) and \(Y \) are square-integrable; what actually matters here is that the random variable \(XY \) is integrable), then \(\mathbb{E}(XY|\mathcal{G}) = \mathbb{E}(X|\mathcal{G})Y \) a.s.

- If \(\mathcal{H} \) is a sub-\(\sigma \)-field of \(\mathcal{G} \), then \(\mathbb{E}(\mathbb{E}(X|\mathcal{H})|\mathcal{G}) = \mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) = \mathbb{E}(X|\mathcal{H}) \) a.s. (in other words, the smallest \(\sigma \)-field always “wins”: this property is also known as the “towering property” of conditional expectation)
Some of the above properties are illustrated below with an example.

Example. Let $\Omega = \{1, \ldots ,6\}$, $\mathcal{F} = \mathcal{P}(\Omega)$ and $\mathbb{P}(\{\omega\}) = \frac{1}{6}$ for $\omega = 1, \ldots , 6$ (the probability space of the die roll). Let also $X(\omega) = \omega$ be the outcome of the die roll and consider the two sub-σ-fields:

$$\mathcal{G} = \sigma\{\{1,3\},\{2\},\{5\},\{4,6\}\} \text{ and } \mathcal{H} = \sigma\{\{1,3,5\},\{2,4,6\}\}$$

Then $\mathbb{E}(X) = 3.5$,

$$\mathbb{E}(X|\mathcal{G})(\omega) = \begin{cases} 2 & \text{if } \omega \in \{1,3\} \text{ or } \omega = 2 \\ 5 & \text{if } \omega \in \{4,6\} \text{ or } \omega = 5 \end{cases} \text{ and } \mathbb{E}(X|\mathcal{H})(\omega) = \begin{cases} 3 & \text{if } \omega \in \{1,3,5\} \\ 4 & \text{if } \omega \in \{2,4,6\} \end{cases}$$

So $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(\mathbb{E}(X|\mathcal{H})) = \mathbb{E}(X)$. Moreover,

$$\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H})(\omega) = \begin{cases} \frac{1}{3}(2 + 2 + 5) = 3 & \text{if } \omega \in \{1,3,5\} \\ \frac{1}{4}(2 + 5 + 5) = 4 & \text{if } \omega \in \{2,4,6\} \end{cases} = \mathbb{E}(X|\mathcal{H})(\omega)$$

and

$$\mathbb{E}(\mathbb{E}(X|\mathcal{H})|\mathcal{G})(\omega) = \begin{cases} 3 & \text{if } \omega \in \{1,3\} \text{ or } \omega = 5 \\ 4 & \text{if } \omega \in \{4,6\} \text{ or } \omega = 2 \end{cases} = \mathbb{E}(X|\mathcal{H})(\omega)$$

The proposition below (given here without proof) is an extension of some of the above properties.

Proposition 1.4. Let \mathcal{G} be a sub-σ-field of \mathcal{F}, X, Y be two random variables such that X is independent of \mathcal{G} and Y is \mathcal{G}-measurable, and let $\varphi : \mathbb{R}^2 \to \mathbb{R}$ be a Borel-measurable function such that $\mathbb{E}(|\varphi(X)|) < \infty$. Then

$$\mathbb{E}(\varphi(X,Y)|\mathcal{G}) = \psi(Y) \quad \text{a.s., where } \psi(y) = \mathbb{E}(\varphi(X,y))$$

This proposition has the following consequence: when computing the expectation of a function φ of two independent random variables X and Y, one can always divide the computation in two steps by writing

$$\mathbb{E}(\varphi(X,Y)) = \mathbb{E}(\mathbb{E}(\varphi(X,Y)|\mathcal{G})) = \mathbb{E}(\psi(Y))$$

where $\psi(y) = \mathbb{E}(\varphi(X,y))$ (this is actually nothing but Fubini’s theorem).

Finally, the proposition below (given again without proof) shows that Jensen’s inequality also holds for conditional expectation.

Proposition 1.5. Let X be a random variable, \mathcal{G} be a sub-σ-field of \mathcal{F} and $\psi : \mathbb{R} \to \mathbb{R}$ be Borel-measurable, convex and such that $\mathbb{E}(|\psi(X)|) < \infty$. Then

$$\psi(\mathbb{E}(X|\mathcal{G})) \leq \mathbb{E}(\psi(X)|\mathcal{G}) \quad \text{a.s.}$$

In particular, $|\mathbb{E}(X|\mathcal{G})| \leq \mathbb{E}(|X||\mathcal{G})$ a.s.

1.5 Conditioning with respect to a random variable Y

Once the definition of conditional expectation with respect to a σ-field is set, it is natural to define it for a generic random variable Y:

$$\mathbb{E}(X|Y) = \mathbb{E}(X|\sigma(Y)) \quad \text{and} \quad \mathbb{P}(A|Y) = \mathbb{P}(A|\sigma(Y))$$

Remark. Since any $\sigma(Y)$-measurable random variable may be written as $g(Y)$, where g is a Borel-measurable function, the definition of $\mathbb{E}(X|Y)$ may be rephrased as follows.

Definition 1.6. $\mathbb{E}(X|Y) = \psi(Y)$, where $\psi : \mathbb{R} \to \mathbb{R}$ is the unique Borel-measurable function such that $\mathbb{E}(\psi(Y)g(Y)) = \mathbb{E}(Xg(Y))$ for any function $g : \mathbb{R} \to \mathbb{R}$ Borel-measurable and bounded.
In two particular cases, the function ψ can be made explicit, which allows for concrete computations.

- If X, Y are two discrete random variables with values in a countable set C, then
 \[E(X|Y) = \psi(Y), \quad \text{where} \quad \psi(y) = \sum_{x \in C} x \mathbb{P}(\{X = x\}|\{Y = y\}), \quad y \in C \]
 which matches the formula given in Section 1.2. The proof that it also matches the theoretical definition of conditional expectation is left as an exercise.

- If X, Y are two jointly continuous random variables with joint pdf $p_{X,Y}$, then
 \[E(X|Y) = \psi(Y), \quad \text{where} \quad \psi(y) = \int_{\mathbb{R}} p_{X,Y}(x,y) \, dx, \quad y \in \mathbb{R} \]
 and p_Y is the marginal pdf of Y given by $p_Y(y) = \int_{\mathbb{R}} p_{X,Y}(x,y) \, dx$, assumed here to be strictly positive.

Let us check that the random variable $\psi(Y)$ is indeed the conditional expectation of X given Y according to Definition 1.6: for any function $g : \mathbb{R} \to \mathbb{R}$ Borel-measurable and bounded, one has

\[
\mathbb{E}(\psi(Y) \, g(Y)) = \int_{\mathbb{R}} \psi(y) \, g(y) \, p_Y(y) \, dy \\
= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} x \frac{p_{X,Y}(x,y)}{p_Y(y)} \, dx \right) \, g(y) \, p_Y(y) \, dy \\
= \int_{\mathbb{R}^2} x \, g(y) \, p_{X,Y}(x,y) \, dx \, dy = \mathbb{E}(Xg(Y))
\]

Finally, the conditional expectation satisfies the following proposition when X is a square-integrable random variable.

Proposition 1.7. Let X be a square-integrable random variable, \mathcal{G} be a sub-σ-field of \mathcal{F} and G be the linear subspace of square-integrable and \mathcal{G}-measurable random variables. Then the conditional expectation of X with respect to \mathcal{G} is equal a.s. to the random variable Z satisfying

\[Z = \arg\min_{Y \in \mathcal{G}} \mathbb{E}((X - Y)^2) \]

In other words, this is saying that Z is the orthogonal projection of X onto the linear subspace G of square-integrable and \mathcal{G}-measurable random variables (the scalar product considered here being $\langle X, Y \rangle = \mathbb{E}(XY)$). In particular,

\[\mathbb{E}((X - Z)U) = 0, \quad \text{for any } U \in G \]

which is nothing but a variant of condition (ii) in the definition of conditional expectation.

2 Martingales

2.1 Basic definitions

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition 2.1. A *filtration* is a sequence $(\mathcal{F}_n, n \in \mathbb{N})$ of sub-σ-fields of \mathcal{F} such that $\mathcal{F}_n \subset \mathcal{F}_{n+1}, \forall n \in \mathbb{N}$.

Example. Let $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}([0, 1])$, $X_n(\omega) = n^{th}$ decimal of ω, for $n \geq 1$. Let also $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Then $\mathcal{F}_n \subset \mathcal{F}_{n+1}, \forall n \in \mathbb{N}$.

Week 10
Definitions 2.2. - A discrete-time process \((X_n, n \in \mathbb{N})\) is said to be adapted to the filtration \((\mathcal{F}_n, n \in \mathbb{N})\) if \(X_n\) is \(\mathcal{F}_n\)-measurable \(\forall n \in \mathbb{N}\).

- The natural filtration of a process \((X_n, n \in \mathbb{N})\) is defined as \(\mathcal{F}_n^X = \sigma(X_0, \ldots, X_n), n \in \mathbb{N}\). It represents the available amount of information about the process at time \(n\).

Remark. A process is adapted to its natural filtration, by definition.

Let now \((\mathcal{F}_n, n \in \mathbb{N})\) be a given filtration.

Definition 2.3. A discrete-time process \((M_n, n \in \mathbb{N})\) is a martingale with respect to \((\mathcal{F}_n, n \in \mathbb{N})\) if

(i) \(\mathbb{E}(|M_n|) < +\infty, \forall n \in \mathbb{N}\).

(ii) \(M_n\) is \(\mathcal{F}_n\)-measurable, \(\forall n \in \mathbb{N}\) (i.e., \((M_n, n \in \mathbb{N})\) is adapted to \((\mathcal{F}_n, n \in \mathbb{N})\)).

(iii) \(\mathbb{E}(M_{n+1}|\mathcal{F}_n) = M_n\) a.s., \(\forall n \in \mathbb{N}\).

A martingale is therefore a fair game: the expectation of the process at time \(n + 1\) given the information at time \(n\) is equal to the value of the process at time \(n\).

Remark. Conditions (ii) and (iii) are actually redundant, as (iii) implies (ii).

Properties. If \((M_n, n \in \mathbb{N})\) is a martingale, then

- \(\mathbb{E}(M_{n+1}) = \mathbb{E}(M_n) (= \ldots = \mathbb{E}(M_0)), \forall n \in \mathbb{N}\) (by the first property of conditional expectation).

- \(\mathbb{E}(M_{n+1} - M_n|\mathcal{F}_n) = 0\) a.s. (nearly by definition).

- \(\mathbb{E}(M_{n+m}|\mathcal{F}_n) = M_n\) a.s., \(\forall n, m \in \mathbb{N}\).

This last property is important, as it says that the martingale property propagates over time. Here is a short proof, which uses the towering property of conditional expectation:

\[
\mathbb{E}(M_{n+m}|\mathcal{F}_n) = \mathbb{E}(\mathbb{E}(M_{n+m}|\mathcal{F}_{n+m-1})|\mathcal{F}_n) = \mathbb{E}(M_{n+m-1}|\mathcal{F}_n) = \ldots = \mathbb{E}(M_{n+1}|\mathcal{F}_n) = M_n \quad \text{a.s.}
\]

Example: the simple symmetric random walk.

Let \((S_n, n \in \mathbb{N})\) be the simple symmetric random walk: \(S_0 = 0, S_n = X_1 + \ldots + X_n\), where the \(X_n\) are i.i.d. and \(\mathbb{P}(X_1 = +1) = \mathbb{P}(X_1 = -1) = 1/2\).

Let us define the following filtration: \(\mathcal{F}_0 = \{\emptyset, \Omega\}, \mathcal{F}_n = \sigma(X_1, \ldots, X_n), n \geq 1\). Then \((S_n, n \in \mathbb{N})\) is a martingale with respect to \((\mathcal{F}_n, n \in \mathbb{N})\). Indeed:

(i) \(\mathbb{E}(|S_n|) \leq \mathbb{E}(|X_1|) + \ldots + \mathbb{E}(|X_n|) = 1 + \ldots + 1 = n < +\infty, \forall n \in \mathbb{N}\).

(ii) \(S_n = X_1 + \ldots + X_n\) is a function of \((X_1, \ldots, X_n)\), i.e., is \(\sigma(X_1, \ldots, X_n) = \mathcal{F}_n\)-measurable.

(iii) We have

\[
\mathbb{E}(S_{n+1}|\mathcal{F}_n) = \mathbb{E}(S_n + X_{n+1}|\mathcal{F}_n) = \mathbb{E}(S_n|\mathcal{F}_n) + \mathbb{E}(X_{n+1}|\mathcal{F}_n) = S_n + \mathbb{E}(X_{n+1}) = S_n + 0 = S_n \quad \text{a.s.}
\]

The first equality on the second line follows from the fact that \(S_n\) is \(\mathcal{F}_n\)-measurable and that \(X_{n+1}\) is independent of \(\mathcal{F}_n = \sigma(X_1, \ldots, X_n)\).

Remark. Even though one uses generally the same letter “M” for both martingales and Markov process, these are a priori completely different processes! A possible way to state the Markov property is to say that

\[
\mathbb{E}(g(M_{n+1})|\mathcal{F}_n) = \mathbb{E}(g(M_{n+1})|X_n) \quad \text{a.s. for any } g : \mathbb{R} \to \mathbb{R} \text{ continuous and bounded}
\]

which is clearly different from the above stated martingale property. Beyond the use of the same letter “M”, the confusion between the two notions comes also from the fact that the simple symmetric random walk is usually taken a paradigm example for both martingales and Markov processes.
Generalization. If the random variables X_n are i.i.d. and such that $E(|X_1|) < +\infty$ and $E(X_1) = 0$, then $(S_n, n \in \mathbb{N})$ is also a martingale (in particular, $X_1 \sim \mathcal{N}(0, 1)$ works).

Definition 2.4. Let $(\mathcal{F}_n, n \in \mathbb{N})$ be a filtration. A process $(M_n, n \in \mathbb{N})$ is a submartingale (resp. a supermartingale) with respect to $(\mathcal{F}_n, n \in \mathbb{N})$ if

1. $E(|M_n|) < +\infty$, $\forall n \in \mathbb{N}$.
2. M_n is \mathcal{F}_n-measurable, $\forall n \in \mathbb{N}$.
3. $E(M_{n+1}|\mathcal{F}_n) \geq M_n$ a.s., $\forall n \in \mathbb{N}$ (resp. $E(M_{n+1}|\mathcal{F}_n) \leq M_n$ a.s., $\forall n \in \mathbb{N}$).

Remarks. - Not every process is either a sub- or a supermartingale!
- The appellations sub- and supermartingale are counter-intuitive. They are due to historical reasons.
- Condition (ii) is now necessary in itself, as (iii) does not imply it.
- If $(M_n, n \in \mathbb{N})$ is both a submartingale and a supermartingale, then it is a martingale.

Example: the simple asymmetric random walk.
- If $P(\{X_1 = +1\}) = p = 1 - P(\{X_1 = -1\})$ with $p \geq 1/2$, then $S_n = X_1 + \ldots + X_n$ is a submartingale.
- More generally, $S_n = X_1 + \ldots + X_n$ is a submartingale if $E(X_1) \geq 0$.

Proposition 2.5. If $(M_n, n \in \mathbb{N})$ is a martingale with respect to a filtration $(\mathcal{F}_n, n \in \mathbb{N})$ and $\varphi : \mathbb{R} \to \mathbb{R}$ is a Borel-measurable and convex function such that $E(\varphi(M_n)) < +\infty$, $\forall n \in \mathbb{N}$, then $(\varphi(M_n), n \in \mathbb{N})$ is a submartingale.

Proof. (i) $E(\varphi(M_n)) < +\infty$ by assumption.
(ii) $\varphi(M_n)$ is \mathcal{F}_n-measurable as M_n is (and φ is Borel-measurable).
(iii) $E(\varphi(M_{n+1})|\mathcal{F}_n) \geq \varphi(E(M_{n+1}|\mathcal{F}_n)) = \varphi(M_n)$ a.s.

In (iii), the first inequality follows from Jensen’s inequality and the second follows from the fact that M is a martingale.

Example. If $(M_n, n \in \mathbb{N})$ is a square-integrable martingale (i.e., $E(M_n^2) < +\infty$, $\forall n \in \mathbb{N}$), then the process $(M_n^2, n \in \mathbb{N})$ is a submartingale (as $x \mapsto x^2$ is convex).

2.2 Stopping times

Definitions 2.6. - A random time is a random variable T with values in $\mathbb{N} \cup \{+\infty\}$. It is said to be finite if $T(\omega) < +\infty$ for every $\omega \in \Omega$ and bounded if there exists moreover an integer N such that $T(\omega) \leq N$ for every $\omega \in \Omega$ (Notice that a finite random time is not necessarily bounded).

- Let $(X_n, n \in \mathbb{N})$ be a stochastic process and assume T is finite. One then defines $X_T(\omega) = X_{T(\omega)}(\omega) = \sum_{n \in \mathbb{N}} X_n(\omega) 1_{\{T=n\}}(\omega)$.
- A stopping time with respect to a filtration $(\mathcal{F}_n, n \in \mathbb{N})$ is a random time T such that $\{T = n\} \in \mathcal{F}_n$, $\forall n \in \mathbb{N}$.

Example. Let $(X_n, n \in \mathbb{N})$ be a process adapted to $(\mathcal{F}_n, n \in \mathbb{N})$ and $a > 0$. Then $T_a = \inf\{n \in \mathbb{N} : |X_n| \geq a\}$ is a stopping time with respect to $(\mathcal{F}_n, n \in \mathbb{N})$. Indeed:

$$
\{T_a = n\} = \{|X_k| < a, \forall 0 \leq k \leq n-1 \text{ and } |X_n| \geq a\}
= \bigcap_{k=0}^{n-1} \{X_k < a\} \cap \{X_n \geq a\} \in \mathcal{F}_n, \quad \forall n \in \mathbb{N}
$$
Definition 2.7. Let T be a stopping time with respect to a filtration $(\mathcal{F}_n, n \in \mathbb{N})$. One defines the information one possesses at time T as the following σ-field:

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T = n \} \in \mathcal{F}_n, \forall n \in \mathbb{N} \}$$

Facts.
- If $T(\omega) = N \forall \omega \in \Omega$, then $\mathcal{F}_T = \mathcal{F}_N$. This is obvious from the definition.
- If T_1, T_2 are stopping times such that $T_1(\omega) \leq T_2(\omega) \forall \omega \in \Omega$, then $\mathcal{F}_{T_1} \subset \mathcal{F}_{T_2}$. Indeed, if $T_1(\omega) \leq T_2(\omega) \forall \omega \in \Omega$ and $A \in \mathcal{F}_{T_1}$, then for all $n \in \mathbb{N}$, we have:

$$A \cap \{ T = n \} = A \cap (\bigcup_{k=1}^{n} \{ T_1 = k \}) \cap \{ T = n \} = \left(\bigcup_{k=1}^{n} A \cap \{ T_1 = k \} \right) \cap \{ T = n \} \in \mathcal{F}_n$$

so $A \in \mathcal{F}_{T_2}$. By the way, here is an example of stopping times T_1, T_2 such that $T_1(\omega) \leq T_2(\omega) \forall \omega \in \Omega$: let $0 < a < b$ and consider $T_1 = \inf\{n \in \mathbb{N} : |X_n| \geq a\}$ and $T_2 = \inf\{n \in \mathbb{N} : |X_n| \geq b\}$.
- A random variable Y is \mathcal{F}_T-measurable if and only if $Y \mathbf{1}_{\{ T = n \}}$ is \mathcal{F}_n-measurable, $\forall n \in \mathbb{N}$. As a consequence: if $(X_n, n \in \mathbb{N})$ is adapted to $(\mathcal{F}_n, n \in \mathbb{N})$, then X_T is \mathcal{F}_T-measurable.

2.3 Doob’s optional stopping theorem

Let $(M_n, n \in \mathbb{N})$ be a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$, $N \in \mathbb{N}$ be fixed and T_1, T_2 be two stopping times such that $0 \leq T_1(\omega) \leq T_2(\omega) \leq N < +\infty, \forall \omega \in \Omega$. Then

$$E(M_{T_2}|\mathcal{F}_{T_1}) = M_{T_1} \text{ a.s.}$$

In particular, $E(M_{T_2}) = E(M_{T_1})$.

In particular, if T is a stopping time such that $0 \leq T(\omega) \leq N < +\infty, \forall \omega \in \Omega$, then

$$E(M_T) = E(M_0)$$

Remarks. - The above theorem says that the martingale property holds even if one is given the option to stop at any (bounded) stopping time.
- The theorem also holds for sub- and supermartingales (i.e., if M is a submartingale, then $E(M_{T_2}|\mathcal{F}_{T_1}) \geq M_{T_1} \text{ a.s.}$).

Proof. - We first show that if T is a stopping time such that $0 \leq T(\omega) \leq N, \forall \omega \in \Omega$, then

$$E(M_{N}|\mathcal{F}_{T}) = M_{T} \quad (1)$$

Indeed, let $Z = M_{T} = \sum_{n=0}^{N} M_n \mathbf{1}_{\{ T = n \}}$. We check below that Z is the conditional expectation of M_N given \mathcal{F}_T:

(i) Z is \mathcal{F}_T-measurable: $Z \mathbf{1}_{\{ T = n \}} = M_n \mathbf{1}_{\{ T = n \}}$ is \mathcal{F}_n-measurable $\forall n$, so Z is \mathcal{F}_T-measurable.

(ii) $E(ZU) = E(M_NU), \forall U \mathcal{F}_T$-measurable and bounded:

$$E(ZU) = \sum_{n=0}^{N} E(M_n \mathbf{1}_{\{ T = n \}}U) = \sum_{n=0}^{N} E(E(M_N|\mathcal{F}_n) \mathbf{1}_{\{ T = n \}}U) = \sum_{n=0}^{N} E(M_n \mathbf{1}_{\{ T = n \}}U) = E(M_NU)$$

- Second, let us check that $E(M_{T_2}|\mathcal{F}_{T_1}) = M_{T_1}$:

$$M_{T_1} = \mathbb{E}(M_{N}|\mathcal{F}_{T_1}) = E(E(M_N|\mathcal{F}_{T_2})|\mathcal{F}_{T_1}) = (1) \text{ with } T = T_1 \Rightarrow E(M_{T_2}|\mathcal{F}_{T_1})$$

This concludes the proof of the theorem. \qed